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We study a variation of the trapping reaction, A+B → A, in which both the traps (A) and the
particles (B) undergo diffusion, and the traps upon meeting react according to A + A → 0 or A.
This two-species reaction-diffusion system is known to exhibit a non-trivial decay exponent for the
B particles, and recently renormalization group methods have predicted an anomalous dimension in
the BB correlation function. To test these predictions we develop a computer simulation method,
motivated by the technique of Mehra and Grassberger, that determines the complete probability
distribution of the B particles for a given realization of the A particle dynamics, thus providing
a significant increase the quality of statistics. Our numerical results indeed reveal the anomalous
dimension predicted by the renormalization group, and compare well quantitatively to precisely
known values in cases where the problem can be related to a 4-walker problem.

I. INTRODUCTION

Reaction-diffusion processes with irreversible reactions
provide an important class of far from equilibrium sys-
tems. Interest in these systems stems from the fact that
the particles develop nontrivial correlations that cannot
be described by equilibrium fluctuations, and these cor-
relations in turn affect the reaction rates and particle
densities. Applications for these model systems include
chemical reaction kinetics [1], interface growth models
[2], aggregation [3], domain coarsening [4], and popula-
tion dynamics [5].

In the present work, we consider a two-species process
consisting of the trapping reaction A+B → A, in which
A particles, or “traps,” catalyze the decay of B parti-
cles, and where the traps additionally react according to
A + A → 0 (annihilation) or A + A → A (coalescence).
Both particle types A and B undergo diffusion with cor-
responding diffusion constants DA and DB. This system
has been predicted via renormalization group (RG) meth-
ods to exhibit anomalous dimension in both the B par-
ticle density decay [6–8] and separately in the scaling of
the BB correlation function [9, 10] for spatial dimension
d < 2. The primary focus of this paper is to test these
predictions numerically in one- and two-dimensional sys-
tems. For this purpose we develop a hybrid Monte Carlo
technique that provides the entire B particle distribu-
tion for a given realization of the A particles. This is
possible because, as argued below, the B particles re-
main locally Poissonian. As a result, we have obtained
what we believe to be the first numerical measurements
of the particle statistics for this reaction with mobile B
particles in d = 1 and d = 2.

For the A + B → A trapping reaction with mobile
but non-reacting traps, the mean-field rate equation pre-
dicts the B particle density to decay exponentially with
time. However, scaling arguments and rigorous bounds
confirm that for dimension d ≤ 2 nontrivial correla-
tions develop between the traps and the surviving B
particles, invalidating the rate equation and causing the

B particle density to decay as a stretched exponential
〈b〉 ∼ exp(−λdt

d/2) for d < 2 (with logarithmic correc-
tions 〈b〉 ∼ exp(−λ2t/ ln t) in d = 2) and with a universal
coefficient λd [11–14]. Here and throughout angle brack-
ets are used to indicate averages over the random initial
conditions and over the stochastic processes of reaction
and diffusion.
Now consider traps that are additionally reacting ac-

cording to

A+A →
{

A (coalescence) probability p

0 (annihilation) probability 1− p.
(1)

Since the traps are unaffected by the B particles, their
dynamics reduces to the well-studied single-species re-
action, where mean-field rate equations (see below),
exact solutions in one spatial dimension [15–17], and
field-theoretic RG methods [18–20] for general dimen-
sion demonstrate that the A particle density decays as
power law (with a multiplicative logarithmic correction
in d = 2). This decaying trap density then enhances
the survival probability of the B particles, resulting in a
power law decay with time, 〈b〉 ∼ t−θ. For example, the
rate equations, valid for d > 2 where diffusion manages
to keep the reactants well mixed, are

∂t〈a〉 = −Γ〈a〉2, ∂t〈b〉 = −Γ′〈a〉〈b〉, (2)

with solutions 〈a〉 ∼ 1/(Γt) and 〈b〉 decay exponent de-
termined by the nonuniversal rate constants, θ = Γ′/Γ.
For d < 2 the depletion caused by reactions competes

with diffusion, developing correlations that modify the
reaction rate. This results in the trap density decay
〈a〉 ∼ Ad(DAt)

−d/2 with a universal coefficient Ad. The
B particle density in this fluctuation-dominated case has
been studied with Smoluchowski theory [21], which is
an improved rate equation that incorporates the deple-
tion with a time-dependent rate constant, and with RG
techniques [6–9]. In both cases the B particle density
was found to decay as a power law with a universal ex-
ponent θ depending only on the diffusion constant ratio
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δ = DB/DA and the trap reaction parameter p defined
in Eq. (1). Smoluchowski theory gives

θS =
d

2− p

(

1 + δ

2

)d/2

(3)

while the RG analysis predicts

θ = θS +
1

2
γ∗

b (4)

where γ∗

b is an anomalous dimension of order ǫ = 2 − d
which stems from a field renormalization of the density
[7, 9].
In the case of d = 2, the B particle density is predicted

by RG methods [8] to decay as

〈b(t)〉 ∼ t−θ| ln t|α (5)

with θ = (1 + δ)/(2 − p). The logarithm power α is
found to be nonuniversal and related to the microscopic
reaction rate constants.
This model reduces in the limit of δ → 0 (DB → 0) to a

study of persistence (see [14] for a recent review). That
is, the B particles become simply stationary markers,
and their survival to time t indicates that no A particle
has visited that particular site. Thus the exponent θ
becomes the persistence exponent for the single-species
reaction A+A → 0, A.
Recently it was shown by RG methods that an addi-

tional anomalous dimension occurs due to the field renor-
malization of the b2 density operator [9], with the conse-
quence that the B particle correlation function scales for
d < 2 as

CBB(r, t) ≡
〈b(r, t)b(0, t)〉 − 〈b(t)〉2

〈b(t)〉2 ∼ tφf(r/
√
t), (6)

where φ is a universal exponent of order ǫ. In contrast,
the scaled correlation functions CAA and CAB are sim-
ply functions of r/

√
t with no time-dependent prefactor.

We note that χBB(t) ≡ CBB(0, t) is a measure of the
local fluctuations, and Eq. (6) predicts that χBB grows
as a universal power of time. In dimension d = 2 the
correlation function scales as

CBB(r, t) ∼ | ln t|βf(r/
√
t). (7)

In Ref. [9] the exponent φ was computed to first order
in ǫ and an explicit expression for β was obtained (but
see corrigendum [10]). Additionally, an exact value of φ
was obtained for the case of p = δ = 1 in one spatial
dimension by mapping to a four walker problem [9] and
solving an eigenvalue problem numerically [22].
Here we aim to use numerical simulations to test the

predicted scaling forms Eq. (6) and (7) and to measure
the exponents θ, φ, α, and β. These simulations are
challenging since the window of scaling behavior is lim-
ited by transients at early times and finite size effects and
vanishing particle numbers at late times. In the present

work we circumvent the small number statistics of the B
particles by determining the entire B particle probability
distribution conditioned on a particular realization of the
A particle dynamics. Our technique was inspired by and
is a converse to the method of Mehra and Grassberger
[23], who studied the trapping reaction by monitoring
a single particle and updating the distribution of traps.
With greatly improved statistical accuracy, we were able
to demonstrate the scaling collapse of the AA, AB, and
BB correlation functions and measure the dynamical ex-
ponents θ and φ to high accuracy.
The layout of this paper is as follows. In Sec. II we

present our hybrid simulation method, which also serves
to define the model we are considering. In Sec. III we
report our measurements of the density decay exponent
θ for d = 1 for a variety of δ and p values, and com-
pare these to known exact solutions, RG calculations,
and the Smoluchowski approximation. Then in Sec. IV
we present our data for the anomalous dimension φ in
d = 1, and compare to the RG prediction and the exact
solution from the 4-walker problem, while in Sec. V we
test the pair correlation functions for scaling collapse. In
Sec. VI we present simulations in d = 2 and compare
the exponents and logarithmic corrections to the explicit
RG predictions. Finally, in Sec. VII we summarize our
results and suggest future work.

II. HYBRID MONTE CARLO AND MASTER

EQUATION METHOD

Reaction-diffusion systems are typically simulated via
Monte Carlo methods: a lattice is populated randomly by
particles, and then updated according to the particular
rules for reaction and stochastic diffusion. Quantities
of interest are then averaged over multiple realizations of
the stochastic processes. Monte Carlo is employed rather
than direct computation of the probabilities in a master
equation because of the impossibility in dealing with such
a large number of configurations.
However, for the trapping reaction the B particles are

non-interacting, and this allows for a much simpler de-
scription of the B particle probabilities. We use this to
construct a hybrid approach in which we use Monte Carlo
for the A particles, but for each realization of the A parti-
cle dynamics we calculate the entire B particle probabil-
ity distribution. This is possible because the B particle
distribution remains Poissonian at each lattice site.
We now define our model for concreteness. We con-

sider a d-dimensional hypercubic lattice and use a paral-
lel update, as illustrated in Fig. 1. In d = 1 the particles
are initially located on even numbered lattice sites. In
higher dimensions the particles are initially located on
sites whose lattice indices sum to an even number, e.g.,
the black squares of a checkerboard for d = 2. For the A
particles we start with every allowed site singly occupied.
For the B particles we will be tracking a distribution, and
our initial condition is a Poissonian distribution of unit
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FIG. 1: An illustration of the parallel update in d = 1. All
particles occupy even (odd) numbered sites at even (odd)
numbered time steps. The circles represent A particles, with
an A + A → A reaction occurring at site i = 3 and time
step j = 7. The numbers represent the means of the Poisson
distribution of B particles, which are updated according the
rules in Eqs. (8) and (9), with p′ = 1.

mean at each allowed site.
In a diffusion step each particle will simultaneously hop

in one of the ±x̂i directions along the principle axes of
the lattice, so that after an even (odd) number of steps,
the particles reside in the even (odd) sector of the bi-
partite lattice. Reactions are then performed subsequent
to the diffusion hops. In the simplest scenario, for any
site containing both A and B particles, the B particles
are removed. A variant of this rule would be for each
B particle to be removed with probability p′. Any site
containing two A particles reacts according to Eq. (1),
governed by the parameter p.
When the A and B diffusion constants are equal, both

particle types step simultaneously, resulting in the diffu-
sion constant D = ∆x2/(2d∆t) for a lattice constant ∆x
and a hop time ∆t. For unequal diffusion constants we
can take an odd number of multiple steps for one of the
species. For example, if δ = DB/DA = 3 we take two
steps with the B particles, check the A + B → B reac-
tion, take one more step with both particle types, and
then check the reactions again. For δ = 2 we first do the
process just described and then take one more step with
both particle types. In this way any rational value of the
diffusion constant ratio δ can be realized.
Our hybrid technique relies on the following two well-

known properties of Poisson distributions:

P1. The sum of two independent Poisson distributed
random variables with mean values µ and ν is a
Poisson random variate with mean µ+ ν.

P2. The compound of a Poisson distribution with mean
µ and a binomial distribution with probability q is
a Poisson distribution with mean qµ.

The second property says that if a number of elements is
a Poissonian random variate and then a random subset
of elements are selected with independent probabilities,
the selected number of elements is a Poissonian random
variate.

position

tim
e

FIG. 2: A characteristic segment of our simulation. The blue
lines are A particles (traps), which undergo both coalescence
and annihilation reactions. The B particle probability distri-
bution is shaded in red, with the intensity representing the
local Poissonian mean.

Now assume at some time t the B particles are Poisso-
nian distributed on each lattice site i with a mean value
bi. In the subsequent diffusion step the probability of a
particle making the hop from site i to a particular near-
est neighbor j is 1/(2d). Thus from property P2 these
particles will contribute a Poissonian distributed number
of particles with mean bi/(2d) to each of their neighbor-
ing sites. The new distribution at a particular site j is a
sum of Poisson random variates, thus by property P1 it
is Poissonian with mean given by

bj,t+∆t =
1

2d

∑

k

bk,t (8)

where k are the nearest neighbors of j.
To incorporate the trapping reaction, we take

bi,t → (1− p′)bi,t (9)

at any site i containing an A particle at time t, which
derives from property P2, recalling that each B particle
independently reacts with probability p′, or survives with
probability 1− p′.
Thus we find that dynamical process preserves the lo-

cally Poissonian character of the B particle distribution.
Since we start from Poissonian initial conditions, then
by induction the Poissonian measure is preserved for all
times.
With this method, an explicit realization of the A par-

ticles is evolved, and simultaneously the local means of
the Poissonian B particles are updated by use of Eqs. (8)
and (9). The computational cost of this method in com-
parison to a Monte Carlo simulation of the B particles is
the introduction of a floating point variable that has to be
updated at each lattice site at each time step. The gain
is vastly improved statistics, particularly for parameter
values where θ is large, for which the B particle density
decays rapidly and Monte Carlo simulations would yield
vanishing particle numbers.
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FIG. 3: Log-log plot of the average B particle density versus
time in d = 1, demonstrating multiple decades of scaling for
the case p = 1 (traps undergoing A + A → A) for various
diffusion constant ratios δ = DB/DA. The error bars are
significantly smaller than the points plotted.

III. B PARTICLE DENSITY IN d = 1

We measured the B particle density for one-
dimensional systems with lattice size ranging from 106

up to 3 × 107 sites. We set ∆x = ∆t = 1 and used an
initial condition of 〈a(0)〉 = 0.5 for the trap density and
without loss of generality we set 〈b(0)〉 to unity.
Simulations were performed for diffusion constant ra-

tios δ = DB/DA = 1/4, 1/2, 1, 2, and 4 for both the
A+ A → 0 (p = 0) and the A+ A → A (p = 1) trap re-
actions. Additionally, for equal diffusion constants δ = 1
we simulated mixed trap reactions with p = 1/4, 1/2, and
3/4, with p defined in Eq. (1). We also varied the trap-
ping probability parameter p′ in Eq. (9) to confirm the
universality of our results. The data presented here and
below correspond to p′ = 1. In each case we performed
between 100 and 400 independent runs. In order for the
statistical uncertainties at different times to be uncorre-
lated, we used an independent set of runs for each time
value where we collected data. The onset time for finite
size effects depended strongly on the parameters δ and
p, decreasing with respect to both parameters. As such,
we chose the system size and simulation run time ac-
cordingly for each parameter set to optimize the scaling
regime.
Representative data for the B particle density with

p = 1 and varying δ values are presented in Fig. 3, along
with the best fit power law. Not all data points shown
are used in the fits.
We fit our data with independent errors at each time

value to a power law, choosing our minimum and max-
imum times according to goodness of fit. We estimated
the uncertainty of the exponent by varying the minimum
and maximum times. We can evaluate the effectiveness
of this procedure by comparing to two exact solutions:

• For p = 1, the B particle density decays like the

δ p θmeasured θexact

1/4 0 0.4129(7)

1/2 0 0.4434(4)

1 0 0.5004(3) 0.5

2 0 0.5899(7)

4 0 0.7285(9)

1/4 1 1.1468(7) 1.14704

1/2 1 1.2768(9) 1.27607

1 1 1.4992(9) 1.5

2 1 1.8650(11) 1.86762

4 1 2.438(2) 2.44102

1 1/4 0.5923(3)

1 1/2 0.7299(10)

1 3/4 0.9581(16)

TABLE I: Measured values of θ in d = 1 for various diffusion
constant ratios δ = DB/DA and trap reaction parameter p,
defined in Eq. (1). The exact values from the vicious walker
problem are included for comparison.

survival probability in a three-walker problem [24],
giving

θ =
π

2 arccos[δ/(1 + δ)]
. (10)

• For p = 0 and δ = 1, the B particles behave exactly
like A particles: an A particle surviving until time
t has executed a random walk among the other A
particles undergoing the A+A → 0 reaction with-
out meeting another particle. The same statement
applies to B particles, so they have the same sur-
vival probability. This implies 〈b〉 ∼ 〈a〉, giving
θ = 1/2.

Our measured values along with their uncertainties are
reported in Table I. The uncertainty estimates appear to
be reasonable.
Theoretical results for θ include the exact solutions

described above, as well as Smoluchowski theory, which
provides the value θS given in Eq. (3), and the RG ǫ =
2 − d expansion. Smoluchowski theory has proved to
be surprisingly effective, e.g., it correctly predicts the A
particle decay exponent for all dimensions [21], but is
an uncontrolled approximation. By contrast, the RG ǫ
expansion is systematic, but has only been computed to
first order in ǫ [6, 8, 9]. For completeness we provide the
result here:

θ = θS +
1

4

[

1 + δ

2− p
+

(

1 + δ

2− p

)2

f(δ)

]

ǫ+O(ǫ2) (11)

where

f(δ) = 1+2δ

[

ln

(

2

1 + δ

)

−1

]

+(1−δ2)

[

Li2

(

δ − 1

δ + 1

)

−π2

6

]

(12)
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FIG. 4: Measured values of the B-particle decay exponent
θ in d = 1 plotted versus the diffusion constant ratio, along
with the Smoluchowski prediction, Eq. (3), the RG expansion
truncated at first order in ǫ = 2−d, and exact solutions. The
upper (lower) curves and points correspond to the A+A → A
(A + A → 0) trap reaction. The error bars on the data are
much smaller than the points plotted.

and Li2(v) = −
∫ v

0
du ln(1−u)/u is the dilogarithm func-

tion [25].
For coalescing traps, A + A → A, Smoluchowski the-

ory in d = 1 and the truncated RG expansion with ǫ = 1
can be compared directly to the vicious walker result,
as was done in Ref. [8]. We reproduce the comparison
here as the upper curves in Fig. 4, and add to the plot
our measured values. Primarily, this demonstrates that
our simulations and data analysis technique are accurate.
Also, as noted in Ref. [8], the truncated RG does a re-
markable job of matching the exact solution, while the
Smoluchoswki result is considerably low.

The lower set of curves and points in Fig. 4 are the cor-
responding θ values for annihilating traps, A + A → 0,
where the vicious walker solution is not available. Our
measured values for θ indicate that the Smoluchowski ap-
proximation, while faring poorly for p = 1, is reasonably
accurate for p = 0. The non-monotonicity of θ with re-
spect to δ in the truncated RG is likely an artifact of the
truncation at O(ǫ).
Finally, in Fig. 5 we present a similar comparison for

the case of equal diffusion constants but varying p. Cu-
riously, the truncated RG expansion matches the exact
solutions available at p = 0 and p = 1, while faring rea-
sonably in between.

IV. ANOMALOUS DIMENSION φ IN d = 1

From the field theoretic RG calculation it was deter-
mined that b2, the square of the field associated with the
B density, must be renormalized independently of the b
itself. A consequence of this renormalization is that the
local fluctuations grow as a power law in time, as mea-
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FIG. 5: A similar comparison as in Fig. 4 for the equal diffu-
sion constant case δ = 1 and varying p as defined in Eq. (1).

sured by

χBB(t) =
〈b2〉 − 〈b〉2

〈b〉2 ∼ tφ, (13)

in contrast to the analogous measures

χAA =
〈a2〉 − 〈a〉2

〈a〉2 = −1 (14)

and

χAB =
〈ab〉 − 〈a〉〈b〉

〈a〉〈b〉 = −1 (15)

which maintain constant values [9]. Our measured values
for χBB versus time are plotted in Fig. 6, for the case of
coalescing traps (p = 1). We observe power law behavior
until the onset of finite-size effects. Curiously, finite-size
effects appear much earlier in χBB than they do in the
density, by a factor of 102 or 103 (compare Fig. 3).
We were unable to demonstrate power law behavior

in χBB when the traps are annihilating (p = 0) or for
any of the mixed reactions we simulated (p = 0.25, 0.5,
and 0.75); our data are consistent with an asymptotic
approach to a power law with a small exponent φ.
Our measured values of φ for p = 1 are reported in

Table II. Our uncertainties were estimated by varying
the fitting range within the scaling regime. For the case
δ = 1, an exact value of φ can be obtained by considering
a four-walker problem, where the walkers on a line are in
the order A-B-B-A. The bracketing A walkers are unaf-
fected by any subsequent coalescence events with exterior
A particles, so they may be regarded as simple random
walkers. The B particle density squared will decay as the
probability for the two interior walkers to survive until
and meet at time t [9]. This exponent can be reduced to
an eigenvalue problem [22] and the corresponding value
is reported in Table II.
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δ φmeasured φexact

1/4 0.452(2)

1/2 0.505(3)

1 0.628(3) 0.6262475

2 0.820(5)

4 1.08(4)

TABLE II: Measured values of φ in d = 1 for various diffusion
constant ratios δ = DB/DA and trap reaction parameter p =
1, defined in Eq. (1). The exact value from the four-walker
problem is included (to 7 digits) for comparison.

The RG calculation of φ in Refs. [9, 10] gives

φ =
7

24− 18p
ǫ+O(ǫ2), (16)

where ǫ = 2 − d. The truncated expansion does not
compare well quantitatively with our data, most notably
in the absence of δ dependence. Plugging in ǫ = 1 gives
φ = 7/6 ≃ 1.17, which is significantly higher than the
values we measured. A qualitative feature that the RG
calculation does capture is that φ is a strongly decreasing
function of p. Presumably, the RG ǫ expansion is poorly
convergent, as was found with the simple annihilation
reaction [19].

V. CORRELATION FUNCTIONS IN d = 1

Associated with power law behavior with universal ex-
ponents is the phenomenon of dynamical scaling. These
share a common origin in the underlying RG fixed point
that controls the asymptotic dynamics and structure. We
test for this dynamical scaling by measuring the trap and
particle two-particle correlation functions, as well as their
cross-correlation function.
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FIG. 7: Scaling collapse of the measured correlation functions
in d = 1 for times ranging over three decades. The cross
correlation function CAB(x, t) parameters are (a) p = 1, δ =
1/4, (b) p = 1, δ = 1, and (c) p = 0, δ = 1. The inset shows
the measured CAA(x, t) for p = 0, 1/2, and 1, as well as the
exact solution, Eq. (18), with striking agreement.

We first consider the traps, which undergo the single-
species A + A → 0, A reactions. An exact solution for
the correlation function in d = 1 was obtained by Masser
and ben-Avraham, with the result [26]

CAA(x, t) =
〈a(x, t)a(0, t)〉 − 〈a(t)〉2

〈a(t)〉2 ∼ fAA(x/
√

DAt)

(17)
where

fAA(z) = −e−z2/4 +

√

π

8
ze−z2/8 erfc(z/

√
8). (18)

Interestingly, this result applies to both annihilating and
coalescing particles, as well as mixed reactions. We mea-
sured these correlation functions via the Monte Carlo
realization of our trap dynamics and found convincing
scaling collapse and perfect agreement with the exact so-
lution, as shown in the inset of Fig. 7.
We next turn to the cross correlation function

CAB(x, t) =
〈a(x, t)b(0, t)〉 − 〈a(t)〉〈b(t)〉

〈a(t)〉〈b(t)〉 , (19)

which is plotted in Fig. 7. With our hybrid simulation
method we measure the correlation between the realized
A particles and the associated B probability distribution.
The data again exhibit convincing scaling collapse, with
a scaling function that depends on the parameters δ and
p. Both CAA and CAB exhibit anti-correlations at short
distances, a direct consequence of the A+A → (0, A) and
A + B → A reactions. However, depending on the pa-
rameter values, the cross-correlation function CAB can be
non-monotonic with positive correlations at larger sepa-
ration. We depict three choices of parameters in Fig. 7,
but we found similar scaling collapse for all investigated
cases.
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Finally, we turn to the B particle correlation function
defined in Eq. (6) and measured by the sampled set of
B particle distributions. Since the B particles do not
react with each other, we do not expect them to be anti-
correlated at short distances. Instead, a surviving B par-
ticle is likely to be found in a region with few A traps
nearby, which results in an enhanced probability of other
B particles nearby, i.e., positive correlations.

Our measured values for correlation function confirm
this, as shown in Fig. 8. The inset shows that when
CBB(x, t) is plotted versus the scaled distance x/

√
DAt,

as was done in Fig. 7, we do not find collapse, but rather
the correlations are growing in magnitude with time.
However, when we also scale the vertical axis by the ex-
pected χBB ∼ Atφ, with A and φ taken from our fitted
values, we indeed see scaling collapse, as shown in the
main part of Fig. 8. Thus we have confirmed the RG
prediction of the scaling form in Eq. (6).

The scaled correlations for p = 1 show a significant
dependence on the diffusion constant ratio. The simi-
larity of the scaling functions suggest that a rescaling of

the horizontal axis to the form x/
√

D1−k
A Dk

Bt might col-

lapse all measured functions to a single curve. Indeed,
the value k = 0.60 comes close though slight differences
are observable. Evidently the power-law dependence cap-
tures a dominant feature of the δ-dependence on the scal-
ing function, but is not an exact result and there is cur-
rently no theoretical basis to expect such behavior.

When p < 1 we cannot make a scaling plot similar to
Fig. 8 since we are unable to simulate late enough to get
into the regime where χBB is a power law. If we instead
rescale the vertical scale by CBB(0, t) we find reasonable
scaling collapse, suggesting the shape of the correlation
function converges more quickly than χBB itself.

VI. AT THE UPPER CRITICAL DIMENSION

d = 2

Generally, critical exponents are continuous functions
of dimension, changing from their fluctuation-dominated
value below the upper critical dimension dc to their
mean-field value for d > dc, while at d = dc multiplicative
logarithmic corrections appear. The A particle density
conforms to this, with power law decay t−d/2 for d < 2,
rate equation behavior t−1 for d > 2, and the calculated
density for d = 2 of

〈a(t)〉 = 1

4π(2− p)

ln(t/τ)

DAt
, (20)

with a universal prefactor [15, 19, 27]. The time constant
τ is nonuniversal, and provides a subasymptotic correc-
tion to scaling.
In contrast, the B particle density decay exponent θ

is universal for d < 2, given by Eq. (11), but for d > 2
is given by θ = Γ′/Γ, where Γ and Γ′ are nonuniversal
constants in the rate equation (2). Thus θ is necessar-
ily discontinuous at dc. As a consequence, Rajesh and
Zaboronski [8] found the density in d = 2 to decay as

〈b(t)〉 ∼ t−θ2 | ln t|α (21)

with universal exponent

θ2 = lim
d→2−

θ =
1 + δ

2− p
(22)

and with α related to the nonuniversal local rate con-
stants λ and λ′:

α =

(

1 + δ

2− p

)[

3

2
+ ln

(

1 + δ

2

)

+
1

2

(

1 + δ

2− p

)

f(δ)

]

− 4π(1 + δ)

2− p

(

1

λ
− 1 + δ

λ′

)

, (23)

where f(δ) is given by Eq. (12).
Finally, the anomalous dimension φ characterizing the

B particle fluctuations χBB ∼ tφ is continuous at d = 2:
the RG result for d < 2 (16) is of order ǫ = 2 − d and
so vanishes as d → 2−, while the rate equations, which
contain no fluctuations, give φ = 0 for d > 2. At d = 2,
the RG calculation [9, 10] predicts χBB ∼ | ln t|β with

β = − 5− 9p

12− 9p
. (24)

As a consequence, the CBB(r, t) correlation function is
expected to scale in d = 2 as per Eq. (7), while CAA(r, t)
and CAB(r, t) scale as

CAA(r, t) = |ln t|−1fAA(r/
√

DAt) (25)

CAB(r, t) = |ln t|−1fAB(r/
√

DAt). (26)
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FIG. 9: Scaling plot of CAA(r, t)×ln t versus r/
√
DAt in d = 2

for times t = 8192 (◦), 32 768 (�), and 131 072 (△), for both
p = 0 (open symbols) and p = 1 (solid symbols). The solid
line is the RG result (27) from Ref. [19]. The inset shows the
density 〈a(t)〉DAt plotted versus ln t for p = 0, 1/2, and 1,
with the solid lines a one-parameter fit of the RG result (20).

In Ref. [19] the Fourier transform of fAA was calculated
via RG methods, which we inverse transform here to ob-
tain

fAA(z) = e−z2/8

(

3

2
+

z2

16

)

−Γ(0, z2/8)

(

1+
z2

4
+

z4

128

)

,

(27)
where Γ(a, x) is the incomplete gamma function [25]. As
with d = 1, the correlation function does not depend on
the value of p.
We now compare these predictions to our numerical

results. We used a square lattice of size 4096 × 4096
evolved to time t = 131072, with 100 independent runs
for each parameter set and for each time point where
we collect data (so that the errors are uncorrelated). To
reduce noise in the purely Monte Carlo measurement of
the A particle correlations, we conducted 1000 runs each
of the A+A → 0 and A+A → A reactions.
We first present the A particle simulations. As shown

in Fig. 9, the A particle correlation function exhibits
the expected scaling collapse, and agrees reasonably well
with the theoretical prediction (27). The inset of Fig. 9
shows the A particle density scaled by a factor of DAt
plotted versus ln t. The solid straight lines represent the
theoretical result (20) with the value of τ fitted to the
data. Note that τ only affects the intercept of the lines;
the slope is determined by the universal prefactor in (20).
The agreement is quite good. This represents, to our
knowledge, the first numerical test of this p-dependent
prefactor.
Turning to the B particle density, we first conducted

simulations with infinite local reaction rates λ, λ′ → ∞,
which corresponds to reactions occurring with proba-
bility unity whenever the particles meet. In this limit
the last, nonuniversal term in Eq. (23) for α vanishes.
We fit our data for t ≥ tmin to the asymptotic form

 1

 10

 100

2 4 8

ln t

〈b
(t

)〉
 tθ

(a) δ=   4
2
1

1/2
1/4

1

10

102

103

104

2 4 8

ln t

(b) δ=   4
2
1

1/2
1/4

FIG. 10: Log-log plot of 〈b(t)〉tθ versus ln t in d = 2 for (a)
p = 0 and (b) p = 1, for various δ. The slope asymptotically
approaches the value α. The solid lines are three-parameter
fits, as described in the text.

p = 0 p = 1

δ αmeasured αRG αmeasured αRG

1/4 0.386(5) 0.3894 0.283(11) 0.2701

1/2 0.585(7) 0.5780 0.49(2) 0.4935

1 0.998(12) 1 0.97(3) 1

2 1.98(2) 1.974 2.13(4) 2.1808

4 4.35(2) 4.259 4.89(9) 4.9551

TABLE III: Measured values of α in the limit of infinite lo-
cal reaction rates, for various diffusion constant ratios δ =
DB/DA and trap reaction parameter p, defined in Eq. (1).
The RG predictions are from [8].

〈b(t)〉 ∼ At−(1+δ)/(2−p)| ln(t/τ)|α, with fit parameters A,
τ , and α. We chose tmin = 64 for p = 0 and tmin = 256
for p = 1, based on analysis of residuals. We find sta-
tistical uncertainties for the values of α of the order of
1%. The data and fits for p = 0 and 1 and a range of
diffusion constant ratios δ are shown in Fig. 10. In Ta-
ble III the fitted values are listed in comparison to the
RG calculated values from Rajesh and Zaboronski [8].
The agreement is striking.
Next we consider a finite local reaction rate λ′ (for the

trapping reaction) which, according to Eq. (23), should
affect the value of α. We vary λ′ by setting p′, the prob-
ability of a B particle reacting upon landing at a site
occupied by an A particle, to be less than unity. We find
indeed that α is dependent on p′, as shown in Table IV.
Here α0 corresponds to p = 0 and α1 to p = 1.
For the special case of λ → ∞ and δ = 1, Eq. (23)

becomes

α =
4− 3p

(2− p)2
+

16π

(2 − p)λ′
(28)

The local reaction rate λ′ is a coupling constant in the
field theory (see [8, 9]) and is influenced by the lattice
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1− p′ α0 α1 (α1 − 1)/(α0 − 1)

0 0.998(12) 0.97(3)

1/8 1.49(2) 1.97(3) 2.00(4)

1/4 2.11(2) 3.22(3) 2.01(3)

1/2 4.27(3) 7.56(4) 2.01(2)

TABLE IV: Measured values of α for finite local reaction rate
λB for δ = 1 and various values of p′.
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FIG. 11: Scaling plot of CAB(r, t) × ln t versus r/
√
DAt in

d = 2 for four different parameter values: from top to bottom
(p, δ) = (1, 1/4), (1, 1), (0, 1), and (0, 4). For each param-
eter value the times t = 2048, 8192, 32768, and 131072 are
shown to collapse to a single curve. The inset is the same plot
with different ranges, to highlight the non-monotonicity and
positive correlation region for p = 1.

constant, lattice type, hopping rules, etc, and cannot be
simply determined from the model parameters. Never-
theless, Eq. (28) predicts that when all model parame-
ters are unchanged except for the value of p, the ratio
(α1 − 1)/(α0 − 1) = 2. This is confirmed by our data, as
shown in Table IV.

The cross-correlation function CAB(r, t) is shown in
Fig. 11 to exhibit the expected scaling form (26). As
in the one dimensional case, we find CAB(r, t) to be a
non-monotonic function of r when p = 1.

Finally, we turn to the anomalous dimension χBB ∼
| ln t|β . As shown in Fig. 12, we are not able to obtain
clear scaling before the onset of finite size effects. The
data for p = 0 are consistent with the RG value β =
−5/12 from (24), as shown in Fig. 12a. However, the
RG prediction for p = 1 is β = 4/3, i.e., χBB should be
increasing with time, which is clearly inconsistent with
the data. This discrepancy requires resolution.

While we have not reached the scaling regime for the B
particle correlations, we can nonetheless test for scaling
collapse by rescaling CBB(r, t) by its value at r = 0,
which is shown in Fig. 13. The scaling is noticeably better
for p = 0 than for p = 1.

2

3

2 4 8

ln t

χBB

(a) δ=   4
1

1/4
RG

2

4

6

8

2 4 8

ln t

(b) δ=   4
1

1/4

FIG. 12: Log-log plot of χBB versus ln t in d = 2 for (a) p = 0
and (b) p = 1, for various δ. The RG prediction from [9] is
shown for p = 0. For p = 1 the predicted slope is positive,
which is not consistent with the data.
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FIG. 13: Plot of CBB(r, t) versus r/
√
DAt in d = 2 with the

vertical axis scaled to be unity at r = 0. The six curves are
from top to bottom (p, δ) = (0, 4), (1, 4), (0, 1), (1, 1), (0, 1/4),
(1, 1/4). For each parameter set, the times t = 2048, 8192,
and 32768 are plotted.

VII. SUMMARY

We have developed a hybrid simulation method for the
coupled two-species reactions A +B → A and A +A →
(0, A) that involves a Monte Carlo simulation of the traps
combined with the full probability distribution for the
particles. This method provides significant improvement
for statistics and avoids the problem of vanishing B parti-
cle numbers, and allows us to obtain what we believe are
the first numerical measurements for this system with
mobile B particles (Monte Carlo simulations with sta-
tionary B particles in d = 2 were conducted in Ref. [8]).
With this technique, we explored the behavior of this

reaction-diffusion system for a variety of diffusion con-
stant ratios and trap reaction types. In d = 1 we were
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able to obtain for all parameter values convincing power
law decay of the B particle density and to measure the
decay exponent to 0.1% accuracy, as shown in Table I.
Our results that are consistent with all known exact val-
ues. Our data were compared with theoretical results
from the RG ǫ = 2−d expansion and from Smoluchowski
theory.
Also in d = 1 we further tested the recently calculated

anomalous dimension in the B particle correlation func-
tion, or equivalently in the local fluctuations of the B
particles: χBB = CBB(0, t) ∼ tφ. For the case of coa-
lescing traps we were able to obtain multiple decades of
power law scaling and measure the exponent φ to 0.5%
accuracy (see Table II). Our measured values do not
match the truncated RG calculation, but are consistent
with one exact value.
We have also tested for universality by varying the

trapping reaction probability p′, defined in Eq. (9). We
confirmed that the exponents θ and φ and the correlation
functions are not dependent on this parameter, consistent
with them being universal functions of δ and p. In con-
trast, the amplitude of the density decay 〈b〉 ∼ At−θ does
dependent on p′ and is nonuniversal.
It is noteworthy that the power law behavior in the

correlation function CBB(x, t) and fluctuations χBB en-
countered finite-size effects much earlier than the density
〈b〉. From Fig. 6 we see finite size effects entering around
t = 3×104 for the equal diffusion constant case, at which
time the diffusion length is

√
Dt ∼ 100 in a system of size

3×107. The origin of this extreme sensitivity merits fur-

ther investigation, both analytically and numerically.

In d = 2 the renormalization group predicts logarith-
mic corrections to both the B particle density and to
χBB. We measured these exponents and found excellent
agreement to density exponents θ = and α calculated by
Rajesh and Zaboronski [8], as shown in Table III. We
observed scaling of the expected from χBB ∼ | ln t|β con-
sistent with the predicted value of β for the case p = 0,
but our data are inconsistent with the RG prediction for
the case p = 1. This discrepancy merits further study.

Finally, it will be interesting to see if this numerical
technique has broader applications. In multi-species re-
action schemes, whenever a particular species X is essen-
tially a dynamic tracer that does not affect the behavior
of the other species, as with the B particles in this study,
it should be possible to obtain the full probability dis-
tribution of X by the method developed here. An open
question that merits further investigation is whether this
technique can be used for particles that are not initially
random; i.e., whether other initial distributions will con-
verge to the local Poissonian distribution.
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