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In this paper we present a novel technique based on deep reinforcement learning that allows
for numerical analytic continuation of integrals that are often encountered in one-loop diagrams
in quantum field theory. In order to extract certain quantities of two-point functions, such as
spectral densities, mass poles or multi-particle thresholds, it is necessary to perform an analytic
continuation of the correlator in question. At one-loop level in Euclidean space, this results in the
necessity to deform the integration contour of the loop integral in the complex plane of the square
of the loop momentum, in order to avoid non-analyticities in the integration plane. Using a toy
model for which an exact solution is known, we train a reinforcement learning agent to perform
the required contour deformations. Our study shows great promise for an agent to be deployed
in iterative numerical approaches used to compute non-perturbative 2-point functions, such as the
quark propagator Dyson-Schwinger equation, or more generally, Fredholm equations of the second
kind, in the complex domain.

PACS numbers: 02.70.-c, 07.05.Mh, 11.55.Bq, 02.30.Cj

I. INTRODUCTION

Studying two-point functions in the complex domain
is a worthwhile endeavor, as valuable insights about the
properties of the propagating degree of freedom become
accessible. Information about masses, multi-particle
thresholds, possible composite nature, and even a suf-
ficient criterion for removing the degree of freedom from
the physical state space, can be derived once the ana-
lytic structure of the correlator is known. In the realm
of non-perturbative Quantum Chromo Dynamics (QCD),
the continuum approach of Dyson-Schwinger Equations
(DESs) and Bethe-Salpeter Equations (BSEs) can be
used to study hadron phenomenology, see e. g. [1–8],
which also requires knowledge of the analytic properties
of some of the quantities involved. Solving two-point
functions with cubic vertices at one-loop level for com-
plex momentum squares, however, is already a techni-
cally challenging task, as the integration contour of the
radial variable associated with the loop momentum, ex-
pressed in hyperspherical coordinates in Euclidean space,
cannot be maintained along the positive real half-axis
once the external momentum square is allowed to assume
complex values. Since there are two momenta involved,
an external momentum, and a loop momentum, and be-
cause we consider cubic interactions, at least one of the
propagators in the loop has to carry a mixed momentum.
With an adequate choice of coordinates, the four-fold in-
tegral over the Euclidean loop momentum can thus be
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reduced to a two-fold integral over the radial component
of the loop momentum, as well as over the angle between
the external momentum and the loop momentum, see
Appendix A. As discussed on the basis of a very simple
example in [9], the angular integral then produces branch
cuts in the complex plane of the radial integration vari-
able, and one has to deform the contour in order to avoid
the cut, as well as poles that might be present as well.
Such strategies have been applied in various situations,
see e. g. [10–18]. While this task becomes very tedious al-
ready in a situation where the required deformations can
be deduced from analyzing the analytic properties in the
integration plane, in non-perturbative approaches, such
as Dyson-Schwinger equations of two-point functions in
the complex domain, it becomes extremely challenging,
see e. g. [11, 19–22] and references therein. These equa-
tions are such, that the function that is to be computed
on the left hand side of the equation also appears in the
integrand on its right hand side, which is the general form
of a Fredholm integral equation of the second kind. The
analytic properties of the integrand can thus only be de-
termined for a given starting guess for the unknown func-
tion to be computed, but will change throughout the next
iteration steps. A contour that was valid for the initial
guess of the function would then have to be re-adjusted.
The goal of this study is to provide a proof of princi-
ple that a deep reinforcement learning (DRL) agent (see
e. g. [23] for a recent review and [24] for a standard text
book on the subject) can be trained to conduct the con-
tour deformations as needed. Such an agent could then
be used in an iterative setting by deducing the contour
deformation from observing the integration plane before
each iteration step is conducted. With this approach,
an analytic continuation of Dyson-Schwinger Equations
could become feasible.
The paper is organized as follows. In Section II, we re-
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view the toy model that we used to train the agent. In
Section III we provide a short introduction to deep re-
inforcement learning, and Section IV addresses some of
the prerequisites needed for training the agent on the toy
model. The numerical results are presented in Section V,
and we conclude in Section VI, where we specifically focus
on how to further improve upon the agent’s performance
and also on the question of how to modify our approach
such that it directly applicable to Dyson-Schwinger equa-
tions. Finally, Appendix A gives an overview of our con-
vention.

II. THE TOY MODEL

A. Setting the stage

The toy model we chose for this study features prop-
agators of the Gribov type, the so-called i-particles [25].
Apart from being physically interesting, there is another
aspect that renders this model particularly useful for our
cause. The correlator that we are interested in has an ex-
act solution, and has been used in a study on numerical
contour deformations [12] that reproduced the analytic
result perfectly. This allows us to compare the deforma-
tions provided by the trained agent with the ones that
have been obtained analytically in [12], where the cri-
terion of similarity is qualitative, as we discuss in this
paper. With that, we can deduce that we could solve
the integral successfully without the necessity of actually
evaluating it.

The starting point for our study is given by equation
(32) in [25], which is an expression for a correlator that
has also been the main focus of [12]. In D dimensions,
the correlator can be expressed as

G (p2) =

∫
dDq

(2π)4

1

(p− q)2 − i
√

2θ2

1

q2 + i
√

2θ2
, (1)

with an external 4-momentum p and loop 4-momentum
q. The mass parameter θ is given through the relation

2
√

2θ2 ≡ 1, (2)

which matches the choice of [25], where this particu-
lar definition has been selected for convenience. In our
study we use the same definition, as we want to work on
the exact same problem as the one treated in [25]. This
allows for direct comparison, if desired.
The problem at hand is motivated by constructing phys-
ically meaningful, composite operators in the Gribov-
Zwanziger framework, see [25] for details. G (p2) is the D-
dimensional, Euclidean correlation function of such com-
posite operators O (comprised of pairs of i-particles) at
one-loop order,

〈O(x)O(0)〉 =

∫
dDp

(2π)D
exp{ip · x}G (p2). (3)

Equation (1) is the expression the we would like to
solve in D = 4 dimensions. In [25], an exact solution to
this integral is presented (after it has been regularized),
which reads

Gsub(x) =
1

16π2

(
1− π

2x
+

√
1− x2

x
arccos(x)

)
, (4)

where the subscript sub indicates, that the original in-
tegral has been regularized in the spirit of Bogoliubov,
Parasiuk, Hepp and Zimmermann (BPHZ) [26–29]. The
detailed calculation is described in [25]. Note, that the
x in equation (4) is not a spatial coordinate, but corre-
sponds to the complex square of the external loop mo-
mentum, that is, x ≡ p2 ∈ C. After switching to hyper-
spherical coordinates (see Appendix A), regularizing the
integral using the BPHZ scheme, as well as integrating
the two trivial angles of the 4-dimensional hypersphere,
the loop integral, equation (3), becomes

Gsub,rescaled(x) =
2

π

∫ ∞
0

dy
y

y2 + 1
4

(5)

×
∫ +1

−1

dz
√

1− z2
−x+ 2

√
x
√
yz(

x+ y − 2
√
x
√
yz − i

2

) ,
where the additional subscript rescaled indicates that
the loop integral (3) has been multiplied by a factor of
16π2 to eliminate the same factor in the denominator of
the solution (4). As before, x is the complex external
momentum square, and y is the complex square of the
loop momentum q, that is, y ≡ q2 ∈ C. z is the cosine of
the angle between the external and the loop momentum,
z ≡ cos θ. For details as of how to arrive at equation (5)
when starting with equation (3), see [12].

B. The goal

Now that we have revisited all the required expres-
sions, let us state the goal of this study. In [12] it was
shown, that the results of the integral equation for the F 2

correlator presented (and analytically solved) in [25] can
be reproduced numerically by applying suitable contour
deformations. The requirements for successful contours
are:

• They avoid the branch cut in the integration plane.

• They satisfy continuous deformability with respect
to the original contour along the positive real half-
axis

The second requirement ensures, that no residue of any
pole is picked up by the contour. The reason for this is
the following. We want the integral along the deformed
contour to acquire the same value as the integral along
the positive real half-axis would have produced, if the
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branch cut had not interfered with this path. This can
only be achieved, if the original contour is continuously
deformable into the new one, as the closed contour of the
composition of the original one, and the deformed one,
would pick up the residue of any enclosed pole, which
would in turn render the results of the two integration
paths unequal. We thus consider the agent to be suc-
cessful, if it is able to produce contours that satisfy these
conditions.

III. METHODOLOGY

The goal is to find a valid integration contour in the
complex plane of the radial integration variable y for any
given external momentum square x. In our approach
we achieve this goal by reformulating the problem such
that it becomes applicable to deep reinforcement learn-
ing. More specifically, we define the task of contour de-
formation as an episodic game, where a reinforcement
learning agent is trained to escape a maze in the presence
of traps, trying to reach a dedicated target location. The
analogy to the original problem is as follows: The branch
cut essentially defines a maze in a continuous space and
cannot be crossed by the agent, while the target location
is given by an ε-area around the cut-off on the positive
real half-axis. Since the agent starts each episode at the
origin of the complex plane, the path taken to the tar-
get location corresponds then to the desired contour that
solves the problem. The traps are basically represented
by the poles, since, if the agents picks up a residue along
its way to the target location, the game is considered to
be lost, regardless of whether the agent reaches the target
location.

A. Deep reinforcement learning

Deep reinforcement learning describes a class of goal-
orientated machine learning algorithms taking advantage
of powerful function approximators in the context of deep
learning [23, 24]. Unlike supervised or unsupervised ma-
chine learning, these algorithms do not require a ded-
icated set of training data, since they are designed to
learn from experience by interacting with their environ-
ment. The key ingredient thereby is a scalar reward
signal, which essentially reinforces the learning entity to
pick the desired actions. It is important to note that the
reward signal should not be mistaken as an error signal
in a supervised setting, since it can, but doesn’t need to,
represent an error signal, nor is it required to be differ-
entiable. One can encounter situations where the reward
signal is sparse and rarely available, like e. g. in case of
a game where the information about failure or success
is provided only at the end of an episode, which poses
additional challenges.

B. Fundamentals and Definitions

The fundamental working principle of reinforcement
learning algorithms is based upon the concept of Markov
decision processes (MDPs) and involves two entities, an
agent, and an environment [24]. Given a state st ∈ S at
time step t, the agent interacts with the environment
by picking an action at ∈ A(st) according to a pol-
icy π(at|st), where S and A(st) denote the state- and
action space, respectively. The policy is considered to
be stochastic in general, hence the agent samples the
action from a conditional distribution. In that sense,
we treat a deterministic policy µ(st) as a special case
π(at|st) = δ(at − µ(st)), where δ(.) denotes the Dirac
distribution. The environment responds to the action at
by setting the consecutive next state st+1 with proba-
bility Pr{St+1 = st+1|st, at} [40] and gives rise to a re-
ward rt+1 ∈ R ⊂ R, where R defines the reward space.
Since the reward is considered to be stochastic as well,
the dynamics of the MDP is entirely determined by the
probability Pr{St+1 = st+1, Rt+1 = rt+1|st, at}.

The goal in reinforcement learning is to find a policy
π(.) such that the cumulative expected reward is maxi-
mized. The definition of the return Gt =

∑∞
k=0 γ

krt+k+1

provides a performance measure, where the parameter
γ, 0 < γ ≤ 1, denotes the discount rate and essen-
tially controls the impact of future states on the agent’s
decisions. Furthermore, we introduce the state-value
function vπ(st) = Eπ {Gt|st} and the action-value func-
tion qπ(st, at) = Eπ {Gt|st, at}, where the expectation
is taken with respect to the policy π. Both value func-
tions are maximized by an optimal policy π∗(.) for all
s ∈ S and a ∈ A(s), hence v∗(st) = maxπ vπ(st) and
q∗(st, at) = maxπ qπ(st, at). In case of a finite MDP, S,
A and R are finite sets and an optimal policy π∗(.) can
be derived by solving the Bellman optimality equation
either for the state-value function

v∗(st) = max
at

E {Rt+1 + γv∗(St+1)|st, at} , (6)

or the action-value function

q∗(st, at) = E
{
Rt+1 + max

a′
γq∗(St+1, a

′)|st, at
}
, (7)

where we used the relationship v∗(st) = maxat q∗(st, at).

C. Approximate Methods

Finding optimal policies by solving Bellman’s optimal-
ity equations requires a model of the environment in form
of a discrete state transition distribution p(st+1|st, at)
and is thus not feasible for the vast majority of appli-
cations. Hence, reinforcement learning algorithms deal
with approximate solutions and rely on a random com-
ponent in order to explore the environment. Always pick-
ing the action that maximizes a value function estimate
(greedy action) prevents the agent from exploring the
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state space. Consequently, approximate methods pick
the greedy action only with a certain probability. This
probability is controlled by a parameter and is increased
with increasing confidence in the value function estimate.

Provided that S defines a discrete state space, Monte
Carlo methods produce unbiased estimates of value func-
tions by observing entire sequences of state-action-reward
tuples, in order to calculate the return Gt. Although un-
biasedness is a striking argument, Monte Carlo methods
suffer from the usual drawbacks like e. g. high variance
estimates and tremendous computational costs, since up-
dates are solely performed after an entire episode has
been observed. In contrast, temporal difference (TD)
methods update the value function by bootstrapping,
which leads in general to much faster convergence, but
biased estimates.

So far we assumed a discrete state space S, which es-
sentially limits the applicability of Monte Carlo and TD
methods to a specific set of applications. Moreover, we
assumed that the state space is entirely observable by
the learning entity. However, this is often not the case,
since environmental observations are possibly continuous
and only functionally related to the underlying states.
Hence, the learning entity must be capable to generalize
and to infer the relevant information from the observa-
tions. This is where function approximators, and thus
deep neural networks, come into play.

Value-based approaches utilize neural networks to ap-
proximate either state-value or action-value functions in
order to derive a well-performing policy (see e. g. [30]).
However, this approach is impractical for problems deal-
ing with a continuous action space, since picking the
greedy action involves a max operation with respect to
all a ∈ A(s). Consequently, this would require to solve
an optimization problem at every iteration. In contrast,
policy-based methods directly target the policy and are
thus applicable to continuous control problems.

D. Policy Gradient Methods

Policy gradient methods aim to maximize the expected
return (or a related value-based measure) by updating a
parameterized policy πθ by means of gradient ascent [31].
In case the advantage function Aπ(s, a) = qπ(s, a)−vπ(s)
is used for assessing the policy’s performance, the gradi-
ent of the loss for updating the policy network is given
by

g = Eτ∼πθ

{ ∞∑
t=0

∇θ log πθ(at|st)Aπθ (st, at)

}
, (8)

where τ = (s0, a0, . . . , sH , aH , sH+1) denotes a trajectory
of state and action values up to horizon H generated by
sampling actions from the policy network πθ. Since deep
learning frameworks rely on stochastic gradient like op-
timization algorithms, we can define the policy gradient

loss per training iteration as

LPG(θ) = Ê
{

log πθ(at|st)Ât
}
, (9)

where Ê denotes the empirical mean over a batch of sam-
ples and Ât is an estimate of the advantage function at
time step t.

However, vanilla policy gradient methods use only
first-order derivatives for updating the policy network,
and thus, the step size plays a crucial role. If chosen too
small, the agent learns too slowly in order to produce a
well-performing policy, and if chosen too big, the agent
might pick an action which is very far from the greedy
one. Since the loss function is non-convex, there is a high
risk that the update step overshoots. Hence, the agent
proverbially falls off a reward cliff and the performance
drops, possibly without any prospect of recovery. An-
other issue is the poor sample efficiency of vanilla policy
gradient methods, since an entire trajectory is used to
perform one single update. Consequently, a lot of inter-
action with the environment is required in order to train
the policy network.

E. Proximal Policy Optimization

Trust region policy optimization (TRPO) [32] miti-
gates the shortcomings of vanilla policy gradient meth-
ods. On the one hand, trust region optimization algo-
rithms are much more robust when dealing with non-
convex problems. These methods first set an ‘area of
interest’ before determining the direction of the consec-
utive optimization step. On the other hand, TRPO also
increases the sample efficiency per trajectory, since sam-
ples originating from a previous policy can be used to
update the policy network by means of an importance
sampling scheme. Hence, the optimization (surrogate)
objective for the TRPO agent is

max
θ

Ê
{

πθ(at|st)
πθold(at|st)

Ât

}
(10)

subject to

Ê {DKL (πθold(.|st)||πθ(.|st))} ≤ δ, (11)

where DKL(.) is the Kullback-Leibler divergence and δ
is a hyper-parameter that defines the size of the trust
region. We can convert this objective in an unconstrained
optimization problem by using a penalty term instead of
the constraint. Nevertheless, the need for calculating the
Kullback-Leibler divergence still persists for every policy,
which is computationally expensive.

Proximial Policy Optimization [33] (PPO) utilizes the
key concepts of TRPO, but avoids to explicitly calculate
the Kullback-Leibler divergence. The idea is surprisingly
simple: Let ηt define the policy ratio used in the surro-
gate objective before,

ηt(θ) =
πθ(at|st)
πθold(at|st)

. (12)
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Then the loss for each policy update is given by

LPPO(θ) = Ê
{

min
(
ηtÂt, clip (ηt, 1− ε, 1 + ε) Ât

)}
,

(13)
where

clip (ηt, 1− ε, 1 + ε) =


1− ε for ηt < 1− ε
ηt for 1− ε ≤ ηt ≤ 1 + ε

1 + ε for ηt > 1 + ε

(14)
and ε is a hyper-parameter and usually chosen to be
0.1 ≤ ε ≤ 0.3. Hence, clipping the policy ratio to values
near 1 has a similar effect as using the Kullback-Leibler
divergence in constraint optimization.

IV. CONSTRUCTING THE ENVIRONMENT

Our PPO RL agent is trained by immersing it to a
virtual environment in which the agent can act. The
environment, in this case, is the complex y-plane, that
is, the complex plane of the radial integration variable.
The training goal of the agent is to find a path that con-
nects the origin with the ultraviolet cutoff on the positive
real axis for any given complex value of x, while avoid-
ing the branch cut and the poles in the plane. Before
the environment can be implemented, a thorough anal-
ysis of the integrand and the resulting cut structure is
in order, as the information obtained from this analysis
will be used directly to guide the agent throughout its
learning phase. As a first step, we will assume that the
information about the branch cut, as well as about the
poles, is available in an analytic form. In Section VI we
furthermore discuss strategies as of how to pre-process
data on the analytic properties of the integrand that is
solely available numerically, in order to make the strat-
egy developed in this paper applicable to those cases as
well. For now, we will direct our focus on extracting the
relevant information about the analytic properties of the
regularized integrand in a scenario where all information
is accessible.

A. Branch cut structure

In this Section we will analyze the integrand thor-
oughly, such that we can set up a training environment
for the RL agent based on this information. The task of
the agent will be to find valid integral contours for the
y-integral in (5). The first term produces two poles, lo-
cated at yp1,2 = ± i

2 . Furthermore, a branch cut appears
in the complex y-plane, induced by the angular integral
over the variable z. As outlined in [9, 12], we have to
solve for the zeros of the denominator while keeping x
fixed, and while varying z from -1 to +1. This yields two

parametrizations,

ξ±(x, z) =

(
√
xz ±

√
−x(1− z2) +

i

2

)2

, (15)

and it suffices to consider just one of these two congru-
ent parametrizations. There is, however, a problem that
we have to address at this point. It turns out, that for
some values of x, the parametrization of the cut becomes
discontinuous in z, as explained in Figure 1.

z=-1

z=±
1

2
-ϵ

z=0

z=±
1

2
+ϵ

z=+1

-4 -2 0 2 4 6

-4

-2

0

2

4

6

Re(y) [GeV2]

Im
(y
)
[G

e
V

2
]

Figure 1: The parametrization of the branch cut through the
angular variable z turns out to be discontinuous for some val-
ues of x. The image shows an example of such a discontinuity,
here for x = 4 + i. For this value of x, the branch cut (15)
acquires the shape shown in the image. Starting at z = −1,
with increasing value for z, the point − 1√

2
− ε is approached.

At z = − 1√
2
, the parametrization jumps to the point − 1√

2
+ε,

and then approaches the first point from the other side, until
it finally jumps back to the second point and runs towards
z = +1, now tracing out the entire branch cut.

In order to being able to use the information about
the non-analyticities in the complex y-plane to construct
the environment for the reinforcement learning agent in
a convenient way, this discontinuity must be addressed.
The occurrence of the discontinuity in the parametriza-
tion comes from the fact that the imaginary part of the
radicand of the second square root in the branch cut
parametrization (15) changes its sign (i. e. the result lies
on the other Riemann sheet of the square root as the
one we want it to be on). The parametrization can be
rendered continuous by insertion of the proper sign in
the appropriate region, that can be determined, and ex-
pressed, analytically. However, in our implementation
we chose a numerical approach to resolve this issue as
follows.
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property domain description

|x| R modulus of ext. momentum square

arg x [−π, π] argument of ext. momentum square

Λ R contour end point for agent

yp1 C location of first pole

yp2 C location of second pole

ξi C starting point of branch cut

ξf C endpoint of branch cut

yA C position of agent in integration plane

ω {T, F} agent left cut structure

Table I: Observables available for the RL agent.

One key ingredient for this environment is to deter-
mine whether a given contour, comprised of a sequence
of connected line segments, intersects the branch cut at
any point. We thus sample points from the (possibly
for a given x, discontinuous) branch cut parametrization.
Then we start at the point z = −1 and choose the point
among the sampled values with the shortest distance to
the starting point. Since the points on the branch cut
are not distributed uniformly as z is varied in fixed in-
crements, we introduced a maximally allowed distance
between any two neighboring points. This is important
to have control over the accuracy of the collision detec-
tion mechanism. In case we find this maximally allowed
distance to be violated, we simply increase the number of
points until the desired resolution is achieved. Repeating
this procedure produces an ordered sequence of sampled
points that we can then use in the branch cut collision
detection.

B. Vectorized observations

We provide the agent with relevant information about
its environment as described in Table I.

The modulus |x| of the external momentum is related
to the extent of the branch cut structure, and the argu-
ment arg x determines the direction of the opening of the
cut structure. In addition, we provide the starting- and
endpoint (ξi, ξf ) of the branch cut structure, which al-
ways lie on different sides of the line defined by arg x. Λ
denotes the point on the positive real axis that the agent
has to reach, and ypi denotes the location of two complex
conjugate poles. The position of the agent in the plane is
given by yA, and we also provide a boolean value ω that
indicates whether the agent has left the cut structure or
not, which is determined by looking for an intersection
between the agent’s path and the line connecting ξi with
ξf . Based on this information, the agent is able to learn
a policy that produces suitable contours. Figure 2 shows
a depiction of the observed quantities.

Figure 2: Properties observed by the reinforcement learning
agent.

C. Actions

Standing at any point in the complex plane, the agent
chooses a direction and a distance for its next step. Its
action space is thus 2-dimensional and continuous. The
neural network responsible for the agent’s actions has
two output neurons, each of which is activated by a hy-
perbolic tangent. Since the hyperbolic tangent assumes
values within the range of [−1, 1], the actions of the agent
are determined as follows. The length of the next step
is computed by adding 1 to the output of the associated
output neuron, which maps the output to the interval
[0, 2]. This quantity is then multiplied with Λ

2 , where Λ

has been chosen as Λ = 10 GeV2. The agent can thus
choose any value between 0 and 10 Gev2 for its stride in
the complex plane. Apart from the distance, the agent
also has to choose a direction for its next step. This
can be achieved by simply multiplying the output of the
associated output neuron with π, which can then be in-
terpreted as the complex argument that determines the
direction of the next step.

D. Pole- and collision detection

With every step taken, we then have to check whether
a collision with the branch cut occurred or not. The
branch cut is approximated by line segments spanned by
the ordered list of points described above. Detecting a
collision thus boils down to just checking for an intersec-
tion between the line segment from the previous point
to the new point the agent stepped to, with all the line
segments that comprise the approximated branch cut. If
a collision is detected, the environment throws the agent
back to where it was before it chose to take that step,
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and it can come up with a new suggestion.

The ultraviolet cutoff of the radial integral that has
been used for the calculations in [12] was ΛUV = 104

GeV2. A successful candidate for a contour thus starts
at the origin y = 0 and ends at y = 104. However, in the
study at hand we are only interested in evaluating the
correlator in a complex region around the origin that is at
least three orders of magnitudes smaller than this cutoff.
As the typical scale of the non-analyticities arising in the
integration plane is set by |x|, and because this value is
at most of the order 1, the integrand is analytic along the
real axis for values of x ≈ 10 GeV2 or greater. We thus
set the point the agent has to reach to y = 10 GeV2.
The rest of the contour can then be added as the line
connecting this point with the actual ultraviolet cutoff of
the integral.

There is also another reason why this particular setup
is preferable. If this approach is applied to non-
perturbative settings – such as Dyson-Schwinger equa-
tions – in the future, one will have to restrict the area in
the complex plane for which the equation is to be eval-
uated to a small region around the origin. Since it lies
within the nature of DSEs that the analytic properties
of the integrand are not fully accessible, one will have
to introduce a boundary, along which one closes the con-
tour to a point on the positive real half axis not too far off
from the origin. For this to be justifiable, one would have
to look for evidence that suggests that the errors induced
by this restriction have little impact on the result. For
example, it is imaginable that the discontinuities of the
branch cuts become smaller with increasing |x|, which
would justify this procedure and allow for a direct map-
ping from a DSE setting to the environment at hand.

In our model, we constrain the agent to the square
x ∈ [−1.5Λ, 1.5Λ] GeV2 × i[−1.5Λ, 1.5Λ] GeV2, and we
treat any step that takes the agent out of this region
similar to it trying to cross a branch cut. Since the an-
alytic properties of the toy model are accessible exactly,
we would not have to impose this restriction. However,
it is beneficial in at least two ways. First, we will have to
impose such a restriction in a future setting for DSEs, so
we will be able to directly map the DSE setup on the one
developed here, as discussed in Section VI below. Sec-
ond, it also helps the agent to stick around the origin
and thus close to the endpoint, which helps it to find its
target more quickly.

Once the agent successfully enters a small region
around the endpoint y = 10 GeV2, we have to check
whether the path suggested by the agent is continuously
deformable into the original path along the positive real
half-axis if we neglect the presence of the branch cut, but
maintain the poles. In order to determine whether this
is the case, we (numerically) integrate a known function
that has poles with residue 1 at the same position as the
integrand, but no branch cut, along the suggested con-
tour. If we then add the value of the integral along the
real axis from y = 10 GeV2 to y = 0 GeV2, evaluated
on the same known function, we can deduce whether the

path is continuously deformable in the sense discussed
above by exploiting Cauchy’s integral formula.

E. Reward function

The reward function is a crucial quantity, as it allows
us to directly encourage or discourage the agent to take
certain actions in certain situations. We punish the agent
for failing to produce a valid contour and for bumping
into the branch cut (or the boundary) by providing it
with a negative reward. We furthermore associate a small
punishment for every step taken, which encourages the
agent to take as few steps as possible to reach the goal.
The agent receives a positive reward if it manages to
reach the goal along a valid contour. We furthermore
introduce a small reward or punishment depending on
whether the last step took the agent closer to, or farther
from, the desired endpoint. This helps the agent to figure
out where it should go. There is an inherent asymmetry
between the two constraints the agent has to consider
as it finds its path towards the endpoint. While a col-
lision of the path with the branch cut can be detected,
and punished, immediately, the information of whether
the contour is continuously deformable into the original
contour in the absence of the branch cut can only be
provided once the agent has reached its goal. It thus re-
ceives the respective reward or punishment only at the
very end of an episode, which makes it much harder for
the agent to figure out which of the steps that it took
was responsible for the reward or punishment it received
in the end. This is the aforementioned problem of sparse
rewards and poses a challenge that has to be addressed.

V. NUMERICAL EXPERIMENTS AND
RESULTS

In Section IV E above we discussed the issue of the
pole detection being particularly difficult to learn for an
agent, as the reward or punishment is only provided at
the end of the episode. We thus decided to study two
separate cases. First, we investigated scenarios that fea-
tured branch cuts only, that is, we neglected the pres-
ence of the poles. This scenario is easier for an agent,
as it is provided with rewards and punishments imme-
diately, that is, after every single step. Its actions thus
have very immediate consequences, and it is easy for the
agent to derive optimal actions. In a second scenario,
we consider the full problem, that is, besides the branch
cut we also introduce the poles. This has a severe effect
on the agents performance, as the reward signal is now
delayed. As a possible simplification of the active pole
detection scenario we also introduced a mechanism that
allows the environment to automatically close the con-
tour when the agent has successfully exited the branch
cut structure. We refer to this mechanism as path auto-
completion. The training of the agents has been con-
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property values description

State space dim. 14 number of parameters in state space

Action space dim. 2 dimension for step length and angle

First pole 0 + 0.5i position first pole

Second pole 0− 0.5i position second pole

|x| R modulus of ext. momentum square

arg x [−π, π] argument of ext. momentum square

Λ 10 contour end point for agent

ε-region 0.5 radius around goal

γ 0.99 discount factor

eps clip 0.2 clip parameter for PPO

batch size 80 batch size

update steps 6000 time steps between policy updates

learning rate 5× 10−5 learning rate for optimizer

act std 0.4 standard deviation for action distribution (multivariate normal)

rew fail −50000 reward for failure

rew coll −10 reward for collision with contour

rew iter −5 reward for each step

rew attr {.01, .0055, .001} reward for goal attraction

rew won 1000 reward for winning

max episodes 5000 max number of episodes for a single policy training

max steps 1500 max number of steps per episode

Table II: Parameters of the three numerical experiments without pole detection as described in Section V A. The same parameter
sets have also been used in the pole detection runs with auto-completion, see Section V C. The only difference between the
three runs is in the parameter rew attr, which controls the reward or punishment received if the agent steps closer to, or away
from, the desired endpoint.

ducted as follows. For each episode, we pick a value
for x at random, by uniformly sampling from the plane
x ∈ [−5, 5] GeV2 × i[−5, 5] GeV2. The position of the
poles, if present, is fixed at ± i

2 GeV2.
The policy network (actor) and value estimator net-

work (critic) were chosen identically. They consist of two
hidden layers, the first with 64 neurons and the second
with 32 units. The activation function for each layer is
the hyperbolic tangent, and as optimizer we used Adam
[34]. An overview of the other parameters is summarized
in Table II.

All numerical experiments were conducted on Nvidia
Titan RTX Graphics Processing Units (GPUs). On three
GPUs, we could conduct 48 experiments in parallel. The
program code has been written in Python, using PyTorch
[35] with GPU support. The CPU on which large parts
of the calculations for the rewards were calculated is an
Intel R© Xeon R© W-2145 processor. For a training with
pole detection turned on (we refere here to our best ex-
periment) we needed an average of 8.94212 seconds to
calculate one episode and 0.01066 seconds to calculate
one action.

A. Experiments without pole detection

We conducted our first numerical experiments with the
simplified environment, that is, we ignored the presence
of the poles. We considered three configurations that
differ in the choice for the parameter rew attr. This
parameter is responsible for controlling the reward (or
punishment) the agent receives as it steps closer to, or
farther from, the desired endpoint. The three parameter
values were {.01, .0055, .001}. All other parameters were

identical to the values shown in Table II.

The outcome of all three experiments lie above a 90
percent success rate. For the experiment with an attrac-
tor reward of 0.01 we get a success rate of 92.94%, with
an attractor reward of 0.0055 we get 94.56%, and with an
attractor reward of 0.001 we get a success rate of 95.58%.
Figure 3 illustrates two non-trivial scenarios where the
agent (in this case the agent with a final success rate of
95.58%) was able to reach a point within a disc with ra-
dius ε-region, centered around the end-point. Figure 4
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shows the learning curve of the best agent trained in this
environment.

B. Experiments with pole detection

To investigate the performance of a reinforcement
learning agent on the full problem, that is, with poles
included, we conducted a total of 720 numerical exper-
iments with different parameters. The parameters that
we varied were the following. We chose different values
for the standard deviation of the noise distribution used
for the actions (act std), for the number of steps in be-
tween the updates of the policy (update steps), for the
learning rate used by the optimizer (learning rate), the
batch size (batch size), and for the parameter rew attr
that was also varied throughout the experiments without
the poles being present. The overall 720 numerical ex-
periments are all combinations of:

• act std ∈ {.1, .2, .3, .4}

• update steps ∈ {250, 562, 875, 1187, 1500}

• learning rate ∈ {10−5, 10−4, 10−3}

• batch size ∈ {60, 70, 80, 90}

• rew attr ∈ {.01, .0055, .001}

The best experiment with activated pole detection
achieved a success rate of 27.82%. The parameters as-
sociated with the best performing agent were:

• act std: .4

• update steps: 1187

• learning rate: 10−5

• batch size: 90

• rew attr: .0055

This is significantly smaller than the success rates
achieved by the agents trained in the environment with-
out pole detection. Figure 5 shows two situations, one
with positive and one with negative outcome. In con-
trast to the simplified experiments discussed in the pre-
vious section, the agent cannot always count reaching
the goal within a given tolerance as success in this case.
Positive experiences are much less frequent, which slows
down the learning process. The learning curve of the best
agent trained in this scenario is shown in Figure 6

C. Experiments with pole detection and
auto-completion

In order to make the reward, or punishment, for enclos-
ing a pole more immediate to the agent, we decided to al-
ter the environment as follows. Rather than allowing the

agent to move freely within the plane x ∈ [−1.5Λ, 1.5Λ]
GeV2 × i[−1.5Λ, 1.5Λ] GeV2, we first drew a bounding
box around the branch cut. The size of the box was cho-
sen such that it confines the cut as close as possible, with-
out actually intersecting it. One can then make the box
slightly larger such that its edges can be used as part of
the integration contour. This slight modification is neces-
sary, as the numerical integration becomes increasingly
expensive with decreasing distance to the branch cut.
The agent was then trained to produce a contour that
connects the origin with the box that encloses the branch
cut. Once such a contour exists, where the opening of the
branch cut has to be respected, that is, no intersections
with the cut are allowed, the auto-completion algorithm
takes over. The contour is then closed automatically by
following along the edges of the box and then parallel to
the real axis, until the real part of the contour is equal
to Λ, after which the contour is closed by a vertical line
segment. Note that the auto-completion algorithm also
checks for the location of the poles. Since the poten-
tial pickup of a pole’s residue depends upon whether the
auto-completed contour is closed by following the edges
to the left, or by following the edges to the right of the
intersection point, or cannot be avoided regardless of how
the contour is closed, the algorithm proceeds as follows.
If the agent reaches the edge of the bounding box in the
second or third quadrant, we test both ways of closing
the contour and accept the one that doesn’t pick up the
residue, if it exists. This setup improves upon the de-
layed reward problem, as the auto-completion is – apart
from the direction of the closure – beyond the agent’s
control, whose responsibility ends with reaching one of
the edges of the bounding box. This makes the impact
of its choices much more immediate. Consequently, we
found a much better performance of the agent working on
the full problem. We conducted three experiments, using
the same parameters as the ones used for the simplified
environment shown in Table II. The best success rate was
around 47%, produced by the agent using a rew attr of
0.001. Note furthermore, that this approach can also be
adopted for the Dyson-Schwinger equation setting. Fig-
ure 7 shows two contours suggested throughout training
by an agent learning in this environment.

VI. SUMMARY AND OUTLOOK

In this paper we introduced a novel technique based on
deep reinforcement learning that allows for numerical an-
alytic continuation of loop integrals in Euclidean space in
quantum field theory. The main challenge to solve such
integrals in the complex domain is to find suitable con-
tours that avoid branch cuts and poles in the integration
plane. By referring to an example where contour defor-
mation has been successfully applied to solve the problem
in the past, we trained reinforcement learning agents to
produce valid contours for the same example, providing
a proof of principle that machine learning can indeed be
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(a) (b)

Figure 3: Two solutions provided by the same agent throughout training. Note that we do not apply any smoothing mechanisms,
nor do we discourage or remove loops in the paths produced by the agent. Each contour starts at the origin and traces out
a path that leads to the cutoff labeled Λ. The (green) triangles mark the position of the poles, which were ignored in this
particular run. The (yellow) circles between the cut’s endpoints indicate the value of x used for this particular run. The
solutions presented here were produced by the best performing agent among the three trained in this setting. It has a success
rate of almost 96%. Note that both contours solve the problem. Figure (a) shows a valid solution produced by the agent after
training for 1783 episodes. Figure (b) shows a valid solution produced by the agent after training for 4726 episodes. This path
could be post-processed to remove the loops, which we haven’t implemented.

of assistance in solving such tedious problems.

While the best agent trained in the absence of poles
reaches success rates that justify deployment in such
scenarios, agents trained on settings with poles being
present achieved success rates that produce valid con-
tours only for every other value of x. Since we did not
directly address the issue of delayed rewards in this first
study, we are confident that this success rate can be in-
creased sufficiently to allow for deployment of this ap-
proach in the presence of poles as well.

In a follow-up study we will thus focus on two main
tasks. First, we will improve upon the agent’s perfor-
mance in the presence of poles, which is a scenario in
which we have to deal with sparse rewards. For stud-
ies addressing this issue see e. g. [36–38]. We will ex-
plore the applicability of the strategies presented in these
studies to our problem (note that, e. g. [37] requires an
off-policy approach). We will also investigate how an
ensemble of trained agents performs at solving the prob-
lem of producing valid contours in the presence of poles.
Since we can validate each contour by means of the aux-
iliary function used throughout training, we could then
just ask every agent in the ensemble to produce a con-
tour and accept one that is valid. If, on the other hand,
the ensemble is incapable of producing a valid contour
for a given set of parameters, this will give us insights as

to why the agents fail to solve that particular situation,
such that we can use domain knowledge to provide guid-
ance. In addition to looking into approaches that try to
improve upon the sparse reward problem, as well as in-
vestigating ensembles of agents, we furthermore will also
explore the potential of runtime enforcement (shielding)
[39] for our application.

Another important question is, how the environment
can be generalized in order to being able to deal with in-
tegral equations of the Fredholm 2 type, such as Dyson-
Schwinger equations. In order to address this, we plan
to take numerical input of the complex integration plane
before an iteration step is conducted. Here are two possi-
bilities as of how the perception of the non-analyticities is
approached. One could use conventional image detection
algorithms in combination with the theory of complex
functions to detect poles and branch cuts (see e. g. [22]
for such an approach to detect poles) in the integra-
tion plane. Instead of conventional image processing one
could also work with convolutional neural networks on a
‘pixel’ basis, where the pixels are in fact the moduli of the
numerically computed complex values of the integrand.

Once the information about the obstructions in the
integration plane is available, it can be fed into the vec-
torized environment presented here. We can then sample
the integration plane for various values of x and train the
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Figure 4: This plot illustrates the development of averaged re-
wards throughout training of the best reference experiment,
where the pole detection was deactivated. The blue curve rep-
resents the averaged return for each episode, while the green
curve is the average over 100 consecutive averaged returns,
rescaled for readability. The trend of improvement of the
performance over training time is clearly visible.

agent in a similar fashion. Thus, every iteration step cor-
responds to the exact same problem as the one treated in
this paper. Consequently, the agent has to be re-trained
for every iteration step. One can, however, start with the
policy the agent used for the previous iteration step, and
if the shift in the analytic properties in the integration
plane is not too severe, the agent should be able to adapt
easily. Another aspect that should help in this regard is,
that we formulated the environment in a very general
way. For example, it is not expected that branch cuts
arising in such integrals open in directions other than
arg x, but they will most likely just differ by its shape.
The difference in shape will force the agent to focus more
on the direction of the opening until it leaves the struc-
ture.

But even assuming that both strategies, the one di-
rectly addressing the sparse reward problem and the en-
semble approach, fail to produce a valid answer for a cer-
tain point of x in a Dyson-Schwinger equation setting,
the consequences are not expected to be severe, since the
system is solved iteratively, so even if an iteration step
fails, the system could still converge, given that the over-
all success rate is not too low.

With a success rate of 96% without poles, and close to
50% with poles being present (and without applying any
of the delayed reward signal strategies mentioned above),
our study shows that machine learning in general, and
reinforcement learning in particular, can help in tackling
such demanding numerical problems as contour defor-
mations to compute one-loop integrals in quantum field
theory.
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Appendix A: Conventions

All calculations are performed in Euclidean space.

1. Hyperspherical coordinates

Using hyperspherical coordinates, the 4-momentum q
can be expressed as

∫
R4

d4q → (A1)∫ 2π

0

dφ

∫ ∞
0

dq q3

∫ π

0

dθ1 sin2 θ1

∫ π

0

dθ2 sin θ2

=

∣∣∣∣∣
y ≡ q2 → dy = 2qdq

θ1 ≡ arccos z → dθ1 = − dz√
1−z2

θ2 ≡ arccosw → dθ2 = − dw√
1−w2

∣∣∣∣∣
=

1

2

∫ 2π

0

dφ

∫ ∞
0

dy y

∫ 1

−1

dz
√

1− z2

∫ 1

−1

dw.

With two momenta involved, only the radial and one
angular integral remains. With an IR cutoff ε and an UV
cutoff ΛUV , we get

∫
R4

d4q

(2π)4
→ (A2)

1

(2π)3

∫ ΛUV

ε

dy y

∫ 1

−1

dz
√

1− z2.

Defining x to be the square of the external momentum
p2,

x := p2, (A3)

the scalar product between p and q becomes.

p.q =
√
x
√
yz. (A4)
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(a) (b)

Figure 5: Two solutions suggested by the same agent throughout training on the full problem (poles included). The (green)
triangles mark the position of the poles. The solutions presented here were produced at a late time throughout training by
the best performing agent among the 720 trained in this setting. It has a success rate of almost 28%, which is considerably
lower than the one achieved without pole detection. Figure (a) shows a valid solution produced by the agent after training for
4996 episodes. Figure (b) shows an invalid solution produced by the agent after training for 4674 episodes. This contour must
be rejected, because the path is not continuously deformable into the path along the positive real half-axis in absence of the
branch cut.
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(a) (b)

Figure 7: Two solutions suggested by the same agent throughout training on the full problem (poles included) with auto-
completion. The (green) triangles mark the position of the poles. The solutions presented here were produced by the best
agent throughout training. It has a success rate of almost 48%, which is a dramatic increase in performance as compared to
the best agent trained with naive pole detection. This indicates that this issue is due to a delayed reward signal. Figure (a)
shows a valid solution produced by the agent after training for 126 episodes. Figure (b) shows a valid solution produced by the
agent after training for 1820 episodes.
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