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We show that the Wang-Landau algorithm can be formulated as a stochastic gradient descent5

algorithm minimizing a smooth and convex objective function, of which the gradient is estimated6

using Markov chain Monte Carlo iterations. The optimization formulation provides us a new way7

to establish the convergence rate of the Wang-Landau algorithm, by exploiting the fact that almost8

surely, the density estimates (on the logarithmic scale) remain in a compact set, upon which the9

objective function is strongly convex. The optimization viewpoint motivates us to improve the10

efficiency of the Wang-Landau algorithm using popular tools including the momentum method and11

the adaptive learning rate method. We demonstrate the accelerated Wang-Landau algorithm on a12

two-dimensional Ising model and a two-dimensional ten-state Potts model.13

I. INTRODUCTION14

The Wang-Landau (WL) algorithm [1–3] has been15

proven useful in solving a wide range of computa-16

tional problems in statistical physics, including spin-glass17

models [4–15], fluid phase equilibria [16, 17], polymers18

[18, 19], lattice gauge theory [20], protein folding [21–19

23], free energy profile [24], and numerical integration20

[25, 26]. Its successful applications in statistics have also21

been documented [27–29]. The WL algorithm directly22

targets the density of states (the number of all possible23

configurations for an energy level of a system), thus al-24

lowing us to calculate thermodynamic quantities over an25

arbitrary range of temperature within a single run of the26

algorithm.27

Much effort has been made to understand the dynam-28

ics of the WL algorithm, along with numerous proposed29

improvements, of which we highlight three here. (i) Op-30

timizing the modification factor (flatness criterion) [30–31

33]. Belardinelli and Pereyra [30] proposed that instead32

of reducing the modification factor exponentially, the log33

modification factor should be scaled down at the rate of34

1/t in order to avoid the saturation in the error. (ii) Em-35

ploying a Parallelization scheme. Wang and Landau [1]36

suggested that multiple random walkers working simul-37

taneously on the same density of states can accelerate38

the convergence of the WL algorithm. The efficiency of39

the parallelization scheme can be further enhanced using40

the replica-exchange framework [34]. (iii) Incorporating41

efficient Monte Carlo trial moves [35–37].42

In this paper, we consider the WL algorithm from an43

optimization perspective and formulate it as a first-order44

method. We derive the corresponding smooth and con-45

vex objective function, of which the gradient involves the46

unknown density of states. Wang and Landau [1] used47

a random-walk based Metropolis algorithm [38] to esti-48

mate the gradient. In general, any suitable Markov chain49

Monte Carlo (MCMC) strategies [39] can be employed for50
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this purpose. Therefore, the WL algorithm is essentially51

a stochastic gradient descent algorithm.52

The optimization viewpoint enables us to establish the53

convergence rate of the WL algorithm. Following [40] and54

using the standard stochastic approximation theory [41],55

we first show that the density estimates (on the logarith-56

mic scale) almost surely stay in a compact set. Based57

on this, we exploit the strong convexity of the objective58

function, restricted on this compact set, to prove the con-59

vergence rate. We note that the gradient estimator out-60

put from the MCMC iterations is generally biased, thus61

a critical step is to show that the bias vanishes properly62

as t→∞.63

The optimization framework also provides us with a64

new direction for improving the WL algorithm. We ex-65

plore one possible improvement, by combining the mo-66

mentum method [42] and the adaptive learning rate67

method [43, 44]. The general goal is to accelerate the68

transient phase [45] of the WL algorithm before it en-69

ters the fine local convergence regime. The effectiveness70

of the acceleration method is demonstrated on a two-71

dimensional Ising model and a two-dimensional ten-state72

Potts model, in which the learning in the transient phase73

is considerably demanding.74

The rest of the paper is organized as follows. Section75

II discusses the optimization formulation of the WL al-76

gorithm, and establishes the convergence rate from an77

optimization perspective. Section III introduces possible78

strategies to accelerate the WL algorithm using optimiza-79

tion tools. Section IV demonstrates the accelerated WL80

algorithm on two benchmark examples. Finally, Section81

V concludes with a few remarks.82

II. AN OPTIMIZATION FORMULATION83

Let the space of all microscopic configurations be X.84

Suppose there are totally N energy levels, E1 < · · · <85

EN , for the underlying physical model. For a microscopic86

configuration x ∈ X, we use E(x) to denote its energy.87
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Let {g(En)}Nn=1 be the normalized density of states, i.e.,88

g(En) ∝ #{x ∈ X, E(x) = En},
N∑

n=1

g(En) = 1. (1)89

After initializing g0(En) as 1/N , the WL algorithm it-90

erates between the following two steps: (i) Propose a91

transition configuration and accept it with probability92

min{1, gt(Ei)/gt(Ej)}, where Ei and Ej refer to the en-93

ergy levels before and after this transition, respectively.94

This is essentially a step of the Metropolis algorithm [38]95

with the corresponding stationary distribution:96

πt(x) ∝
N∑

n=1

1

gt(En)
1 (E(x) = En) . (2)97

(ii) Update the density of states. If E(xt+1) = En, mul-98

tiply gt(En) by a modification factor ft+1 > 1. That is,99

gt+1(En)← gt(En)× ft+1.100

The modification factor ft should be properly scaled101

down in order to guarantee the convergence of the al-102

gorithm. There is a rich literature on how to adapt ft103

online, including the flat/minimum histogram criterion,104

and the 1/t rule [30] with its various extensions [46, 47].105

Under a proper scaling rule, the magnitude of the modifi-106

cation factor ft is informative of the estimation error [31].107

Thus, a commonly used stopping criteria for the WL al-108

gorithm is that ft is small enough (say, below exp(10−8)).109

In the following, we will work on the logarithmic scale110

of the density of states. Denote u
(t)
n = log(gt(En)) for111

n ∈ [N ], and let u = (u1, · · · , uN ). The density update112

in the WL algorithm can be rewritten as113

u(t+1)
n ← u(t)

n + ηt+11(E(xt+1) = En), (3)114

where ηt+1 = log ft+1, which will be referred to as the115

learning rate henceforth. The intermediate target distri-116

bution πt(x) defined in Equation (2) can also be formu-117

lated in terms of u(t). We define118

πu(x) ∝
N∑

n=1

exp(−un)1 (E(x) = En) , (4)119

and denote Pu as a general transition kernel invariant to120

πu(x). For notational convenience, we use πt(x) to refer121

to πu(t)(x), and use Pt to refer to the transition kernel in-122

variant to πt(x). After each density update, we normalize123

u(t) to sum to 0, i.e., u
(t)
n ← u

(t)
n −

∑N
i=1 u

(t)
i /N , so that124

u(t) stays in a compact set (see Proposition 1). The WL125

algorithm can be slightly rephrased as in Algorithm 1.126127

Let us consider the following optimization problem:128

min
u∈RN

h(u) = log

(
N∑

n=1

exp(u?n − un)

)
,

subject to

N∑
n=1

un = 0,

(5)129

Algorithm 1: The Wang-Landau algorithm

1. Initialization. u
(0)
n = 0 for n ∈ [N ].

2. For t ≥ 1, iterate between the following steps.

(a) Sample xt+1 from Pt(xt, ·).

(b) Update u(t+1) following Equation (3).

(c) Normalize u(t+1) to sum to 0.

(d) Scale down the learning rate ηt properly.

3. Stop when the learning rate ηt is smaller than a
prescribed threshold.

in which u?n = log(g(En))− 1
N

∑N
i=1 log(g(Ei)). We write130

u? = (u?1, · · · , u?N ). It is not difficult to see that this is a131

convex optimization problem because the objective func-132

tion h(u) is a log-sum-exp function and the constraint is133

linear. It has a unique solution at un = u?n for n ∈ [N ],134

in which exp(u?n) equals to the density of states g(En) up135

to an multiplicative constant.136

The projected gradient descent algorithm is a standard137

approach to solve the constrained optimization problem138

(5). The gradient of the objective function h(u) is139

∂h(u)

∂un
= − exp (u?n − un)∑N

i=1 exp (u?i − ui)
, n ∈ [N ], (6)140

which is not directly available because it involves the141

unknown density of states. However, one can think of142

approximating the gradient function defined in Equation143

(6) by one-step or multiple-step Monte Carlo simulations,144

leading to a stochastic version of the projected gradient145

descent algorithm.146

More precisely, a gradient descent step for minimizing147

h(u) takes the following form:148

u(t+1)
n ← u(t)

n +
ηt+1 exp(u?n − u

(t)
n )∑N

i=1 exp(u?i − u
(t)
i )

. (7)149

Denote the probability of the set {x ∈ X : E(x) = En}150

with respect to πt(x) as πt(En). Since the probability151

πt(En) is proportional to exp(u?n − u
(t)
n ), the density up-152

date in Equation (7) is essentially153

u(t+1)
n ← u(t)

n + ηt+1πt(En). (8)154

A crude approximation to πt(En) is the indicator func-155

tion 1 (E(xt+1) = Ei), given that after several steps of156

Monte Carlo simulations according to the transition ker-157

nel Pt invariant to πt(x), xt+1 is approximately a sample158

from πt(x). This corresponds to the density update in159

Equation (3).160

We note that the projection step to the set Π = {u ∈161

R
N ,
∑N

n=1 un = 0} is equivalent to the normalization162

step (see Algorithm 1 step 2(c)). Thus, we have shown163

that the stochastic projected gradient descent algorithm164

solving the constrained optimization problem (5), which165
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estimates the probability πt(En) by 1 (E(xt+1) = En) us-166

ing the output from Monte Carlo simulations, is equiva-167

lent to the WL algorithm.168

The above optimization formulation has the follow-169

ing immediate implications. First, the parallel WL170

algorithm estimates the negative gradient πt(En) by171

1/m
∑m

k=1[1(E(x
(k)
t ) = En)], in which m denotes the172

total number of random walkers, and x
(k)
t denotes the173

kth random walker. Therefore, it reduces the variance174

of the gradient estimate by a factor m. Second, instead175

of implementing a single transition step, the separation176

strategy mentioned in [31] implements multiple transition177

steps within each iteration, so that the law of the random178

walker gets closer to the intermediate target distribution179

πt(x) defined in Equation (4). Therefore, it reduces the180

bias of the gradient estimate.181

The optimization formulation also points out a new182

approach to establish the convergence rate of the WL183

algorithm. We first state a required assumption, which184

assumes that the transition kernels are (uniformly) geo-185

metrically ergodic over the space Π.186

Assumption 1 There exists a constant ρ ∈ (0, 1) such187

that for all u ∈ Π, x ∈ X, k ∈ N, we have188

sup
u∈Π

sup
x∈X
||P k

u(x, ·)− πu||TV ≤ 2(1− ρ)k, (9)189

in which for a signed measure µ, the total variation norm190

is defined as191

||µ||TV = sup
|q|≤1

∣∣∣∣∫
X

q(x)µ(dx)

∣∣∣∣ . (10)192

We note that sufficient conditions for Assumption 1 exist193

in the literature (e.g., condition A2 in [40]), and relax-194

ation of Assumption 1 is also possible [41]. We have the195

following result.196

Proposition 1 Under Assumption 1, if we scale down197

the learning rate ηt in the order of O(1/t), the following198

two statements hold.199

1. Almost surely convergence.200

(a) There exists a compact set K ⊆ Π such that201

for any t ≥ 0, u(t) ∈ K almost surely.202

(b) P(limt→∞ u(t) = u?) = 1.203

2. Convergence rate. There exists a constant C > 0204

such that205

E||u(t) − u?||2 ≤ C/t. (11)206

The proof of Proposition 1 is given in the Supplemental207

Material [48].208

The first part of Proposition 1 follows similarly as [40].209

The main idea is to rewrite the WL update, including210

the density update and the normalization step, as211

u(t+1) ← u(t) + ηt+1r(u(t)) + ηt+1(R(xt+1)− r(u(t))),212

in which Rn(x) = 1(E(x) = En)− 1/N , and r(u) is the213

mean-field function defined as214

r(u) =

∫
X

R(x)πu(x)dx =
exp(u? − u)∑N

n=1 exp(u?n − un)
− 1

N
.215

The proof of the almost-sure convergence concludes by216

applying the standard stochastic approximation theory217

(Theorem 2.2 and Theorem 2.3 in [49]) after we estab-218

lish the following two facts. (1) The remainder term219

ηt+1(R(xt+1)− r(u(t))) vanishes properly as t→∞. (2)220

There exists a Lyapunov function V (u) specified below,221

V (u) =
1

N

N∑
n=1

exp(u?n − un)− 1, (12)222

with respect to the mean-field function r(u), such that223

〈∇V (u), r(u)〉 < 0, ∀ u 6= u?, and 〈∇V (u?), r(u?)〉 = 0.224

The second part of Proposition 1 is our main theo-225

retical contribution. There are two essential ingredients226

in establishing the convergence rate. (i) Strong convex-227

ity. The objective function h(u) is only convex but not228

strongly convex on RN . However, because u(t) stays in229

a compact set K ⊆ Π almost surely (see Proposition 1,230

part 1(a)), we are able to establish the strong convexity231

of h(u) restricted on this compact set K.232

Lemma 1 Under Assumption 1, there exists a constant233

` > 0 such that for any t ≥ 0, almost surely, it holds234

〈∇h(u(t)),u(t) − u?〉 ≥ `||u(t) − u?||2. (13)235

(ii) Vanishing bias. Because xt+1 is only an approximate236

sample from the intermediate target distribution πt(x),237

the indicator 1 (E(xt+1) = En) is not an unbiased esti-238

mator to the negative gradient πt(En). The following239

Lemma 2 shows that the bias of the gradient estima-240

tor vanishes properly, as fast as the learning rate, when241

t→∞.242

Lemma 2 Under Assumption 1, there exists a constant243

C > 0 such that244

E||πt − Pt(xt, ·)||TV ≤ Cηt+1. (14)245

The convergence rate of the WL algorithm has been246

established in different forms in the literature. Zhou and247

Bhatt [31] show that the discrete probability distribu-248

tion {πt(En)}Nn=1 will be attracted, in terms of the KL-249

divergence, to the vicinity of the uniform distribution250

(π∞(En) = 1/N) as t→∞. In addition, they show that251

the standard deviation of exp(u?n − u
(t)
n ) roughly scales252

like
√

log ft when the modification factor ft is close to 1.253

Although we are looking at the L2 error of u(t), which is254

slightly different from the aforementioned standard devi-255

ation, their convergence rate is consistent with our result256

because
√

log ft =
√
ηt is in the order of O(1/

√
t) if we257

scale down the learning rate ηt in the order of O(1/t). It258

is also worthwhile to mention that a corresponding cen-259

tral limit theorem in the original density space is provided260

in [40].261
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III. ACCELERATING WANG-LANDAU262

ALGORITHM263

The optimization formulation motivates us to further264

improve the WL algorithm using optimization tools [50].265

Our goal in this paper is to accelerate the convergence in266

the transient phase. The transient phase [45] generally267

refers to the initial stage of running a stochastic gradi-268

ent descent algorithm. For instance, if we scale down the269

learning rate according to the flat/minimum histogram270

criterion, we can refer to the transient phase as the run-271

ning period from the beginning up to the time when the272

flat/minimum histogram criterion is first satisfied.273

When the transient phase appears noticeable, the ac-274

celeration tools can be very effective in practice, and have275

been widely used in large-scale systems such as deep neu-276

ral networks [51]. In this paper, we restrict ourselves277

on the first-order acceleration methods, and leave other278

possibilities for future explorations. In particular, we find279

that both the momentum method and the adaptive learn-280

ing rate method are effective in accelerating the WL al-281

gorithm. Before we go into details, we note that improve-282

ment in the asymptotic convergence rate of the stochas-283

tic gradient descent algorithm is hard to achieve (or even284

impossible) [52, 53] except for some well-structured ob-285

jective functions such as finite sums.286

The momentum method exponentially accumulates a287

momentum vector, denoted as mt in the following, to288

amplify the persistent gradient across iterations. The289

basic momentum update operates as follows:290

m(t) ← βm(t−1) + ηt+1∇h(u(t)),

u(t+1) ← u(t) −m(t),
(15)291

where we initialize the momentum vector to be m(0) = 0.292

We note that the momentum update essentially adds293

a fraction β of the previously accumulated gradients294

m(t−1) into the current update vector m(t). The weight-295

ing factor β is a tuning parameter, and is commonly set296

to be 0.9 or higher.297

In the setting of the WL algorithm, the momentum298

update in Equation (15) becomes299

m(t)
n ← βm(t−1)

n − ηt+11(E(xt+1) = En),

u(t+1)
n ← u(t)

n −m(t)
n , ∀n ∈ [N ].

(16)300

The intuition behind the momentum acceleration for the301

WL algorithm can be heuristically described as follows.302

The event E(xt+1) = En suggests that πt(En) is likely303

larger than 1/N , thus the Markov kernel Pt has a better304

chance to transit the microscopic configuration xt into305

the energy level En. Therefore, in order to push πt(En)306

towards 1/N , that is, downweight the probability mass307

in the energy level En, we increase u
(t)
n by ηt+1, which308

corresponds to the density update in Equation (3). In309

contrast to the WL algorithm, which only increases u
(t)
n310

by ηt+1 at the current iteration t, we keep increasing311

u
(t)
n for a few more iterations by an exponentially decay312

momentum m
(t)
n to achieve a faster convergence.313

The adaptive learning rate method helps standardize314

the gradient across different coordinates of the parameter315

u, so that they scale in a similar magnitude. Otherwise,316

it can be challenging to find a suitable global learning rate317

ηt over different coordinates. Popular algorithms along318

this research direction include AdaGrad [43], AdaDelta319

[44], and RMSprop (an unpublished method proposed320

by Geoffrey Hinton). The RMSprop update operates as321

follows:322

G(t) ← γG(t−1) + (1− γ)∇h(u(t))
2
,

u(t+1) ← u(t) − ηt+1[G(t)]−1/2∇h(u(t)),
(17)323

in which both the square and the square root are taken324

elementwise. G(t) represents the moving average of the325

squared gradients, so that the current gradient ∇h(u(t)),326

standardized by [G(t)]1/2, is in a similar magnitude across327

different coordinates. The weighting factor γ is a tuning328

parameter, which is commonly set to be 0.9 in order to329

prevent the updates from diminishing too fast. In the330

setting of the WL algorithm, the RMSprop update in331

Equation (17) becomes332

G(t)
n ← γG(t−1)

n + (1− γ)1(E(xt+1) = En),

u(t+1)
n ← u(t)

n − ηt+1[G(t)
n ]−1/2

1(E(xt+1) = En).
(18)333

The combination of the momentum method and the334

adaptive learning rate method leads to the Adaptive Mo-335

ment Estimation (Adam) method [54]. The Adam up-336

date operates as follows:337

m(t) ← βm(t−1) + (1− β)∇h(u(t)),

G(t) ← γG(t−1) + (1− γ)∇h(u(t))
2
,

u(t+1) ← u(t) − ηt+1[G(t)]−1/2m(t).

(19)338

In the setting of the WL algorithm, we note that, al-339

though β and γ can be potentially two tuning parame-340

ters, if we set β = γ and initialize m(0) and G(0) to be 0,341

we have G(t) = −m(t), since −∇h(u(t)) is approximated342

by a one-hot vector, which contains only a single “1” with343

the remaining elements being 0. This simplification leads344

to Algorithm 2, which we refer to as the AWL algorithm345

henceforth.346347

We remark that for large-scale systems, a naive imple-348

mentation of Equation (20) can be very inefficient, as we349

have to loop over every coordinate of m(t) and u(t) in350

each iteration. A simple solution is to introduce a vector351

s = (s1, · · · , sN ), in which sn records the last time when352

mn and un are updated. With the help of sn, instead of353

updating mn and un in each iteration, we shall update354

them only when the energy level En is involved in the355

Monte Carlo simulations.356
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Algorithm 2: Accelerated Wang-Landau algorithm

1. Initialization. u
(0)
n = 0, m

(0)
n = 0 for n ∈ [N ].

2. For t ≥ 1, iterate between the following steps.

(a) Sample xt+1 from Pt(xt, ·).

(b) Update m(t) and u(t+1) as follows.

m(t)
n ← βm(t−1)

n + (1− β)1(E(xt+1) = En),

u(t+1)
n ← u(t)

n + ηt+1[m(t)
n ]1/2.

(20)

(c) Normalize u(t+1) to sum to 0.

(d) Scale down the learning rate ηt properly.

3. Stop when the learning rate ηt is smaller than a
prescribed threshold.

IV. ILLUSTRATIONS357

We compare the AWL algorithm with the original WL358

algorithm on two benchmark examples: (a) a nearest-359

neighbour Ising model; (b) a nearest-neighbour ten-360

state Potts model. Both models are defined on a two-361

dimensional L × L square lattice equipped with the pe-362

riodic boundary condition.363

For the Ising model, the energy E(x) is given by the364

Hamiltonian:365

E(x) = −
∑
<i,j>

Jijxixj − ψ
∑
j

bjxj , (21)366

where xi ∈ {±1}. The subscripts i, j denote the lattice367

sites, and the notation < i, j > implies that the site i and368

the site j are nearest neighbors. For the ten-state Potts369

model, the energy E(x) is given by:370

E(x) = −
∑
<i,j>

Jij1(xi = xj)− ψ
∑
j

bjxj , (22)371

where xi ∈ {1, · · · , 10}. For both models, we assume that372

Jij ≡ 1 and bj ≡ 0 (no external magnetic field). If bj ≡373

0, the two-dimensional Ising model exhibits a second-374

order phase transition. Otherwise, in the presence of an375

external magnetic field, the two-dimensional Ising model376

exhibits a first-order phase transition. When bj ≡ 0, the377

two-dimensional Potts model exhibits a first-order phase378

transition when the number of states is larger than 4.379

Let {Ht(En)}Nn=1 be the histogram of all energy levels380

at iteration t. We initialize H0(En) = 0 for n ∈ [N ]. At381

each iteration t, the AWL algorithm and the WL algo-382

rithm update u(t) according to Algorithm 2 and Algo-383

rithm 1, respectively. In addition, we update the energy384

histogram as Ht(En) = Ht−1(En) + 1(E(xt+1) = En).385

The adaptation of the learning rate ηt follows [30],386

which is detailed in the following.387

1. After every 1,000 MC sweeps, we check {Ht(En)}.388

If minnHt(En) > 0, we set ηt+1 = ηt/2, and reset389

Ht(En) = 0 for each energy level En. Otherwise if390

minnHt(En) = 0, we keep ηt+1 = ηt.391

2. If ηt+1 ≤ N/t, then ηt = N/t for all the subsequent392

iterations. Ht(En) is discarded and the above step393

is not executed any more.394

We note that each MC sweep contains L2 iterations, in395

which each iteration refers to a single round of parameter396

update. That is, step 2(a)–2(c) in Algorithm 1 and Al-397

gorithm 2. The energy histogram {Ht(En)} essentially398

represents the number of visits to each energy level up to399

iteration t, since the last update of the learning rate.400

We implement one step of the Metropolis algorithm to401

estimate the gradient, i.e., step 2(a) in Algorithm 1 and402

Algorithm 2. The proposal schemes for the Ising model403

and the Potts model are described as follows. Given the404

current configuration xt, we randomly pick up a site and405

change its value. For the Ising model, we filp its sign.406

For the ten-state Potts model, we set it to be a number407

uniformly sampled from {1, · · · , 10}.408

To illustrate the efficiency of the AWL algorithm, we409

investigate the following four perspectives. (i) The scal-410

ing of the first equilibration time, in terms of the number411

of MC sweeps, with respect to the dimension L. The412

first equilibration time, which corresponds to the tran-413

sient phase as we discussed in Section III, is defined to414

be min{t : minnHt(En)} > 0. That is, the first time415

when the energy histogram becomes nonzero everywhere.416

According to the adaptation rule of the learning rate ηt,417

the equilibration time is also the first time we decrease418

the learning rate. (ii) The scaling of the first equilibra-419

tion time, in terms of the CPU time, with respect to the420

dimension L. Because the AWL algorithm requires addi-421

tional computations in updating the momentum vector,422

the comparison between the two algorithms on the actual423

CPU time is necessary to see whether the implementa-424

tion of the acceleration method is indeed worthwhile. (iii)425

The dynamics of the estimation error ε(t) defined as be-426

low following [30] for L = 80,427

ε(t) =
1

N − 1

N∑
n=1

∣∣∣∣1− log(gt(En))

log(g(En))

∣∣∣∣ . (23)428

For the Ising model, the exact density of states g(En) is429

available, and can be calculated using a publicly avail-430

able Mathematica program [55]. For the Potts model, no431

exact solution of g(En) is available, thus we pre-run a432

1/t WL simulation for 5× 107 MC sweeps, in which the433

final learning rate is 2 × 10−8. We then treat the den-434

sity estimates as an approximation to the exact density435

of states. (iv) The accuracy in the task of estimating the436

specific heat for the Ising model with L = 80.437

We compare the AWL algorithm and the WL algo-438

rithm with different initializations of the learning rate,439

η0 = 0.05, 0.10 and 1.00. We test out the two algorithms440

for different sizes of the two-dimensional square lattice,441

L = 50, 60, 70, 80, 90, 100. The computations in this pa-442

per were run on the FASRC Cannon cluster supported by443
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the FAS Division of Science Research Computing Group444

at Harvard University.445

Figure 1 summarizes the computational overheads of446

the two algorithms for the Ising model. The reported447

results are based on 50 independent runs of both algo-448

rithms, in which the dot represents the empirical mean449

and the error bar represents the empirical standard devi-450

ation. We see that the AWL algorithm takes significantly451

fewer MC sweeps as well as less CPU time to reach the452

first equilibration among all settings with different lat-453

tice sizes and different initializations of the learning rate.454

Figure 2 summarizes the computational overheads of the455456

two algorithms on the Potts model. Similar to the case457

of Ising model, the AWL algorithm is more efficient than458

the WL algorithm in terms of the first equilibration time459

measured by the number of MC sweeps and the CPU460

time.461462

Figure 3 shows the empirical dynamics of ε(t), aver-463

aged over 50 independent runs of both algorithms. The464

first 100×103 MC sweeps for the Ising model and the first465

1500×103 MC sweeps for the Potts model are representa-466

tive for the transient phase. We see that in the transient467

phase, the convergence speed of the AWL algorithm, in468

terms of the number of MC sweeps, is significantly faster469

than the convergence speed of the WL algorithm with470

different initializations of the learning rate.471472

For the Ising model with L = 80, Table I compares the473

accuracy of the two algorithms in the calculation of the474

specific heat defined as:475

C(T ) =
〈E2〉T − 〈E〉2T

T 2
, (24)476

in which T denotes the temperature. We test out tem-477

peratures ranging from 0.4 to 8 incremented by 0.1. The478

internal energy 〈E〉T is defined as479

〈E〉T =

∑
nEng(En) exp(−En/T )∑
n g(En) exp(−En/T )

. (25)480

The fluctuation expression 〈E2〉T is defined similarly. We481

note that the theoretical value of the specific heat at a482

given temperature T can be evaluated exactly when the483

exact density of states is available, which is the case for484

the two-dimensional Ising model. We independently run485

each algorithm 50 times to obtain 50 independent esti-486

mates of the specific heat at each temperature. The rela-487

tive error at each temperature is calculated based on the488

mean of the 50 independent estimates. Table I summa-489

rizes the quantiles of the relative errors for T ∈ [0.4, 8],490

by running each algorithm for 100× 103, 150× 103, and491

200×103 MC sweeps, respectively. Compared to the WL492

algorithm, the AWL algorithm yields significantly more493

accurate estimates of the specific heat especially in the494

transient phase.495

More details of this numerical study can be found in496

the Supplemental Material. First, within the first 2×105
497

MC sweeps and 2 × 106 MC sweeps for the Ising model498

and the Potts model, respectively, we report the num-499

ber of equilibrations that the AWL algorithm and the500

WL algorithm have reached (equivalently, the number501

of changes of the learning rate ηt), for different lattice502

sizes L and different initializations of the learning rate503

η0 [56]. We also report the corresponding first 8 equili-504

bration time in terms of the number of MC sweeps [57].505

Second, for the Ising model with L = 80, we provide a506

graphical comparison of the estimated specific heat ob-507

tained by the AWL algorithm and the WL algorithm,508

over the temperature region T ∈ [0.4, 8] [58].509

V. CONCLUSION510

To summarize, in this paper we present a new interpre-511

tation of the WL algorithm from the optimization per-512

spective. We show that the WL algorithm is essentially513

a stochastic (projected) gradient descent algorithm min-514

imizing a smooth and convex function, in which MCMC515

steps are used to estimate the unknown gradient. The op-516

timization formulation intuitively explains that because517

of using more accurate gradient estimates, some notable518

modifications of the algorithm, such as utilizing multi-519

ple random walkers, can improve the WL algorithm. In520

addition, using the (strong) convexity of the objective521

function, we provide a new approach to establish the con-522

vergence rate of the WL algorithm, which is more explicit523

compared to the existing results [31, 40]. We expect that524

our contributions are useful for further theoretical inves-525

tigations of the WL algorithm.526

The optimization interpretation also opens a new way527

to improve the efficiency of the WL algorithm. There528

are rich tools in the optimization literature to acceler-529

ate the stochastic gradient descent algorithm, including530

but not restricted to the methods we mentioned in Sec-531

tion III. Different methods can be favorable for differ-532

ent applications. In the presence of noisy gradients, it533

usually requires some careful tuning to successfully ap-534

ply the acceleration tools. We demonstrate one possible535

acceleration approach, using the momentum method and536

the adaptive learning rate strategy, on a two-dimensional537

Ising model and a two-dimensional ten-state Potts model.538
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