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We show that the Wang-Landau algorithm can be formulated as a stochastic gradient descent
algorithm minimizing a smooth and convex objective function, of which the gradient is estimated
using Markov chain Monte Carlo iterations. The optimization formulation provides us a new way
to establish the convergence rate of the Wang-Landau algorithm, by exploiting the fact that almost

surely, the density estimates (on the logarithmic

scale) remain in a compact set, upon which the

objective function is strongly convex. The optimization viewpoint motivates us to improve the
efficiency of the Wang-Landau algorithm using popular tools including the momentum method and
the adaptive learning rate method. We demonstrate the accelerated Wang-Landau algorithm on a
two-dimensional Ising model and a two-dimensional ten-state Potts model.

I. INTRODUCTION 51

52

The Wang-Landau (WL) algorithm [1-3] has been s
proven useful in solving a wide range of computa- s,
tional problems in statistical physics, including spin-glass s
models [4-15], fluid phase equilibria [16, 17], polymers s
[18, 19], lattice gauge theory [20], protein folding [21-
23], free energy profile [24], and numerical integration s
[25, 26]. Its successful applications in statistics have also s
been documented [27-29]. The WL algorithm directly o
targets the density of states (the number of all possible
configurations for an energy level of a system), thus al-
lowing us to calculate thermodynamic quantities over an g
arbitrary range of temperature within a single run of the "
algorithm. o

Much effort has been made to understand the dynam- o
ics of the WL algorithm, along with numerous proposed
improvements, of which we highlight three here. (i) Op—
timizing the modification factor (flatness criterion) [307
33]. Belardinelli and Pereyra [30] proposed that instead * .
of reducing the modification factor exponentially, the log
modification factor should be scaled down at the rate of
1/t in order to avoid the saturation in the error. (ii) Em-
ploying a Parallelization scheme. Wang and Landau [1]
suggested that multiple random walkers working simul-
taneously on the same density of states can accelerate
the convergence of the WL algorithm. The efficiency of
the parallelization scheme can be further enhanced using ™
the replica-exchange framework [34]. (iii) Incorporating 7
efficient Monte Carlo trial moves [35-37]. 7

In this paper, we consider the WL algorithm from an #
optimization perspective and formulate it as a first-order
method. We derive the corresponding smooth and con- &
vex objective function, of which the gradient involves the
unknown density of states. Wang and Landau [1] used
a random-walk based Metropolis algorithm [38] to esti-
mate the gradient. In general, any suitable Markov Cham
Monte Carlo (MCMC) strategies [39] can be employed for
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this purpose. Therefore, the WL algorithm is essentially
a stochastic gradient descent algorithm.

The optimization viewpoint enables us to establish the
convergence rate of the WL algorithm. Following [40] and
using the standard stochastic approximation theory [41],
we first show that the density estimates (on the logarith-
mic scale) almost surely stay in a compact set. Based
on this, we exploit the strong convexity of the objective
function, restricted on this compact set, to prove the con-
vergence rate. We note that the gradient estimator out-
put from the MCMC iterations is generally biased, thus
a critical step is to show that the bias vanishes properly
as t — oo.

The optimization framework also provides us with a
new direction for improving the WL algorithm. We ex-
plore one possible improvement, by combining the mo-
mentum method [42] and the adaptive learning rate
method [43, 44]. The general goal is to accelerate the
transient phase [45] of the WL algorithm before it en-
ters the fine local convergence regime. The effectiveness
of the acceleration method is demonstrated on a two-
dimensional Ising model and a two-dimensional ten-state
Potts model, in which the learning in the transient phase
is considerably demanding.

The rest of the paper is organized as follows. Section
IT discusses the optimization formulation of the WL al-
gorithm, and establishes the convergence rate from an
optimization perspective. Section III introduces possible
strategies to accelerate the WL algorithm using optimiza-
tion tools. Section IV demonstrates the accelerated WL
algorithm on two benchmark examples. Finally, Section
V concludes with a few remarks.

II. AN OPTIMIZATION FORMULATION

Let the space of all microscopic configurations be X.
Suppose there are totally N energy levels, F; < -+ <
En, for the underlying physical model. For a microscopic
configuration z € X, we use E(z) to denote its energy.
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Let {g(E,)})_, be the normalized density of states, i.e.,

N

9(En) o< #{z € X, E(z) = Ey}, Zg(En) =1

n=1

(1)

After initializing go(E,) as 1/N, the WL algorithm it-
erates between the following two steps: (i) Propose a
transition configuration and accept it with probability
min{1, g;(E;)/g9:(E;)}, where E; and E; refer to the en-
ergy levels before and after this transition, respectively.
This is essentially a step of the Metropolis algorithm [38]
with the corresponding stationary distribution:

N
(@) x 3 ——1(B(z) = E).

gt (En) (2)

130
n=1
131

(ii) Update the density of states. If E(x;y1) = E,, mul-'*
tiply ¢:(E,) by a modification factor fi4; > 1. That is,s3
gt+1(En) < g¢(En) X fry1. 134
The modification factor f; should be properly scaled™
down in order to guarantee the convergence of the al-'%
gorithm. There is a rich literature on how to adapt f;'¥
online, including the flat/minimum histogram criterion,
and the 1/t rule [30] with its various extensions [46, 47].%
Under a proper scaling rule, the magnitude of the modifi-
cation factor f; is informative of the estimation error [31].10
Thus, a commonly used stopping criteria for the WL al-
gorithm is that f; is small enough (say, below exp(1078)).
In the following, we will work on the logarithmic scale
of the density of states. Denote uP) = log(g:(En)) forizz
n € [N], and let w = (uq,--- ,uy). The density update
in the WL algorithm can be rewritten as

141

145

(3)146

147

uD e ul®) + 1 1(B(2041) = En),

where 741 = log fi4+1, which will be referred to as the!
learning rate henceforth. The intermediate target distri-
bution 7;(z) defined in Equation (2) can also be formu- ,
lated in terms of u(®). We define

150
(4,

152
and denote P, as a general transition kernel invariant toiss
(). For notational convenience, we use m¢(z) to refer
to Ty (), and use P; to refer to the transition kernel in-1s4
variant to m¢(x). After each density update, we normalize

u® to sum to 0, i.e., u%t) — ug) - Zf\il ul(-t)/N, S0 thatiz
u® stays in a compact set (see Proposition 1). The WL,
algorithm can be slightly rephrased as in Algorithm 1.

Let us consider the following optimization problem:

N
mu(z) o Y exp(—u, )1 (E(z) = E,) ,

158
159

N 160

min h(u) = log Z exp(uy, — Un) |, “

ueRN 1 162
N )

subject to Z U, =0, 1ot

165

163

n=1

Algorithm 1: The Wang-Landau algorithm

1. Initialization. u'” = 0 for n € [N].

2. For t > 1, iterate between the following steps.
(a)

(b)

(¢) Normalize u**) to sum to 0.

Sample x141 from Pi(z¢, ).

Update u'**V) following Equation (3).

(d) Scale down the learning rate 7; properly.

3. Stop when the learning rate 7; is smaller than a
prescribed threshold.

in which u} = log(g(Ey))— + Zfil log(g(F;)). We write
w* = (uj, - ,ul). It is not difficult to see that this is a
convex optimization problem because the objective func-
tion h(u) is a log-sum-exp function and the constraint is
linear. It has a unique solution at w, = u} for n € [N],
in which exp(u}) equals to the density of states g(F,) up
to an multiplicative constant.

The projected gradient descent algorithm is a standard
approach to solve the constrained optimization problem
(5). The gradient of the objective function h(w) is

Oh(u)
ou,,

*
= exp (U, — Un) n € [N],

N b
> i exp (uf — u;)

which is not directly available because it involves the
unknown density of states. However, one can think of
approximating the gradient function defined in Equation
(6) by one-step or multiple-step Monte Carlo simulations,
leading to a stochastic version of the projected gradient
descent algorithm.

More precisely, a gradient descent step for minimizing
h(u) takes the following form:

(6)

M1 exp(uy, — i)

Sty expluf — )
Denote the probability of the set {x € X : E(z) = E,}

with respect to m(x) as m(E,). Since the probability

m+(Ey,) is proportional to exp(u} — ul?)

date in Equation (7) is essentially

ulYD D 4

(7)

), the density up-

uli ™ = ul® e (By). (8)
A crude approximation to m;(F,,) is the indicator func-
tion 1 (E(xt41) = E;), given that after several steps of
Monte Carlo simulations according to the transition ker-
nel P; invariant to m(x), o471 is approximately a sample
from 7¢(z). This corresponds to the density update in
Equation (3).

We note that the projection step to the set II = {u €
RN ,Egil u, = 0} is equivalent to the normalization
step (see Algorithm 1 step 2(c)). Thus, we have shown
that the stochastic projected gradient descent algorithm
solving the constrained optimization problem (5), which
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estimates the probability m(E,) by 1 (E(xt41) = E,) us-as
ing the output from Monte Carlo simulations, is equiva-2.a
lent to the WL algorithm.

The above optimization formulation has the follow-2s
ing immediate implications. First, the parallel WL
algorithm estimates the negative gradient m(E,) by

mY 7 [1(BE@®) = E,)], in which m denotes the,,

total number of random walkers, and xgk) denotes thezs
kth random walker. Therefore, it reduces the variancea
of the gradient estimate by a factor m. Second, insteadzw
of implementing a single transition step, the separationzz
strategy mentioned in [31] implements multiple transition
steps within each iteration, so that the law of the random
walker gets closer to the intermediate target distribution®
m¢(2) defined in Equation (4). Therefore, it reduces the
bias of the gradient estimate. 23
The optimization formulation also points out a newa.
approach to establish the convergence rate of the WlLas
algorithm. We first state a required assumption, whichass
assumes that the transition kernels are (uniformly) geo-zr
metrically ergodic over the space II. 28

2

Assumption 1 There exists a constant p € (0,1) suchzz
that for allu € I, z € X, kK € N, we have

231
(9)232

233

sup sup || Py (z, -) — mul[rv < 2(1 = p)*,
uell zeX

in which for a signed measure u, the total variation norme

is defined as

235

. (10)23

237

||pe]|Tv = sup
l[q]<1

/X o(2)p(dz)

We note that sufficient conditions for Assumption 1 exist
in the literature (e.g., condition A2 in [40]), and relax-
ation of Assumption 1 is also possible [41]. We have the

following result.
242

Proposition 1 Under Assumption 1, if we scale down,,
the learning rate n; in the order of O(1/t), the following
two statements hold.

1. Almost surely convergence. *

(a) There exists a compact set K C II such thatz:j
for any t >0, u¥) € K almost surely. o
(b) P(limy 00 u® = u*) = 1. "

2. Convergence rate. There exists a constant C' > 0250

such that

51

252

(]_1)253

254

E|lu® —u*|? < C/t.

The proof of Proposition 1 is given in the Supplemental?s
Material [48]. 256

The first part of Proposition 1 follows similarly as [40].27
The main idea is to rewrite the WL update, including?®

the density update and the normalization step, as 259
260

) —u® 4 e (w®) + g (R(@ga) — r(u)),

in which R, (x) = 1(E(x) = E,) — 1/N, and r(u) is the
mean-field function defined as

r(u) = /XR(x)ﬂ'u(a:)dx = >

exp(u* —u) 1

Noexp(uf —uy) N

The proof of the almost-sure convergence concludes by
applying the standard stochastic approximation theory
(Theorem 2.2 and Theorem 2.3 in [49]) after we estab-
lish the following two facts. (1) The remainder term
Ner1(R(zeq1) —r(u®)) vanishes properly as t — oco. (2)
There exists a Lyapunov function V(u) specified below,

(12)

with respect to the mean-field function r(w), such that
(VV(u),r(u)) <0, Yu #u*, and (VV(u*),r(u*)) = 0.

The second part of Proposition 1 is our main theo-
retical contribution. There are two essential ingredients
in establishing the convergence rate. (i) Strong convex-
ity. The objective function h(w) is only convex but not
strongly convex on RN. However, because u*) stays in
a compact set I C II almost surely (see Proposition 1,
part 1(a)), we are able to establish the strong convexity
of h(u) restricted on this compact set K.

Lemma 1 Under Assumption 1, there exists a constant
£ > 0 such that for any t > 0, almost surely, it holds

(Vh(u®),u® —u*) > f[u® —u*]®.  (13)

(ii) Vanishing bias. Because x4 is only an approximate
sample from the intermediate target distribution m(z),
the indicator 1 (E(z¢41) = E,) is not an unbiased esti-
mator to the negative gradient m(E,). The following
Lemma 2 shows that the bias of the gradient estima-
tor vanishes properly, as fast as the learning rate, when
t — o0.

Lemma 2 Under Assumption 1, there exists a constant
C > 0 such that

El[me — Pi(ae,-)||lrv < Cnegr. (14)

The convergence rate of the WL algorithm has been
established in different forms in the literature. Zhou and
Bhatt [31] show that the discrete probability distribu-
tion {m;(E,)}N_; will be attracted, in terms of the KL-
divergence, to the vicinity of the uniform distribution
(Too(Ep) = 1/N) as t — co. In addition, they show that
the standard deviation of exp(u} — ult )) roughly scales
like v/log f; when the modification factor f; is close to 1.
Although we are looking at the L? error of u(*), which is
slightly different from the aforementioned standard devi-
ation, their convergence rate is consistent with our result
because \/Iog f; = /¢ is in the order of O(1/V/%) if we
scale down the learning rate n; in the order of O(1/t). It
is also worthwhile to mention that a corresponding cen-
tral limit theorem in the original density space is provided
in [40].
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III. ACCELERATING WANG-LANDAU 312

ALGORITHM

313
314

The optimization formulation motivates us to further,,
improve the WL algorithm using optimization tools [50].,,,
Our goal in this paper is to accelerate the convergence in,,,
the transient phase. The transient phase [45] generally,
refers to the initial stage of running a stochastic gradi-,,
ent descent algorithm. For instance, if we scale down the,,,
learning rate according to the flat/minimum histogram,,,
criterion, we can refer to the transient phase as the run-,,
ning period from the beginning up to the time when the
flat/minimum histogram criterion is first satisfied.

When the transient phase appears noticeable, the ac-,;,
celeration tools can be very effective in practice, and have
been widely used in large-scale systems such as deep neu-
ral networks [51]. In this paper, we restrict ourselves,,
on the first-order acceleration methods, and leave other,,
possibilities for future explorations. In particular, we find,,,
that both the momentum method and the adaptive learn-,,,
ing rate method are effective in accelerating the WL al-_,
gorithm. Before we go into details, we note that improve-,,,
ment in the asymptotic convergence rate of the stochas-,,
tic gradient descent algorithm is hard to achieve (or even,,
impossible) [52, 53] except for some well-structured ob-,,,
jective functions such as finite sums.

The momentum method exponentially accumulates a
momentum vector, denoted as m; in the following, to,

amplify the persistent gradient across iterations. The
basic momentum update operates as follows:
(t) (t=1) (t) 334
m'") <« Bm + N1 Vh(u'), (15)
u(t'H) — u(t) — m(t), 336

337
where we initialize the momentum vector to be m(®) = 0.
We note that the momentum update essentially adds
a fraction § of the previously accumulated gradients
m®~1 into the current update vector m®). The weight-:
ing factor § is a tuning parameter, and is commonly set
to be 0.9 or higher.
In the setting of the WL algorithm, the momentum

update in Equation (15) becomes 33

340

( — ﬁm (t—=1) _ 77t+1]1(E(xt+1) = En)a 341
(16)342
U,Sf+1) — ugf) - mgf), Vn € [N] 343

344
The intuition behind the momentum acceleration for the345

WL algorithm can be heuristically described as follows.,,
The event E(zty1) = E, suggests that m(E,) is hkely
larger than 1/N, thus the Markov kernel P; has a better o
chance to transit the microscopic configuration x; into
the energy level E,,. Therefore, in order to push m(E, )351

towards 1/N, that is, downweight the probability mass__

in the energy level F,, we increase u& by 141, which,,

corresponds to the density update in Equation (3). In,
contrast to the WL algorithm, which only increases ugf )355

by mi+1 at the current iteration ¢, we keep increasingsss

350

4

(t) for a few more iterations by an exponentially decay

momentum m( ) to achieve a faster convergence.

The adaptive learning rate method helps standardize
the gradient across different coordinates of the parameter
u, so that they scale in a similar magnitude. Otherwise,
it can be challenging to find a suitable global learning rate
1 over different coordinates. Popular algorithms along
this research direction include AdaGrad [43], AdaDelta
[44], and RMSprop (an unpublished method proposed
by Geoffrey Hinton). The RMSprop update operates as
follows:

GO — 4G 4 (1 — 1) Vh(u®)?,

wttD @) _ nt+1[G(t)}*1/2Vh(u(t)), (17
in which both the square and the square root are taken
elementwise. G(Y) represents the moving average of the
squared gradients, so that the current gradient Vh(u(t)),
standardized by [G(Y]'/2, is in a similar magnitude across
different coordinates. The weighting factor v is a tuning
parameter, which is commonly set to be 0.9 in order to
prevent the updates from diminishing too fast. In the
setting of the WL algorithm, the RMSprop update in
Equation (17) becomes

G GY™ + (1 =) 1(E(xe41) = En),

(18)
ul e ul) — 9 [GPTVPU(E(2e41) = By).

The combination of the momentum method and the
adaptive learning rate method leads to the Adaptive Mo-
ment Estimation (Adam) method [54]. The Adam up-
date operates as follows:

m® « pm=Y 1 (1 - B)Vh(u®),
G — 4G 4 (1 - 'y)Vh(u(t))Q,
W) O e[GO 2O,

(19)

In the setting of the WL algorithm, we note that, al-
though § and - can be potentially two tuning parame-
ters, if we set 8 = ~ and initialize m(®) and G to be 0,
we have G = —m® | since —Vh(u?) is approximated
by a one-hot vector, which contains only a single “1” with
the remaining elements being 0. This simplification leads
to Algorithm 2, which we refer to as the AWL algorithm
henceforth.

We remark that for large-scale systems, a naive imple-
mentation of Equation (20) can be very inefficient, as we
have to loop over every coordinate of m® and u® in
each iteration. A simple solution is to introduce a vector
s=(s1, - ,8n), in which s, records the last time when
my, and u,, are updated. With the help of s,,, instead of
updating m,, and u, in each iteration, we shall update
them only when the energy level F,, is involved in the
Monte Carlo simulations.
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Algorithm 2: Accelerated Wang-Landau algorithm 390

391
1. Initialization. u£?> =0, mslm =0 for n € [N].

2. For t > 1, iterate between the following steps. 392

393
(a) Sample z¢41 from Pz, ). 300

(b) Update m® and uY as follows.

395

mi — BmiY + (1= B)L(E(zi41) = En), (20) z:
ud ™t ) 4 e [mi]2, 208
(¢) Normalize u**V) to sum to 0. jzz
(d) Scale down the learning rate n: properly. a01

3. Stop when the learning rate 7; is smaller than a o

prescribed threshold.

403

404

405
406

ILLUSTRATIONS a07

408

We compare the AWL algorithm with the original WL**
algorithm on two benchmark examples: (a) a nearest-*
neighbour Ising model; (b) a nearest-neighbour ten-**
state Potts model. Both models are defined on a two-
dimensional L x L square lattice equipped with the pe-
riodic boundary condition.

For the Ising model, the energy F(z) is given by the
Hamiltonian:

417

E(x)=— Y Jijzi; —1 Y bz, (21)as

<i7j> j 419

Iv.

412
413
414
415

416

420

where z; € {£1}. The subscripts ¢, j denote the lattice,
sites, and the notation < ¢, j > implies that the site ¢ and,y,
the site j are nearest neighbors. For the ten-state Potts,,;

model, the energy F(z) is given by: 224
425
Blz)=— Y Jyl(zi=x;) =¥ bizj,  (22)u
<i,j> J 427

where z; € {1,---,10}. For both models, we assume that

Jij =1 and b; = 0 (no external magnetic field). If b; =
0, the two-dimensional Ising model exhibits a second-
order phase transition. Otherwise, in the presence of an
external magnetic field, the two-dimensional Ising model*
exhibits a first-order phase transition. When b; = 0, the
two-dimensional Potts model exhibits a first-order phase®™
transition when the number of states is larger than 4. **
Let {H;(E,)})_, be the histogram of all energy levels*®
at iteration ¢. We initialize Ho(E,) = 0 for n € [N]. At™
each iteration ¢, the AWL algorithm and the WL algo-**
rithm update w(*) according to Algorithm 2 and Algo-**
rithm 1, respectively. In addition, we update the energy*’
histogram as Hy(Fy,) = Hi—1(E,) + L(E(z141) = E,). *°
The adaptation of the learning rate n; follows [30],*
which is detailed in the following. “o

430

441

1. After every 1,000 MC sweeps, we check {Hy(Ey,)}.ae
If min,, H;(E,) > 0, we set n.11 = n:/2, and resetas

H,(E,) = 0 for each energy level E,. Otherwise if
min, H;(E,) = 0, we keep ni11 = 1.

2. If gi41 < N/t, then n, = N/t for all the subsequent
iterations. Hy(FE,) is discarded and the above step
is not executed any more.

We note that each MC sweep contains L? iterations, in
which each iteration refers to a single round of parameter
update. That is, step 2(a)—2(c) in Algorithm 1 and Al-
gorithm 2. The energy histogram {H,(E,)} essentially
represents the number of visits to each energy level up to
iteration t, since the last update of the learning rate.

We implement one step of the Metropolis algorithm to
estimate the gradient, i.e., step 2(a) in Algorithm 1 and
Algorithm 2. The proposal schemes for the Ising model
and the Potts model are described as follows. Given the
current configuration x;, we randomly pick up a site and
change its value. For the Ising model, we filp its sign.
For the ten-state Potts model, we set it to be a number
uniformly sampled from {1,---,10}.

To illustrate the efficiency of the AWL algorithm, we
investigate the following four perspectives. (i) The scal-
ing of the first equilibration time, in terms of the number
of MC sweeps, with respect to the dimension L. The
first equilibration time, which corresponds to the tran-
sient phase as we discussed in Section III, is defined to
be min{t : min, H,(E,)} > 0. That is, the first time
when the energy histogram becomes nonzero everywhere.
According to the adaptation rule of the learning rate 7,
the equilibration time is also the first time we decrease
the learning rate. (ii) The scaling of the first equilibra-
tion time, in terms of the CPU time, with respect to the
dimension L. Because the AWL algorithm requires addi-
tional computations in updating the momentum vector,
the comparison between the two algorithms on the actual
CPU time is necessary to see whether the implementa-
tion of the acceleration method is indeed worthwhile. (iii)
The dynamics of the estimation error ¢(t) defined as be-
low following [30] for L = 80,

N
e(t)zlz‘l_log(gt(ﬂl))‘_ (23)

For the Ising model, the exact density of states g(E,) is
available, and can be calculated using a publicly avail-
able Mathematica program [55]. For the Potts model, no
exact solution of g(F,) is available, thus we pre-run a
1/t WL simulation for 5 x 107 MC sweeps, in which the
final learning rate is 2 x 107%. We then treat the den-
sity estimates as an approximation to the exact density
of states. (iv) The accuracy in the task of estimating the
specific heat for the Ising model with L = 80.

We compare the AWL algorithm and the WL algo-
rithm with different initializations of the learning rate,
1o = 0.05, 0.10 and 1.00. We test out the two algorithms
for different sizes of the two-dimensional square lattice,
L = 50,60,70,80,90,100. The computations in this pa-
per were run on the FASRC Cannon cluster supported by
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the FAS Division of Science Research Computing Groupae
at Harvard University. 403

Figure 1 summarizes the computational overheads ofs
the two algorithms for the Ising model. The reported+s
results are based on 50 independent runs of both algo-496
rithms, in which the dot represents the empirical means?
and the error bar represents the empirical standard devi-se
ation. We see that the AWL algorithm takes significantlysse
fewer MC sweeps as well as less CPU time to reach theso
first equilibration among all settings with different lat-so
tice sizes and different initializations of the learning rate.so
Figure 2 summarizes the computational overheads of thesos
two algorithms on the Potts model. Similar to the casess
of Ising model, the AWL algorithm is more efficient thanses
the WL algorithm in terms of the first equilibration timesos
measured by the number of MC sweeps and the CPUso

time. 508

Figure 3 shows the empirical dynamics of €(t), aver-°®

aged over 50 independent runs of both algorithms. The
first 100x 10® MC sweeps for the Ising model and the first
1500 x 103 MC sweeps for the Potts model are representa-""°
tive for the transient phase. We see that in the transient
phase, the convergence speed of the AWL algorithm, insu
terms of the number of MC sweeps, is significantly fasters:
than the convergence speed of the WL algorithm withs:s
different initializations of the learning rate. 514
For the Ising model with L = 80, Table I compares the®®
accuracy of the two algorithms in the calculation of the®®

specific heat defined as: st
518

E2 _ E 2 519

C(T) = < >TT2 < >T7 (24)520

521

in which T denotes the temperature. We test out tem-">

peratures ranging from 0.4 to 8 incremented by 0.1. The™

internal energy (E)r is defined as o

525

526

S oEeo—EyT) - P

529
The fluctuation expression (E?)7r is defined similarly. Wess
note that the theoretical value of the specific heat at asa
given temperature T' can be evaluated exactly when thess:
exact density of states is available, which is the case forsss
the two-dimensional Ising model. We independently runss
each algorithm 50 times to obtain 50 independent esti-sss
mates of the specific heat at each temperature. The rela-ss:
tive error at each temperature is calculated based on thess
mean of the 50 independent estimates. Table I summa-sss
rizes the quantiles of the relative errors for T € [0.4, 8,53
by running each algorithm for 100 x 102, 150 x 103, ands«

(E)p = Zn E.g(E,)exp(—E,/T)

200 x 103 MC sweeps, respectively. Compared to the WL
algorithm, the AWL algorithm yields significantly more
accurate estimates of the specific heat especially in the
transient phase.

More details of this numerical study can be found in
the Supplemental Material. First, within the first 2 x 10°
MC sweeps and 2 x 105 MC sweeps for the Ising model
and the Potts model, respectively, we report the num-
ber of equilibrations that the AWL algorithm and the
WL algorithm have reached (equivalently, the number
of changes of the learning rate 1), for different lattice
sizes L and different initializations of the learning rate

o [66]. We also report the corresponding first 8 equili-
bration time in terms of the number of MC sweeps [57].
Second, for the Ising model with L = 80, we provide a
graphical comparison of the estimated specific heat ob-
tained by the AWL algorithm and the WL algorithm,
over the temperature region T € [0.4, 8] [58].

V. CONCLUSION

To summarize, in this paper we present a new interpre-
tation of the WL algorithm from the optimization per-
spective. We show that the WL algorithm is essentially
a stochastic (projected) gradient descent algorithm min-
imizing a smooth and convex function, in which MCMC
steps are used to estimate the unknown gradient. The op-
timization formulation intuitively explains that because
of using more accurate gradient estimates, some notable
modifications of the algorithm, such as utilizing multi-
ple random walkers, can improve the WL algorithm. In
addition, using the (strong) convexity of the objective
function, we provide a new approach to establish the con-
vergence rate of the WL algorithm, which is more explicit
compared to the existing results [31, 40]. We expect that
our contributions are useful for further theoretical inves-
tigations of the WL algorithm.

The optimization interpretation also opens a new way
to improve the efficiency of the WL algorithm. There
are rich tools in the optimization literature to acceler-
ate the stochastic gradient descent algorithm, including
but not restricted to the methods we mentioned in Sec-
tion ITI. Different methods can be favorable for differ-
ent applications. In the presence of noisy gradients, it
usually requires some careful tuning to successfully ap-
ply the acceleration tools. We demonstrate one possible
acceleration approach, using the momentum method and
the adaptive learning rate strategy, on a two-dimensional
Ising model and a two-dimensional ten-state Potts model.
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