
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Static and dynamic properties of multi-ionic plasma
mixtures

Jean Clérouin, Philippe Arnault, Benoit-Joseph Gréa, Sébastien Guisset, Marc
Vandenboomgaerde, Alexander J. White, Lee A. Collins, Joel D. Kress, and Christopher

Ticknor
Phys. Rev. E 101, 033207 — Published 18 March 2020

DOI: 10.1103/PhysRevE.101.033207

http://dx.doi.org/10.1103/PhysRevE.101.033207


Static and dynamic properties of multi-ionic plasma mixtures

Jean Clérouin,1, 2 Philippe Arnault,1 Benoit-Joseph Gréa,1 Sébastien Guisset,1 Marc
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Complex plasma mixtures with three or more components are often encountered in astrophysics
or in inertial confinement fusion (ICF) experiments. For mixtures containing species with large
differences in atomic number Z, the modeling needs to consider at the same time the kinetic theory
for low-Z elements combined with the theory of strongly coupled plasma for high-Z elements, as
well as all the intermediate situations that can appear in multi-component systems. For such
cases, we study the pair distribution functions, self-diffusions, mutual diffusion and viscosity for
ternary mixtures at extreme conditions. These quantities can be produced from first principles
using orbital free molecular dynamics at the computational expense of very intensive simulations
to reach good statistics. Utilizing the first-principles results as reference data, we assess the merit
of a global analytic model for transport coefficients, ”Pseudo-Ions in Jellium” (PIJ), based on an
iso-electronic assumption ( iso-ne). With a multi-component hypernetted-chain integral equation,
we verify the quality of the iso-ne prescription for describing the static structure of the mixtures.
This semi-analytical modeling compares well with the simulation results and allows one to consider
plasma mixtures not accessible to simulations. Applications are given for the mix of materials in
ICF experiments. A reduction of a multicomponent mixture to an effective binary mixture is also
established in the hydrodynamic limit and compared with PIJ estimations for ICF relevant mixtures.

I. INTRODUCTION

Fuel-pusher mix is one of the major issues in inertial
confinement fusion (ICF) experiments that hampers the
energy production goal (see e. g. [1, 2]). Recent ded-
icated experiments have highlighted the importance of
microscopic diffusion compared to turbulent mixing [3–
7]. Moreover, direct numerical simulations (DNS) of im-
ploding targets have shown the crucial role of viscosity
and diffusion during compression. Depending on the tem-
perature behavior of viscosity, a relaminarization of tur-
bulent flow could be expected with possibly a massive
mixing of the target by sudden diffusion [8–12].

An example of the different ICF mixing layers occur-
ring in an indirect drive experiment (taken from [13]) is
shown in Fig. 1. The capsule contains low-Z elements
(LZE) deuterium (D) and tritium (T) confined within
a plastic ablator of carbon-hydrogen (CH) compounds
doped with high-Z elements (HZE) germanium (Ge) or
silicon or gold (Au), to improve energy couplings. In
indirect drive configurations, this capsule is contained
in a gold hohlraum often filled with a gas mixture of
H/He. Under laser irradiation, the gold hohlraum ex-
pands, mixes with the gas and eventually with the ab-
lated CH. Inside the capsule, the DT fuel is also subjected
to mix with CH.

An important feature of asymmetric mixtures such as
He/Au, is that each component experiences a very dif-
ferent plasma coupling and cannot be taken on the same
footing. By coupling, we mean the non-negligible effect
of the Coulomb interactions between the ions. A conve-
nient measure of correlation in one-component plasma is
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FIG. 1. (Color online) Sketch of an ICF target showing the
different elements: the DT fuel surrounded by the CH ablator,
the filling gas made of He and the gold wall, during the com-
pression process. The colour map shows the electronic density
ranging from 1019 for green (light grey) to 1023 electrons/cm3

for red (dark grey) (for more details see [13]).

the coupling parameter Γ defined in atomic units by

Γ =
Q2

aTi
. (1)

In this expression, Q = Q(ne, Te) is the actual charge
(the ionization degree), which depends on the electron
density ne and temperature Te, a = (3/4πn)1/3 the ionic
mean sphere radius, n the total atomic density, and Ti
the ion temperature. The coupling parameter Γ repre-
sents the ratio of the interparticle potential energy to the
kinetic energy of the particles. A realistic description of
a hot dense plasma, where Γ ≥ 1, requires a model that
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includes all interactions explicitly (N-body problem) in
contrast to weakly-coupled plasmas, where Γ � 1, that
are well represented by binary collisions and mean-field
effects. A rough estimation of the coupling parameters of
the various constituents of the target is given in Table I,
showing the difference of the coupling parameter Γ be-
tween CH, He, and Au at the same temperature. Helium
is purely kinetic (Γ ' 0.03) when gold is in the strongly
coupled regime (Γ ' 5). CH is in a moderate coupling
regime. We shall discuss in more details the concept of
coupling parameter in mixtures.

TABLE I. Plasma parameters deduced from thermodynamic
conditions (ρ, T ) for the layers occurring in indirect drive
experiments. DT fuel is not treated here. Data are taken
from a hydrodynamic simulation during the compression.

CH He Au

ρ g/cm3 5 10−3 3 10−3 1 10−2

T eV 200 200 200
〈Q〉 3.5 2 38
Γ 0.1 0.03 5.3

We shall discuss mixtures containing both LZE and
HZE. In such asymmetric mixtures the two components
behave very differently. When the LZE is quickly fully
ionized and becomes more and more weakly coupled as
the temperature rises, the HZE ionizes continuously, by
letting more and more electrons go into the continuum
and remains strongly coupled up to about ten keV. Un-
der certain conditions, it can even exhibit a constant
coupling behavior, the “Γ-plateau” [14–16], character-
ized by a static structure insensitive to the temperature.
These extreme behaviors warrant joining two different
approaches: kinetic theory for the LZE and a modeling
of strongly coupled plasmas to describe the HZE. The
combination of these two approaches is the backbone of
the pseudo-ion in jellium (PIJ) model to describe trans-
port in plasma mixtures [17].

As stated before, in ICF experiments, complex mix-
tures with three, four, or five components are often en-
countered. While such complex multi-component mix-
tures represent a challenge for theory, they are more eas-
ily amenable to orbital-free molecular dynamics (OFMD)
simulations [18, 19], in which the ionization states of
the various components are not an input parameter but
evolve self-consistently during the simulation. Previous
extensive OFMD simulations of binary mixtures demon-
strated the influence of the HZE on the static and dy-
namic properties of a LZE [20, 21]. In particular, the
crowding of the LZE was evidenced in OFMD simula-
tions, and reproduced by a multicomponent hypernet-
ted chain (MCHNC) integral equations approach. The
consequences on the enhancement of nuclear reactions
rates were evaluated [22, 23]. We also showed that small
amounts of HZE can substantially lower the viscosity of
the mixture and the LZE self-diffusion [20, 21]. Concern-

ing mutual diffusion coefficients, we assessed the validity
of the Darken approximation, connecting the mutual dif-
fusion to the self diffusion coefficients of the species in
the mixture. These simulation results on transport coef-
ficients allowed us to tune the PIJ model [17], over a wide
range of thermodynamic conditions. We shall discuss in
more details the corrections to the PIJ model involved in
this tuning.

In this paper, we tackle the modeling of ternary mix-
tures. We consider a mixture made of a LZE with a
medium-Z element (MZE), e.g. the CH ablator consti-
tutes such a mixture. We investigate the properties of the
CH compound mixed with a HZE element, which can be
provided by Si or Ge from the dopant or by Au from the
hohlraum.

The question is: how the mutual diffusion or the vis-
cosity of the H-C mixture is modified by an increasing
amount of gold? Does the addition of the HZE enhance or
hamper the mutual diffusion between C and H elements?
To shed light on these issues, we shall analyze results of
extensive OFMD simulations on ternary mixtures [24],
retaining simulations on CHAg as a challenging test-case
for the PIJ model and as the prototype of ternary mix-
tures of interest to ICF. This extends the test-bed of our
modeling beyond binary systems. In the first part, we
shall recall the main features of the OFMD simulations,
the PIJ model, and the MCHNC calculations. We shall
then assess the validity of the iso-electronic assumption
( iso-ne ), which is used to determine ionizations in par-
ticular, first comparing the static structures of various
mixtures and finally the transport properties of mixtures
simulated with OFMD in [24]. We first test the modeling
on ternary mixtures of HXAg, at 200 and 400 eV with
X=D, He, Li, C, Na, K, Cr, Cu and Rb. Then, at given
temperatures of 100, 200 and 400 eV, we show the influ-
ence of increasing proportion of HZE, Ag, in equimolar
binary mixtures of CH. We also discuss the validity of
an effective binary mixture built with the introduction
of an effective component with averaged characteristics
to replace two species such as CH. We end up examining
mixing layers occurring in ICF experiments.

A mixture is defined by M species, each containing

Ni atoms. The total number of atoms is N =
∑M
i=1Ni.

Number concentrations are xi = Ni/N for each species.
For convenience, we will particularize the number concen-
tration of HZE x = NHZE/N . Mixtures will be denoted
by their concentrations in numbers (x1: x2: x3). In par-
ticular, we shall analyze the behavior of an equimolar
binary mixture with a varying proportion of a third ele-
ment (x1 = x2 and x3 = 1− 2x1).

II. OFMD SIMULATIONS

The OFMD method [18, 19] can bear the numerical
burden of the simulation of a multi-component system
at high temperature, in a reasonable amount of computer
time.
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In these simulations, the charges of each species,
Q1, Q2 ...., are not input data, but are the result of the
screening of the bare coulomb potential by the local po-
larization of the electronic density, which evolves at each
time step according to the configuration of the nuclei.
For this reason, OFMD belongs to the family of methods
based on Density Functional Theory (DFT) in contrast
to classical molecular dynamics simulations that use ef-
fective potentials. The method is described at length in
Ref. [19] and involves a Thomas-Fermi finite temperature
expression for the non-interacting electron free energy,
which bypasses the corresponding Kohn-Sham orbital-
based expression. The exchange-correlation energy of the
electrons is included using the Perdew-Zunger functional
in the local density approximation [25]. This density-
only functional theory allows for the exploration of high-
temperature situations with almost no limitations. How-
ever, the simulations of mixtures are still limited by
the dissimilar collision frequencies between low and high
atomic number elements. In practice, we observed that
it is difficult to go beyond a few keV for a very asymmet-
ric mixture due to a reduction of the time-step as low as
0.1 a.u. (2.42 10−18 s) to ensure good energy conserva-
tion.

Molecular dynamics gives access to the static and dy-
namic correlations. The most simple correlation function
is the pair distribution function (PDF), which describes
the microscopic structure among the nuclei and gives the
conditional probability g(r) to have two particles at a
distance r with respect to a non-interacting system. In
particle simulations with different species Ni, Nj , ... ,
it is obtained by averaging histograms accumulated on
several snapshots according to

gij(r) =
V

Ni(Nj − δij)

〈
Ni∑
p=1

Nj∑′

q=1

δ(r− (rip − rjq))

〉
,

(2)
where the primed sum excludes q = p if i = j and the
angular brackets denotes an ensemble average. We shall
compare these quantities resulting from OFMD with the
solutions of the MCHNC integral equations using effec-
tive potentials.

The ionic transport coefficients are obtained from an
integration in time of dynamic correlation functions. For
instance, the Green-Kubo formalism relates the self-
diffusion coefficient of a particular ion species, Di, to the
integral of the velocity autocorrelation function (VACF)

Di =
1

3

1

Ni

∫ ∞
0

dt〈
∑
α=1

~viα(0) · ~viα(t)〉. (3)

with ~viα, the velocity of the α-th particle of species i.
The self-diffusion only depends on contributions from the
same particle of the same species. On the other hand,
the mutual diffusion coefficient and viscosity include the
cross-correlation terms between different particles of the
same and of different species.

The mutual diffusion coefficients Dij between species i
and j derive from the Onsager coefficients Λij [24]

Λij =
1

3

1

N

∫ ∞
0

dt〈Vi(0) ·Vj(t)〉, (4)

which in turn depend upon the total species velocity
Vi(t) =

∑
α=1 ~v

i
α(t). A binary system yields only one

mutual diffusion coefficient D12, which is directly related
to the Λ12 Onsager coefficient and number fractions by

D12 = −

[(
x2

x1

)2

+

(
x1

x2

)2

+ 2

]
Λ12. (5)

However, for ternary and higher systems, the relationship
among diffusion and Onsager coefficients becomes more
complicated [24].

Neglecting cross terms in the correlation function, we
can relate the mutual diffusion to the self-diffusion coef-
ficients. The resulting relation is known as the Darken
approximation, which reads [24]

Dij =
DiDj

Dmix
(6)

1

Dmix
=

M∑
i

xi
Di
. (7)

In this formula, the self-diffusion coefficients Di must be
evaluated in the mixture. As shown in the previous study
[24], this approximation is usually valid for high density
and temperature regimes to within better than a factor
of two and many times to within few percent, thus fur-
nishing a convenient framework to interpret diffusion in
multicomponent systems.

The shear viscosity η is computed from the autocor-
relation functions of the stress tensor components Pxy,
Pxz, and Pyz

η =
1

V kBT

∫ ∞
0

〈Pxy(t)Pxy(0)〉 dt. (8)

Pxy(t) =
∑
i

[miẋi(t)ẏi(t) + yi(t)Fix(t)] ,

where the summations run over all the particles, and Fi
is the force acting on particle i, negative of the gradient
of the potential energy surface V (r).

Whereas the determination of the diffusion coefficients
involves the velocities, the viscosity needs in addition a
potential contribution through the forces. In kinetic the-
ory, there is only a velocity contribution since these forces
are neglected at weak coupling. For this reason, the vis-
cosity departs from the kinetic predictions earlier than
the diffusion when the coupling increases.

We have performed OFMD simulations of mixtures H-
X-Ag with X=D, He, Li, C, Na, K, Cr, Cu, and Rb at
100 eV, 200 eV and 400 eV with number fractions xH =
0.4, xX = 0.4, and xAg = 0.2. For each temperature, we
maintain a constant total pressure by varying the mass
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density. For example, for 200 eV, we fix the pressure at
720 Mbar by changing the density from 16.08 g/cm3 for D
to 18.9 g/cm3 for Rb (see Table IV). The simulations con-
tained two hundred (200) atoms with trajectories of 105

time steps of length 0.012 fs. The Fast Fourier Transform
grid consisted of 2563 points. We have also examined the
HCAg mixture in more detail by taking equal parts of H
and C and varying the Ag concentration at a constant
pressure of 720 Mbar, maintained by varying the den-
sity. Similar parameters to those noted above served to
guarantee convergence of the basic static and transport
properties to better than 10%.

III. GLOBAL SEMI-ANALYTIC MODELS

Although OFMD simulations are a few orders of mag-
nitude faster than conventional orbital-based DFT sim-
ulations, some simulations still require large computa-
tional investments to obtain converged quantities. Thus,
developing a global model able to predict instantaneously
transport coefficients becomes desirable.

To this end, we propose the PIJ model, which starts
by introducing a simplified picture of plasma defined
by ionizations and Coulomb couplings, through an iso-
electronic iso-ne assumption.

A. The iso-electronic assumption

To set the ionizations {Qi} for each species i, we im-
pose a constant electronic density in the volume consid-
ered as the superposition of atomic volumes of radii {ai}
Vi =

∑
iNi

4
3πa

3
i . The neutrality of each atomic sphere

of radius ai leads to the simple equations

a1

Q
1/3
1

=
a2

Q
1/3
2

= · · · = a

〈Q〉1/3
, (9)

where 〈Q〉 =
∑
i xiQi is the average charge. The ion-

izations Qi for each species are evaluated at the density
corresponding to the volume ai and at temperature T
(we consider Te = Ti). Using More’s fit of the Thomas-
Fermi finite temperature average ionization [26, 27], and
starting from a1 = a2 = · · · = a, the solution is quickly
reached in a few iterations. This iso-ne assumption is
well known in the opacity community [28].

Fig. 2 illustrates the iso-ne concept for a three compo-
nent mixture. On the left: a non-interacting three com-
ponent mixture with three different increasing atomic
numbers is represented by the colors blue, green and red.
On the right: the iso-ne procedure sets the radii {ai}
and the charge states {Qi} of each species to ensure the
same global average value of the electronic density (light
blue). Radii on the Fig. 2 are exaggerated to show that
by switching the charges on, the interactions then struc-
ture the system.

This concept leads to a steric representation of the
system in terms of big and small ions and explains the

FIG. 2. (Color online) The iso-ne concept. Left: a non-
interacting three component mixture with three different in-
creasing atomic numbers, represented by the colors blue,
green and red. Right: the radii {ai}, and the charge states
{Qi} are chosen to ensure a constant electronic density (light
blue). The dissymmetry of radii is exaggerated for demon-
stration.

caging effect experienced by the small ions constrained by
the big ions as illustrated by the cartoon of Fig. 2. This
caging effect, which is a mixture effect, is responsible for
an extra contribution to the enhancement factor of nu-
clear reactions rates between low atomic number species
[22, 23, 29].

In the weakly coupled regime the iso-ne prescription
is a crude estimate since the neutralizing sphere is the
Debye sphere containing many ions in this regime, not
the Wigner-Seitz sphere of neutral pseudo-atom. A more
physically-sound characterization of the distribution of
charges is given by the Saha equations [30]. Each species
is then represented by several charge states.

B. Coupling parameters in a mixture

1. Effective multi-component plasma

In the same spirit we introduce the concept of effec-
tive one component plasma (EOCP) for pure elements
[31, 32], with an effective ionization inclusive of the elec-
tron screening at short range, we search for an effective
multi-components model that reproduces the structure.
Indeed, a clear evidence was given that the ion-ion in-
teraction at short range is of Coulomb type whereas a
Debye-Hückel form, with the electron screening, is recov-
ered at long range [31]. The generalization of the OCP
to a multicomponents system is known as binary ionic
mixtures (BIM) for two components, and ternary ionic
mixtures (TIM) for three components, and so on.

The previous iso-ne assumption defines a coupling
parameter for each species [33] using the ionic radii {ai}
as characteristic length scales and the charges {Qi} (we
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consider here only self-couplings)

Γ1 =
Q2

1

a1T
(10)

Γ2 =
Q2

2

a2T
(11)

Γ3 =
Q2

3

a3T
. (12)

These coupling parameters are used in the PIJ model.
We consider that the third element is the HZE with

coupling

ΓHZE =
Q2

HZE

aHZET
, (13)

that can be rewritten using Eq. (9) as

ΓHZE =
Q

5/3
HZE 〈Q〉

1/3

aT
. (14)

This notation shows that the coupling parameter of the
HZE comes partly from the charge itself of the consid-
ered species and partly from the surrounding medium
characterized by 〈Q〉. Eq. (14) introduces also the global
quantity a, the Wigner-Seitz radius, which depends only
on the total number of atoms.

The PIJ model also uses a global coupling parameter

Γeff =
∑
i

xiΓi =

〈
Q5/3

〉
〈Q〉1/3

aT
. (15)

2. Corrections to the effective OCP

In previous papers [20, 21], we found that PIJ self-
diffusion coefficients were underestimated for HZE at
low concentration (x → 0). This underestimation cor-
responds to an overestimation of the coupling parameter
of the HZE in the dilute regime. To fix this, instead of

using Q
5/3
HZE 〈Q〉

1/3
for the definition of the coupling of

HZE, we use Q2−α
HZE 〈Q〉

α
where α allows the screening

of the charge QHZE and the transfer of a part of it to
the average plasma 〈Q〉. The value α = 1 provides a
lower coupling ΓHZE, which corrects the underestimated
HZE self-diffusion. To obtain a smooth transition be-
tween the limits x → 0 and x → 1, we can introduce a
linear interpolation α = −2x/3 + 1 with the concentra-
tion x = NHZE/NTot. Here, we use

ΓHZE =
Q2−α

HZE 〈Q〉
α

aT
. (16)

This renormalization is applied for the computation
of all components of self-diffusion to account for dilute
situations when the strong coupling contribution is not
negligible.

C. Multicomponent hyper-netted chain equations

The modeling of the static structure is provided by
the MCHNC procedure which rests on the multicompo-
nent generalization of the integral equations of the theory
of fluids, namely the hyper-netted chain theory (HNC).
The PDF is the central quantity in MCHNC. For single
species, the integral equations approach is based on the
general Ornstein-Zernike (OZ) relation [34, 35]

h(r) = c(r) + n

∫
c (|r− r′|)h(r′)dr′, (17)

in which h(r) = g(r)−1 and c(r) is the direct correlation
function. The OZ relation introduces the direct corre-
lation between two particles separated by r (first term),
and relates this function to the total correlation func-
tion h(r) by accounting for the correlations due to all of
the other pairs (second term). To determine g(r) from a
two-body potential V (r), a closure relation is necessary

g(r) = exp[−βV (r) + h(r)− c(r) +B(r)], (18)

where β = 1/kT . V (r) = Q2/r is the Coulomb poten-
tial, which must not be confused with the self-consistent
potential computed in OFMD for the forces. B(r) is the
bridge function representing three-body and higher or-
der correlations. In the original HNC scheme, B(r) is
neglected. For coupling parameters less than 20, this
correction is marginal and is thus not considered here.

The generalization to systems of M different species
leads to as many OZ relations and closures as pair inter-
actions between species [35, 36]

hij(r) = cij(r) + n

M∑
k=1

xk

∫
cik (|r− r′|)hkj(r′)dr′

gij(r) = exp[−βVij(r) + hij(r)− cij(r) +Bij(r)],(19)

with Vij(r) = QiQj/r the effective potential.
The inputs of the MCHNC calculations are the

charges, concentrations, density, and temperature. The
charges {Qi} are obtained through the iso− ne prescrip-
tion given by Eq. (9).

D. PIJ Model

The PIJ model addresses the calculation of viscos-
ity and diffusion for plasma mixtures of an arbitrarily
large number of components, across Coulomb coupling
regimes, and connects kinetic theory with strongly- cou-
pled plasmas models. In the weakly-coupled regime, it is
based on a relaxation time approximation to cope with
the multi-component issue. For binary mixtures, more
accurate kinetic formulas exist to account for the dis-
tortion of the Maxwellian distribution in the presence of
concentration gradients [37–40]. This can multiply the
mutual diffusion by a factor, named the relaxation cor-
rection, varying from 1 to around 4 according to the mass
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ratios mi/mj and the Coulomb coupling [40]. Unfortu-
nately, no such accurate formulation exists for more than
two components, to our knowledge.

In the strongly-coupled regime, PIJ relies on the prop-
erties of the OCP using mixing laws adapted to each
transport coefficient. The connection between both
regimes is performed, first, by extrapolating the kinetic
formulas into the strongly-coupled regime (with a thresh-
old of the Coulomb logarithm), and, second, by adding
the corrections from the OCP quantities that arise in ex-
cess of the kinetic contribution at large coupling.

The mutual diffusion coefficients can be written

Dij = Dkin
ij + ∆Dex

ij , (20)

with [37, 41, 42]

Dkin
ij = 1.19

xj
mi

kBT

νij
, (21)

where νij is the collision frequency for species i, consid-
ering its collisions with species j, defined below. The
excess correction ∆Dex

ij is computed adapting to excess
quantities the Darken relation of binary mixtures

∆Dex
ij = xi ∆Dex

j + xj ∆Dex
i . (22)

For each self-diffusion Di, we use the OCP formulations
with the previous coupling parameters Γi = Q2

i /aiT

∆Dex
i = DOCP(Γi)−Dkin

OCP(Γi). (23)

The self-diffusion coefficients have the form

Di = Dkin
i + ∆Dex

i , (24)

with

Dkin
i =

1.19

mi

kBT

νi
, (25)

where νi =
∑M
j=1 νij is a collision frequency for species

i, considering its collisions with all the species present in
the plasma.

The shear viscosity becomes

η = ηkin + ∆ηex, (26)

with [41, 42]

ηkin = 0.965

M∑
i=1

nikBT

νi
. (27)

The excess correction uses an equivalent OCP with an
effective coupling parameter for the whole mixture Γeff =∑M
i=1 xi Γi,

∆ηex = ηOCP(Γeff)− ηkin
OCP(Γeff). (28)

References [17, 43, 44] contain more details on the
parametrizations of the OCP properties that are used
in the PIJ model.

At the lowest order of approximation, the collision fre-
quencies are given by a Maxwellian estimate. Using the
Fokker–Planck–Landau (FPL) kinetic equations we find
[42]

νij =
nj
mi

4
√

2π mij Q
2
i Q

2
j e

4 ln Λij

3 (kBT )
3/2

, (29)

where ln Λij is the Coulomb logarithm for binary colli-
sions between species i and j and mij = mimj/(mi+mj)
is the reduced mass. To account for the relaxation cor-
rections in the mixture as well as for pure elements, we
introduced corrections factors to the collision frequencies.
These factors need only be tuned once to calibrate the
PIJ model with respect to the mixtures under study.

For the studied cases of HCAg mixtures, we have ob-
tained good results by multiplying the PIJ collision fre-
quency between H and C by a factor of 0.4, between C
and Ag by a factor 0.4 and between H and Ag by 0.2.
These factors are close to the friction coefficients Alh in-
troduced by Kagan in a Chapman-Enskog calculation for
the binary mixture case [37, 40, 42]. Collecting previous
data for various mixtures of different mass ratio and com-
paring with Kagan’s results (Fig. 1 of ref [37]), suggests
a simple approximate relation for the friction coefficient

Aij = X
−1/3
ij , (30)

where Xij = Aj/Ai is the mass-ratio of a couple
of elements (i, j). We have successfully tested this
parametrization on DLiAg mixtures [24] and on our pre-
vious studies of binary mixtures [20, 21].

E. Hydrodynamics and effective binary mixtures

The PIJ model can handle more than three compo-
nents in a mixture. In these cases, it provides M(M −
1)/2 independent mutual diffusion coefficients Dij with
i, j = 1 . . .M and i 6= j, that appear in the multi-species
Navier-Stokes (NS) equations. Of particular interest are
the continuity equations [39] that we write in the absence
of temperature and pressure gradients as

∂t(ρi) +∇ · (ρiu + Fi) = 0, (31a)

Fi = −ρi
M∑
j=1

Dij ∇xj , (31b)

Dji = Dij , (31c)

ρiDii = −
M∑

j=1; j 6=i

ρj Dji, (31d)

with ρi the mass density of species i, u the mass average
velocity, Fi the diffusive mass flux of species i, and xi
the number density fraction of species i.
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FIG. 3. (Color online) Comparison of all pair correlation
functions obtained by OFMD simulations (symbols) with
MCHNC calculations (solid lines) in a HCAg mixture at
200 eV and 720 Mbar. Self-correlations: gHH: blue circles;
gCC: green diamonds; gAgAg: red squares. Cross correlations:
gHC: black up triangles; gHAg: orange down triangles; gCAg:
indigo left triangles.

Equations (31c) and (31d) imply that, in the case of bi-
nary mixtures, from four coefficients, one gets only one,
D12, while in the case of ternary mixtures, from nine coef-
ficients, the problem reduces to three, D12, D13, and D23

and so on. Comparing the interdiffusion process between
binary and ternary mixtures, the phenomenology is far
more rich and complex in the latter with possible up-
stream diffusion for instance. Adding more species than
in the ternary mixtures does not introduce any physically
new phenomena.

We generally consider microscopic ternary mixtures to
contain three distinct species. However, as is often the
case in applications, two components can form a unique
material, e. g., CH, which is the ablator of ICF capsules.

We here derive a general formula to define the mutual
diffusion of an effective binary mixture starting from the
set of corresponding coefficients of a multicomponent sys-
tem. Assume that the components are labeled in such an
order that the indices i from 1 to L correspond to one
effective species denoted E1 and the other indices from
L+ 1 to M correspond to the other effective species de-
noted E2. They evolved as a whole and keep the same
partition defined by

αi =


xi
X
, if i ∈ E1,

xi
1−X

, if i ∈ E2,

with X =
L∑
j=1

xj . Since the αi are constant coefficients,

they share the same gradient

∇xi =

{
αi∇X, if i ∈ E1,

− αi∇X, if i ∈ E2,

Adding the first continuity equations, from i = 1 to L,
corresponding to the set E1, leads to

∂t(ρ
E1) +∇.(ρE1u + FE1) = 0, (32)

where ρE1 and FE1 are defined by ρE1 =
∑L
i=1 ρi, and

FE1 =
∑L
i=1 Fi. Similar relations are found for the quan-

tities ρE2 and FE2 summing over i from L+1 to M . Now
combining (31b) with the previous relations leads to the
following closure

Fi = −
( ∑
j∈E1

ρiDijαj −
∑
j∈E2

ρiDijαj

)
∇X,

= −ρ
( ∑
j∈E1

yiDijαj −
∑
j∈E2

yiDijαj

)
∇X.

where yi = ρi/ρ are the mass fractions. One recovers the
form used for binary mixture with an effective diffusion
coefficient DHyd

FE1 = −ρDHyd∇X,

where

DHyd =
∑
i∈E1

∑
j∈E1

yiDijαj −
∑
j∈E2

yiDijαj

 . (33)

Eq. (33) gives the hydrodynamical definition of the mu-
tual diffusion between two effective species E1 and E2. It
is to be compared with an empirical binary mixture of av-
erage elements. For example, an equimolar CH mixture
is often treated as an effective material of atomic num-
ber Z=3.5 and atomic mass A=6.5. Is this reduction to
an effective binary mixture ([CH]-Ag) representative of
the full mixture? Is the integrity of the initial compound
of CH conserved when microscopic diffusion affects dif-
ferently its components (due to asymmetry of mass and
charge, leading to extremely different coupling and be-
havior with respect to diffusion) ? The PIJ model, which
can handle mixtures with all components or with effective
components, can be used to address these questions.

Eq. (33) is given explicitly in Appendix C for three and
four components by (C1) and (C2), respectively.

IV. STRUCTURE

Using the MCHNC approach with Coulomb interac-
tions, we test the ability of the iso-ne prescription at
giving adequate ionizations to predict the static structure
for various mixtures H-X-Ag with X=D, He, Li, C, Na, K,
Cr, Cu and Rb at 200 eV and 400 eV. The proportions
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FIG. 4. (Color online) Pair distribution functions for various H-X-Ag mixtures (X=D, He, Li, C, Na, K, Cr, Cu and Rb) at
200 eV and 720 Mbar(a) and 400 eV and 1520 Mbar (b) and for proportions (0.4: 0.4: 0.2) in number. Symbols for OFMD
simulations are: blue circles for gHH; green diamonds for gXX and red squares for gAgAg. Corresponding solid lines are the
MCHNC calculations using the iso-ne rule.
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for each species are (0.4:0.4:0.2) in number. Tables IV
and V give the total density, the Wigner-Seitz radius a,
the ionic radii, the charges, and the coupling parameters
under the iso-ne prescription.

To mimic a mixing layer, the different mixtures are
held at the same pressure for each temperature by ad-
justing the density of the mixture. Since the pressure in
this temperature regime is dominated by the electronic
contribution, this constraint is very close to the iso-ne

constraint. Therefore, the ionizations and the coupling
parameters of H and Ag do not change significantly when
substituting the middle element (see Table IV). Hydrogen
is clearly in the kinetic regime since its coupling parame-
ter is smaller than unity and decreases by almost a factor
of two when the temperature doubles from 200 to 400 eV
which means that H is fully ionized. In contrast, the
coupling of Ag, which is larger than 10, does not change
much with the temperature, due to the Γ-plateau, where
ionization (squared) is balanced by the temperature.

A. Correlations

We recall that for M species there are M(M + 1)/2
PDFs; M self correlations and M(M − 1)/2 cross cor-
relations. For a HXAg mixture we have three self PDF
(gH-H, gX-X, gAg-Ag ) and three cross PDF (gH-X, gX-Ag

and gH-Ag ). We show in Fig. 3 all correlations obtained
with an OFMD simulation of a ternary mixture of HCAg
at 200 eV. The symbols used throughout the paper for self
correlations are: blue circles for gHH; green diamonds for
gCC and red squares for gAgAg. For cross correlations, we
use black up triangles for gHC; orange down triangles for
gHAg and indigo left triangles for gCAg. The agreement
with the MCHNC calculations (solid lines) is excellent
for all correlations.

In the following we will ignore the cross-correlations in
the figures for the sake of clarity.

B. Global comparison

Mixtures shown in Fig. 4(a) for 200 eV span all possi-
ble combinations of the MZE. HDAg shows no distinction
between H and D, as expected. HCAg displays an evenly
structured mixture, and HRbAg is a very asymmetric
mixture with PDFs that peak near the same distance.
The MCHNC predicts PDFs in close agreement with the
simulations for all configurations. A similar agreement is
obtained for 400 eV as shown in Fig. 4b. Interestingly
for all mixtures, the position of the Ag peak appears rel-
atively independent of temperature. This is a manifes-
tation of the ”Γ-plateau” for which the reduced density,
ρc = ρ/(ZA), equals 0.0033, being less than 0.0045 [15].

As already observed for binary mixtures, the struc-
ture at both temperatures confirms the coexistence of a
purely kinetic species with an almost flat PDF (hydrogen

in blue), with a strongly coupled species, characterized
by a well defined peak (Ag in red).

The structure of mixtures with neighboring light com-
ponents such as HDAg, HHeAg, HLiAg or neighboring
heavy components such as HCuAg or HRbAg raises the
question of replacing two components by a single effec-
tive component. This question will be addressed later in
Sec. III E.

C. Detailed analysis of HCAg structure

We detail in Fig. 5 the structure of the HCAg mix-
ture at 200 eV to emphasize the efficacy of the iso-ne

approach coupled with the MCHNC calculation. Circles
are for the OFMD simulation of the whole mixture with
symbols in blue for hydrogen, green for carbon, and red
for silver. We recall in Fig. 5a, that MCHNC with the
charges {Qi} given by the iso-ne prescription accurately
reproduces the structure of the mixture. Now, instead of
using the charges, we use the coupling parameters {Γi},
given in Table IV, to try to establish for each component
a connection with the OCP structure at the correspond-
ing coupling. We observe in Fig. 5b that the OCP PDF
(solid red line) predicts a much higher peak of Ag than
OFMD simulations, and the OCP PDFs for hydrogen
(solid blue line) and carbon (solid green line) fall well
below the corresponding OFMD data. In other words,
hydrogen and carbon are compressed and silver depleted.
If we use the screening correction given by Eq. (16) with
xHZE = 0.2, giving α = 0.8667 and ΓHZE = 8.262 (in-
stead of 14.7), we restore the intensity of the gAgAg peak,
but we do not get the correct excluded volume. The
same conclusions for the impossibility of obtaining the
structure from one-component theories could be drawn
for hydrogen and carbon. A multicomponent approach is
definitively necessary to accurately reproduce the struc-
ture of the mixture.

V. TRANSPORT COEFFICIENTS

The iso-ne prescription, tested with respect to static
structure in Sec. IV, is now used in the PIJ model for
transport coefficients.

OFMD simulations of the HCAg mixture with a
varying concentration in HZE (Ag) ((1-x)/2:(1-x)/2:x)
were performed at temperatures of 100, 200 and 400 eV
[24]. The mutual diffusion coefficients were deduced from
self-diffusion coefficients using Darken approximations.
The charges and coupling parameters predicted by the
iso-ne prescription are reported in Table VI for 200 eV.
For a given temperature, the ionizations and the ionic
radii are barely affected by the concentration in the
heavy element since the total density is adjusted to keep
the pressure constant, as in Sec. IV.
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FIG. 5. (Color online) Same symbols as in Fig. 4. a): Pair dis-
tribution functions for a HCAg mixture. Symbols are OFMD
simulations and solid lines MCHNC calculation using the iso-
ne rule. b): comparison of OFMD results (symbols) with the
OCP structure (solid lines) using coupling parameters given
in Table IV (ΓHH = 0.13, ΓCC = 1.88 and ΓAgAg = 14.7) and
with the screened formula (16) (red dashed line).

A. Viscosity

In Fig. 6, the OFMD results for viscosity are compared
with PIJ estimations as a function of Ag atomic fraction
xAg for 100, 200, and 400 eV. The agreement is fairly
good with deviations less than 10% at 100 eV, 20% at
200 eV, and 25% at 400 eV.

The excess contributions correcting the kinetic calcu-
lation of PIJ at strong coupling with OCP-related es-
timations are shown as dashed lines. Theses corrections
represent the potential contributions to the viscosity aris-
ing from the autocorrelation of the stress tensor, Eq. (8).
In the binary system of CH, when xAg = 0, these cor-
rections amount to 60% of the viscosity at 100 eV, 50%

at 200 eV, but only 20% at 400 eV. As the Ag concentra-
tion increases, these corrections contribute more to the
viscosity and become dominant for pure silver.

This balance between kinetic and potential contribu-
tions explains why the viscosity increases with temper-
ature more strongly in the binary CH mixture than in
the pure Ag system. The combined effect of temperature
and concentration variations gives rise to a reduction of
viscosity by an order of magnitude when xAg varies from
0 to 1 at 400 eV.

For the sake of comparison, we have also computed
with PIJ the viscosity of pure hydrogen (without C and
Ag) at the same pressure and temperature. We obtain
155, 680, and 2630 mPa s for 100, 200, and 400 eV (blue
bars in Fig. 6), well beyond the corresponding values of
hydrogen mixed with carbon. This explains the relatively
smooth reduction of the viscosity with an increasing addi-
tion of silver in CH. The strongest effect is already caused
by the CH mixing itself.

B. Self diffusion

In Fig. 7, the OFMD results for self-diffusion coeffi-
cients are compared with PIJ estimations as a function
of Ag atomic fraction xAg for 100, 200, and 400 eV. The
agreement is fairly good with deviations less than 20-
30%. The dashed lines represent the excess OCP-related
contributions to the PIJ calculations as for Fig. 6. These
contributions are dominant for the C and Ag self diffu-
sions in all cases, and negligible for H self diffusion except
at 100 eV where they account for 40-60%.

To better understand the phenomenon at work, we de-
tail the different situations corresponding to the same
pressure and temperature.

We first consider pure hydrogen. In the lack of carbon
and silver, a PIJ estimation of the self diffusion of hydro-
gen gives 1.4, 2.9, and 13 cm2/s at respectively 100, 200
and 400 eV (tick blue segment on the y-axis).

Second, in a binary mixture of hydrogen and carbon,
the hydrogen self diffusion is reduced by the presence of
50% of carbon to 0.71, 1.8, and 5.6 cm2/s for correspond-
ing temperatures.

Third, in the ternary mixture of equimolar carbon-
hydrogen mixture with increasing proportion of a heavy
material, the self diffusion of hydrogen and carbon are
continuously reduced by the amount of silver.

C. Mutual diffusion

In Fig. 8, the OFMD results for mutual diffusion are
compared with PIJ estimations as a function of Ag con-
centration xAg for 100, 200 and 400 eV. The agreement
is satisfying with deviations less than around 20-30%,
except at low concentration of Ag where DHAg is overes-
timated by PIJ by a factor of 2.
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The simplest case to interpret is the CAg mutual dif-
fusion, because in this case, H can be neglected and the
mixture reduced to a binary CAg mixture, with a vary-
ing proportion of Ag. We have studied similar cases
[20], and we recognize the behavior of the mutual diffu-
sion, approximately interpolating between the Ag and C
self-diffusion coefficients (shown by corresponding dashed
lines). Limits are not exact since we have neglected H,
but PIJ recovers this ”Z shaped” behavior very precisely.
Since the self-diffusions DC and DAg are dominated by
the OCP contribution (dashed lines in Fig. 7), it is not
astonishing to recover the Darken relations.

The mutual diffusion between H and C (solid blue line)
increases also with the Ag concentration (blue circles),
but is almost always bigger than corresponding hydrogen
self-diffusion in the mixture (dashed blue line). This is
at variance with the usual Darken relation in binary mix-
tures. The reformulation of the Darken approximation in
multicomponent mixtures given in the Appendix by (A7)
clearly shows that if DAg is much smaller than DC, we
always obtain a HC mutual diffusion higher than H and
C self diffusion (in the mixture). Note that the mutual
diffusion between hydrogen and carbon at any concen-
tration always stays below pure hydrogen self diffusion
in the same conditions of temperature and pressure (bar
on y-axis).

The behavior of the HAg mutual diffusion coefficient
with Ag concentration, which follows the multicompo-
nent Darken relation, is also reproduced by the kinetic
contribution that dominates the PIJ estimation.

D. Effective binary mixture

We address next the question of finding an effective
binary mixture for a multicomponent mixture (M ≥ 3).
For a H-C-Ag mixture it seems natural to consider a sin-
gle [CH] component with atomic number 3.5 and an ef-
fective mass of 6.5 for a 50% composition. The mutual
diffusion of the empirical mixture (solid black line), ob-
tained by using PIJ with two components: [CH] and Ag,
is plotted in Fig. 9 (a). It interpolates between the self
diffusion of Ag (red solid line) at vanishing concentration
and the [HC] self diffusion (blue dashed line) for vanish-
ing [HC] concentration, in agreement with the Darken
relation for the effective [HC]-Ag mixture.

We consider the whole H-C-Ag mixture and compute
all mutual diffusion coefficients as shown in Fig. 9 (b).
The OFMD results are represented by black up triangles
for HC; orange down triangles for HAg, and magenta
left triangles for CAg. Solid lines of corresponding col-
ors are the PIJ evaluations. An effective diffusion coeffi-
cient in the hydrodynamic limit is defined in subsection
III E, whose explicit formulation for three components is
given by (C1) in the Appendix (hydrodynamical mix).
The hydrodynamical mix can be obtained either from
the OFMD simulation results (solid black triangles), or
by PIJ (black dashed line). Both calculations are in ex-
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FIG. 9. (Color online) Evaluations of self and mutual dif-
fusion coefficients of a H-C-Ag mixture at 200 eV. (a) Self
and mutual diffusion coefficients in the empirical mix. Blue
dashed line: self diffusion of [CH], red solid line: self diffusion
of Ag, and heavy solid black line: mutual diffusion DEmp of
the empirical binary mixture [CH]-Ag. (b) Mutual diffusion
coefficients in the ternary H-C-Ag mixture. OFMD results
(black up triangles: HC; orange down triangles: HAg, and
magenta left triangles CAg). Lines of corresponding colors
are the PIJ evaluations. In dashed black, the hydrodynami-
cal mix DHyd when computed with PIJ (dashed line), or with
OFMD data (solid black triangles). The solid black line is the
previous DEmp of Fig. 9(a) for comparison.

cellent agreement. This evaluation is a few times higher
than the empirical binary mixture and raises questions as
to the validity of the empirical mix commonly used. The
hydrodynamical mix yields characteristic times of mixing
much lower than empirical mixing evaluations.
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VI. ICF MIXTURES

The PIJ model is now used to predict characteris-
tic mixing times or lengths related to ICF situations.
One must distinguish evaluations of mixing times of two
neighboring materials (CH with DT, Au with CH) lead-
ing to an homogeneous microscopic mixing, and evalu-
ations of particle escape in an ICF target (Fig.1) from
a material in the case of ”separated reactants” experi-
ments. In the first case we need the mutual diffusion
evaluations and in the second case the self diffusion co-
efficient of the escaping particle.

A. Mix in hohlraums and capsules

We first consider the mixing of CH ablator with helium
atoms of the gas filling the hohlraum. Densities are of
the order of a few 10−3 g/cm

3
for CH and 10−4 g/cm

3

for He. Temperatures range from a few hundreds eV to
a few keV. In these conditions, helium is fully ionized
and weakly coupled, while CH is ionized 3 times and
moderately coupled. The He-Au mixing is more asym-
metric with gold ionized 40-50 times and thus strongly
coupled (Γ ' 5). Another interesting mixture is CH ab-
lator mixed with DT inside the capsule.

We shall give order-of-magnitude estimates for these
mixing situations using scaling arguments. With a mu-

TABLE II. Mutual diffusion and mixing times for empiri-
cal binary mixture DEmp and effective hydrodynamical binary
mixtures DHyd for 3 and 4 components mixtures. The aver-
aged effective component is shown by brackets : [CH], [DT].
Note the change of time unit for the [CH][DT] and [CH]He
mixtures which is in ps. x is the proportion of Au in the
Au mixture, of [DT] in the [CH]-[DT] mixture and He in the
[CH]-He mixture.

[CH]Au

x T ρ Q[CH] QAu DEmp τ DHyd τ eff

% eV g/cm3 cm2/s ns cm2/s ns
10 100 5 2.9 14 3.0 10−2 330 8.7 10−2 115
10 200 5 3.2 21 5.4 10−2 185 15. 10−2 66
10 500 5 3.4 37 0.12 83 0.45 22
10 1000 5 3.5 50 0.21 48 1.3 7.7
10 1000 10−2 3.5 64 32 0.31 379 0.03

[CH][DT]

x T ρ Q[CH] Q[DT] DEmp τ DHyd τ eff

% eV g/cm3 cm2/s ps cm2/s ps
10 1000 20 3.4 1 32 310 37 270
50 1000 20 3.4 1 22 450 20 500

[CH]He

x T ρ Q[CH] QHe DEmp τ DHyd τ eff

% eV g/cm3 cm2/s ps cm2/s ps
50 200 5 10−3 3.5 2 39 260 163 60
50 1000 5 10−3 3.5 2 1.1 103 9 5.4 103 1.9

tual diffusion coefficient D, a material of L=1µm of
thickness will be mixed in a characteristic time τ '
L2/D = 10/D(cm2/s) ns (1 cm2/s = 0.1µm2/ns). A
mutual diffusion of 10−1 cm2/s means that mixing will
occur in 100 ns, which is of the same order as observed
in hydrodynamics calculations. Table II gives orders of
magnitude of mixing time for a one micron layer of CH.
One can see that the mixing between CH and gold is
rather slow with a characteristic time τ longer than hy-
drodynamic timescales. Inside the capsule, the mixing
between CH and DT fuel is much faster for densities
of order of 20 g/cm

3
and temperatures of 1 keV. Mixing

times are of the order of tenths of ns, which means that
mixing must be considered during implosions. Finally, at
the high temperatures and the very low densities in the
hohlraum, the mixing between CH and the gas filling the
capsule is very fast, with characteristic times of order of
tens of picosecond.

Table II gives the diffusion coefficients computed con-
sidering the empirical average component approach de-
noted DEmp for different mixtures and those obtained
by using Eq. (33) denoted DHyd. For the three mixtures
[CH]Au, [CH][DT] and [CH]He, the diffusion coefficients
are computed with PIJ, either by considering the empir-
ical binary mixture for DEmp, or, by doing the explicit
multicomponent mixture with PIJ and applying Eq. (33)
for DHyd. One can see that these two estimations are al-
ways of the same order of magnitude (less than a factor
4 of difference). However, when looking closer, the dif-
ferences are much larger in the kinetic regime (low den-
sity and/or high temperature) reaching factors between 2
and 4. Interestingly, the two evaluations are much closer
in the strongly-coupled regime (high density and/or low
temperature), where the faster convergence towards the
hydrodynamic limit for coupled systems can be invoked
[35]. Consequently, while it is tempting to simplify the
mixture description by considering an average effective
material, this should be done carefully depending on the
level of accuracy required. For order of magnitude esti-
mates, this reduction is valid. On the other hand, it is
not advisable if accurate results are needed, especially in
the kinetic regime.

B. Separated reactants experiments

Dedicated experiments have been designed to study
microscopic mixing in ICF experiments. Among them,
the measurement of DT fusion reaction rates with sep-
arated reactants [6, 7] have shown the dominant role of
the microscopic mixing over turbulent mixing. The in-
terpretation of these experiments rests on an evaluation
of deuterium diffusion both in the CD layer and in the
HT gas. In Ref. [7], deuterium must first diffuse through
the CD in the shell at low temperature (1.5 keV) and,
next, mix with HT inside the capsule at much higher
temperature (4 keV).

The DC layer in the shell is a binary mixture, but
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TABLE III. Deuterium diffusivity in µm2/ns=10 cm2/s in the
DC mixture and in the DHT mixture. DEmp is the evalua-
tion in the empirical effective binary mixture and DHyd the
hydrodynamic effective binary mixture.

Mixture x T ρ DZ[7] DEmp DHyd

% eV g/cm3 µm2/ns µm2/ns µm2/ns

D C 50 1500 1 5.1 15 15
D H T 50 4000 0.5 1590 1080 1100

deuterium in the H-T gas of the capsule is a three-
components mixture (D-H-T). Zylstra uses the empirical
mixture of H and T to form an average element ([HT]:
Z=1, A=2) and applies Kagan’s kinetic formulation [37]
to the effective binary mixture (D-[HT]). Note that, this
effective mixture is one-component since deuterium and
[HT] have the same atomic and mass numbers.

When used with Zylstra’s prescriptions with the
Coulomb logarithm set to 6, for collisions with C only,
and for relaxation coefficients set to 1, the PIJ model ex-
actly reproduces the diffusion constants. Predicting with
PIJ the Coulomb logarithm, bounded by 1.65, and ac-
counting for collisions between all species we get 3 times
higher diffusivity for deuterium in CD with DEmp =
DHyd = 15µm2/ns. In the hotter HT mixture, deu-
terium’s diffusion given by the empirical binary mixture
DEmp = 1080µm2/ns is very close to the hydrodynami-
cal prescription DHyd = 1100µm2/ns, both being a little
smaller than Zylstra’s estimation DZ = 1590µm2/ns.

VII. CONCLUSION

We studied three-component plasma mixtures in the
warm dense regime (100-400 eV). We used results from
orbital-free molecular dynamics simulations to get real-
istic structural and transport data. We set a procedure
to compute the ionizations for each species establishing
an iso-electronic equilibrium between species. The ion
charges are then used in a multi-components HNC pro-
cedure which accurately reproduces the structure of the
mixture and in a global formulation of the transport co-
efficients (PIJ) that successfully predict transport coef-
ficients such as self-diffusion, mutual diffusion and vis-
cosity. The gathering of similar species into an effective
binary mixture is also tested.

We finally apply our global model to situations encoun-
tered in recent ICF experiments. The PIJ prediction of
diffusivity gives credit to the important role it may play
in the mixing of CH ablator with DT fuel as well as with
H/He gas filling the hohlraum. The time scales of diffu-
sion are comparable to those derived with Kagan’s for-
mulation [37].
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Appendix A: Multicomponent mutual diffusion in
the Darken approximation

As shown by the previous study [24], the Darken ap-
proximation is valid to within a few percent in most cases
and furnishes a convenient framework to understand mul-
ticomponent diffusion. Let us recall that this approxima-
tion neglects cross terms in the corresponding correlation
functions. The agreement with a direct calculation is gen-
erally very good but must be checked by numerical sim-
ulations. The N-components formulation of the Darken
approximation for mutual diffusion is [24]

Dij =
DiDj

Dmix
(A1)

1

Dmix
=

N∑
i

xi
Di
. (A2)

In this formula, the self-diffusion coefficients Di must be
evaluated in the mixture. They are noted Dj for a pure

element, D
(2)
j for the self diffusion of element j in a binary

mixture, D
(3)
j in a ternary mixture etc.

Consider the mutual diffusion between two compo-

nents 1 and 2 in a binary mixture, quoted D
(2)
12 . The

Darken formula is

1

Dmix
=

x1

D
(2)
1

+
x2

D
(2)
2

(A3)

=
x1D

(2)
2 + x2D

(2)
1

D
(2)
1 D

(2)
2

,

which gives the usual well-known Darken formula for bi-
nary mixtures

D
(2)
12 = x1D

(2)
2 + x2D

(2)
1 . (A4)

For 3 components we can rewrite Eq. (A1) and (A2)

D
(3)
12 = x1D

(3)
2 + x2D

(3)
1 + x3

D
(3)
1 D

(3)
2

D
(3)
3

(A5)

= D
(3)
12 + x3

D
(3)
1 D

(3)
2

D
(3)
3

(A6)

Note that D
(2)
12 is different from D

(3)
12 since the self dif-

fusion coefficients are respectively taken in the binary
and in the ternary mixture. Omitting the superscript in
Eq. (A6), we end up with a relation

D12 = D12 + x3
D1D2

D3
, (A7)

with all quantities taken in the actual mixture. Eq. (A7)
shows how the mutual diffusion between two components
(in the whole mixture) is modified by the adjunction of
a third one. At high concentration in the heavy element
(x1, x2 → 0 and x3 → 1), one get a mutual diffusion D12

bigger than D1 if D3 is smaller than D2, which is always
the case if the third element is a HZE.

Appendix B: Ionizations and couplings

Mixture, total density, Wigner-Seitz radius a, ionic
radii a1, a2, a3, charges Q1, Q2, Q3 and coupling pa-
rameters Γ1, Γ2, Γ3 under the iso-ne prescription for a
HXAg mixtures (0.4:0.4:0.2) with X=D, He, Li, C, Na,
K, Cr, Cu and Rb at 200 (Table IV) and 400 eV (Ta-
ble V).
Iso-ne prescription for a HCAg mixture (x:x:1 − 2x)

versus x at 200 eV (Table VI).

Appendix C: Hydrodynamical reduction

We give the explicit formulation of Eq. (33) for a
ternary mixture turned in a 2+1 binary mixture and
a 4-component mixture turned into a 2+2 binary mix-
ture. It is easy to check that for for a binary mixture
DHyd = D12.

1. 3-component mixture

In a 3-component mixture (e.g. H-C-Au=1-2-3), we
gather C and H into an effective [CH] element to compute
the penetration of Au into CH. The mixture [CH]-Au
defines E1 = 1, 2 and E2 = 3. If {xi} are the number
fractions we have yi = ρi/ρ = xi ∗ Ai/ 〈A〉, where 〈A〉 =∑
xiAi and α1 = α2 = 0.5 and α3 = 1. Given the

mutual diffusion coefficients Dij computed with PIJ in
the 3-component mixture, the effective diffusion between
[CH] and Au is given by

DHyd = (α1y3 + α3y1)D13 + (α3y2 + α2y3)D23. (C1)

The coefficient D12 does not appear due to sum rules.

2. 4-component mixture

A D-T-H-C (1-2-3-4) mixture is reduced to a binary
[DT]-[CH]. Dij mutual diffusion coefficients are com-
puted with PIJ in the 4-component mixture

DHyd = (α1y3 + α3y1)D13 + (α3y2 + α2y3)D23

+ (α4y1 + α1y4)D14 + (α4y2 + α2y4)D24.

(C2)

3. Glossary

– BIM: binary ionic mixtures;

– DFT; density functional theory;

– DNS: direct numerical simulation;

– FPL: Fokker-Plank Landau;
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– HNC: hyper-netted chain;

– HZE: high Z element (W, Ag, Au,...);

– ICF: inertial confinement fusion;

– LZE: low Z element (H, He, ..);

– MZE: medium Z element (C,Al ...);

– MCHNC: multi-components hyper-netted chain;

– NS: Navier-Stokes;

– OCP: one component plasma;

– OFMD: orbital free molecular dynamics;

– OZ: Ornstein-Zernicke relation;

– PDF: pair distribution function;

– PIJ: pseudo-atom in Jellium;

– TIM: ternary ionic mixtures;

– VACF: velocity autocorrelation function.
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TABLE IV. Iso-ne predictions for the global density in g/cm3, the Wigner-Seitz radius, the ionic radii (in atomic units), the
charges and couplings of each species for various mixtures (0.4:0.4:0.2) at 200 eV and a constant pressure of 720 Mbar.

Mix ρTot a aH aX aAg QH QX QAg ΓHH ΓXX ΓAgAg

HDAg 16.08 1.56 0.97 0.97 2.49 0.95 0.95 16.28 0.128 0.128 14.50
HHeAg 15.52 1.56 0.96 1.19 2.47 0.95 1.83 16.27 0.128 0.382 14.56
HLiAg 15.36 1.63 0.96 1.35 2.46 0.95 2.64 16.26 0.129 0.707 14.60
HCAg 14.45 1.70 0.95 1.62 2.44 0.95 4.74 16.24 0.130 1.885 14.69
HNaAg 14.46 1.79 0.94 1.86 2.42 0.95 7.39 16.22 0.131 3.987 14.78
HKAg 15.07 1.88 0.93 2.07 2.41 0.95 10.38 16.21 0.132 7.075 14.86
HCrAg 16.11 1.92 0.93 2.16 2.40 0.95 11.80 16.20 0.132 8.779 14.89
HCuAg 16.97 1.95 0.93 2.22 2.39 0.95 13.00 16.20 0.132 10.33 14.92
HRbAg 18.90 2.00 0.93 2.31 2.39 0.95 14.59 16.20 0.132 12.55 14.95

TABLE V. Same as Table IV at 400 eV and a constant pressure of 1520 Mbar.

Mix ρTot a aH aX aAg QH QX QAg ΓHH ΓXX ΓAgAg

HDAg 13.83 1.64 0.93 0.93 2.66 0.98 0.98 23.17 0.070 0.070 13.72
HHeAg 13.50 1.67 0.92 1.16 2.65 0.98 1.92 23.15 0.070 0.216 13.75
HLiAg 13.45 1.70 0.92 1.31 2.65 0.98 2.83 23.14 0.070 0.414 13.77
HCAg 12.71 1.78 0.92 1.62 2.63 0.98 5.36 23.11 0.071 1.21 13.81
HNaAg 12.56 1.88 0.91 1.91 2.61 0.98 8.98 23.07 0.071 2.87 13.86
HKAg 12.76 1.99 0.90 2.17 2.60 0.98 13.50 23.04 0.072 5.71 13.91
HCrAg 13.45 2.04 0.90 2.28 2.59 0.98 15.75 23.02 0.072 7.40 13.93
HCuAg 14.01 2.08 0.90 2.37 2.58 0.98 17.70 23.02 0.072 9.00 13.95
HRbAg 15.38 2.14 0.90 2.47 2.58 0.98 20.40 23.00 0.072 11.36 13.97

TABLE VI. Same as Table IV for an equimolar mixture of H and C with a varying proportion of silver at 200 eV and a constant
pressure of 720 Mbar

%Ag ρTot a aH aC aAg QH QC QAg ΓHH ΓCC ΓAgAg

0.00 5.95 1.43 0.99 1.70 - 0.95 4.77 - 0.13 1.83 -
0.05 9.01 1.51 0.97 1.67 2.51 0.95 4.76 16.3 0.13 1.85 14.4
0.10 11.29 1.58 0.96 1.65 2.48 0.95 4.75 16.3 0.13 1.86 14.5
0.20 14.44 1.70 0.95 1.62 2.44 0.95 4.74 16.2 0.13 1.88 14.7
0.25 15.58 1.76 0.94 1.61 2.43 0.95 4.73 16.2 0.13 1.89 14.8
0.50 19.10 2.00 0.93 1.58 2.39 0.95 4.72 16.2 0.13 1.92 14.9
0.75 20.93 2.19 0.92 1.57 2.37 0.95 4.72 16.2 0.13 1.93 15.0
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