
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Shear-driven flow of athermal, frictionless, spherocylinder
suspensions in two dimensions: Spatial structure and

correlations
Theodore A. Marschall and S. Teitel

Phys. Rev. E 101, 032907 — Published 18 March 2020
DOI: 10.1103/PhysRevE.101.032907

http://dx.doi.org/10.1103/PhysRevE.101.032907


Shear-Driven Flow of Athermal, Frictionless, Spherocylinder Suspensions in Two
Dimensions: Spatial Structure and Correlations

Theodore A. Marschall1 and S. Teitel1

1Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627
(Dated: February 28, 2020)

We use numerical simulations to study the flow of athermal, frictionless, soft-core two dimensional
spherocylinders driven by a uniform steady-state simple shear applied at a fixed volume and a fixed
finite strain rate γ̇. Energy dissipation is via a viscous drag with respect to a uniformly sheared
host fluid, giving a simple model for flow in a non-Brownian suspension with Newtonian rheology.
We study the resulting spatial structure of the sheared system, and compute correlation functions
of the velocity, the particle density, the nematic order parameter, and the particle angular velocity.
Correlations of density, nematic order, and angular velocity are shown to be short ranged both
below and above jamming. We compare a system of size-bidisperse particles with a system of size-
monodisperse particles, and argue how differences in spatial order as the packing increases leads to
differences in the global nematic order parameter. We consider the effect of shearing on initially well
ordered configurations, and show that in many cases the shearing acts to destroy the order, leading
to the same steady-state ensemble as found when starting from random initial configurations.

I. INTRODUCTION

In a system of athermal granular particles with only
repuslive contact interactions, as the packing fraction of
particles φ increases, the system undergoes a jamming
transition [1, 2] at a critical φJ . For φ < φJ the system
behaves similar to a liquid, while for φ > φJ the system
behaves like a rigid but disordered solid. One way to
probe the jamming transition is through the application
of a simple shear deformation to the system. For an infi-
nite system in the “thermodynamic limit,” if one applies
a simple shear stress σ no matter how small, then if the
system is below φJ the system responds with a simple
shear flow, with a velocity profile that varies linearly in
the direction transverse to the flow. Above φJ , the appli-
cation of a small shear stress causes the system to have
an elastic shear distortion determined by the finite shear
modulus of the solid phase; the system does not flow.
However, if σ exceeds a critical yield stress σ0, then plas-
tic deformations cause the solid to flow. The point where
this yield stress σ0(φ) vanishes upon decreasing φ then
determines the shear-driven jamming transition φJ [3–5].
For frictionless particles, such as those considered in this
work, σ0 vanishes continuously [3, 4] as φ → φJ from
above.

Many numerical studies of the jamming transition, and
granular materials more generally, have used spherically
shaped particles for simplicity. It is therefore interest-
ing to ask how behavior is modified if the particles have
shapes with a lower rotational symmetry [6]. In a recent
work [7] we considered the simple shear-driven jamming
of a suspension of athermal, bidisperse, overdamped, fric-
tionless, spherocylinders in two dimensions (2D), uni-
formly sheared at a fixed strain rate γ̇. In that work
we considered the global rheology of the system, investi-
gating how pressure, deviatoric shear stress, and macro-
scopic friction vary with particle packing fraction φ, shear
strain rate γ̇, and particle asphericity α. In a subsequent

work [8] we focused on the rotational motion and ne-
matic orientational ordering of spherocylinders in simple
shear flow, arguing for a crossover in behavior as the
particle packing fraction increased. At small packings
φ, the particle rotations are single-particle-like, though
perturbed by inter-particle collisions. At larger φ, ap-
proaching and going above jamming, the geometry of the
dense packings inhibits particle rotations, which become
a random Poisson-like process. This crossover leads to a
non-monotonic behavior of the average particle angular
velocity 〈θ̇i〉/γ̇, and the magnitude of the nematic or-
dering S2, as φ increases. We also argued that nematic
orientational ordering was a consequence of the shearing
acting like an ordering field, rather than due to long-
range cooperative behavior among the particles.

In the present work we continue our studies of this
2D spherocylinder model, but now concentrating on the
spatial structure of the sheared system, and the spatial
correlations of various quantities, including the particle
density, nematic order parameter, and angular velocity.
We confirm the assertion in [8], that there is no long-
range cooperative behavior causing the finite nematic or-
dering, by showing that correlations of the nematic order
parameter are short-ranged. By comparing the behav-
ior of a size-bidisperse system of particles with a size-
monodisperse system, and finding that the monodisperse
system has a greater local spatial ordering, we find fur-
ther evidence for our claim in [8] that at large φ it is the
specific geometry of the dense packing that determines
particle rotations and nematic ordering.

The rest of this paper is organized as follows. In Sec. II
we discuss our model and simulation methods. In Sec. III
we present our results for a size-bidisperse system of par-
ticles. We consider both the case of moderately elongated
spherocylinders with α = 4, as well as nearly circular
spherocylinders with α = 0.01. In Sec. IV we present our
results for a size-monodisperse system of particles, con-
sidering only the case of elongated particles with α = 4.
In Sec. V we consider what happens when one starts the
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shearing from an initially well ordered state, as opposed
to the random initial states considered in the rest of our
work. We find that in many cases, the sheared steady-
state ensemble becomes independent of the initial con-
figuration after sufficiently long shearing. In Sec. VI we
summarize our conclusions.

II. MODEL AND SIMULATION METHOD

Our model is intended to describe a system of particles
in a suspending host medium, rather than a dry granular
material. Dissipation is taken to be due to a viscous drag
between the particles and the host medium, rather than
due to inelastic particle collisions, and the resulting rhe-
ology in the dilute phase is Newtonian. As this work is
a continuation of our prior work on this system, the de-
scription of the model presented here is abbreviated. We
refer the reader to our earlier works [7, 8] for a discussion
of the broader context of, and motivation for, our model,
a more complete list of references, and more details of
the derivation of our equations of motion.

We consider a two dimensional system of N , athermal,
frictionless spherocylinders, consisting of a rectangle with
two semi-circular end caps, as illustrated in Fig. 1. The
half-length of the rectangle of particle i is Ai, the radius
is Ri, and we define the asphericity αi as,

αi = Ai/Ri (1)

so that α = 0 is a pure circular particle. The “spine”
of the spherocylinder is the axis of length 2Ai that goes
down the center of the rectangle. For every point on
the perimeter of the spherocylinder, the shortest distance
from the spine is Ri. The center of mass of the particle
is ri and the angle θi denotes the orientation of the spine
with respect to the flow direction x̂. Our system box has
lengths Lx and Ly in the x̂ and ŷ directions, respectively.
We will in general take Lx = Ly ≡ L unless otherwise
noted. If Ai is the area of spherocylinder i, the packing
fraction φ is,

φ =
1

L2

N∑
i=1

Ai. (2)

All particles in our systems are taken to have an equal
asphericity α. In Sec. III we will consider a system of
particles that are bidisperse in size, with equal numbers
of small and big particles with length scales in the ratio
Rb/Rs = 1.4. In Sec. IV we will consider a system of
particles that are monodisperse in size.

Periodic boundary conditions are taken along x̂, while
Lees-Edward boundary conditions [9] are taken along ŷ
to introduce a simple shear strain γ. We take γ = γ̇t
to model simple shear flow in the x̂ direction at a fixed
finite strain rate γ̇. Particles interact with each other via
elastic contact interactions. Defining rij as the short-
est distance between the spines of spherocylinders i and

Ai Ri
θi•ri

FIG. 1. An isolated spherocylinder indicating the spine half-
length Ai, end cap radius Ri, center of mass position ri, and
angle of orientation θi.

j [10], and dij = Ri + Rj , two spherocylinders are in
contact whenever rij < dij . In this case there is a repul-
sive harmonic interaction between the particles, with the
force on i given by,

Fel
ij =

ke
dij

(
1− rij

dij

)
n̂ij , (3)

where ke is the particle stiffness and n̂ij the unit vector
pointing normally inwards to particle i at the point of
contact with j. Fel

ij acts at the contact point, which is
located a distance (Ri/dij)rij from the spine of particle
i, along the cord rij , and gives rise to a torque on particle
i,

τ el
ij = ẑτ elij = sij × Fel

ij , (4)

where sij is the moment arm from the center of mass of
i to its point of contact with j. The total elastic force
and torque on particle i are then

Fel
i =

∑
j

Fel
ij , τ eli =

∑
j

τ elij (5)

where the sums are over all particles j in contact with i.
Energy dissipation is due to a viscous drag between

the particles and the affinely sheared host medium. The
viscous drag force density at position r on particle i is

fdisi (r) = −kd[vi(r)− vhost(r)], (6)

where kd is a viscous damping coefficient, vhost(r) is the
local velocity of the host medium, which for simple shear-
ing in the x̂ direction is,

vhost(r) = γ̇yx̂, (7)

and vi(r) is the local velocity of the particle at position
r,

vi(r) = ṙi + θ̇iẑ× (r− ri), (8)

where ṙi = dri/dt is the center of mass velocity of the

particle and θ̇i is its angular velocity about the center of
mass.
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The total viscous drag force on particle i is then taken
as,

Fdis
i =

∫
i

d2r fdisi (r), (9)

where the integral is over the area of particle i. The
corresponding dissipative torque is,

τ dis
i = ẑτdisi =

∫
i

d2r (r− ri)× fdisi (r). (10)

The above elastic and dissipative forces are the only
forces included in our model; there are no inter-particle
dissipative or frictional forces. We will carry out our
simulations in the overdampled (low particle mass) limit,
where the total force and torque on each particle are
damped to zero,

Fel
i + Fdis

i = 0, τ eli + τdisi = 0. (11)

The resulting translational and rotational equations of
motion for particle i can then be written as [7],

ṙi = γ̇yix̂ +
Fel
i

kdAi
, (12)

θ̇i = −γ̇f(θi) +
τ eli

kdAiIi
, (13)

where Ai is the area of particle i, Ii is the trace of the
particle’s moment of inertia tensor, and

f(θ) =
1

2
[1− (∆Ii/Ii) cos 2θ] , (14)

where ∆Ii is the absolute value of the difference of the
two eigenvalues of the moment of inertia tensor. We as-
sume a uniform constant mass density for both our small
and big particles.

One of the distinguishing features of aspherical parti-
cles in simple shear flow is that they tumble as they flow,
and that they show a finite nematic orientational order-
ing S2 [8, 12–19], with the spines of the spherocylinders
tending to align about a given direction. The extent of
the alignment is given by the magnitude of the nematic
order parameter S2, while the direction of alignment is
given by the angle θ2 with respect to the flow direction
x̂. For a two dimensional system, these can be computed
by [11],

S2 =

√√√√[ 1

N

N∑
i=1

cos(2θi)

]2
+

[
1

N

N∑
i=1

sin(2θi)

]2
, (15)

and

tan[2θ2] =

[
1

N

N∑
i=1

sin(2θi)

]/[
1

N

N∑
i=1

cos(2θi)

]
. (16)

To compute the nematic order parameter of a specific
configuration, the square brackets in the above expres-
sions represent sums over the N particles in the system.

To compute the ensemble averaged nematic order param-
eter, the square brackets should be taken as both a sum
over the N particles in the system, as well as an average
over all configurations in the sheared steady state.

For our simulations we take 2Rs = 1 as the unit
of distance, ke = 1 as the unit of energy, and t0 =
(2Rs)

2kdAs/ke = 1 as the unit of time. For simplic-
ity we take the viscous drag kd to vary with particle size
so that kdAi = 1 for all particles. We numerically in-
tegrate the equations of motion (12) and (13) using a
two-stage Heun method with a step size of ∆t = 0.02.
Except for the simulations discussed in Sec. V, we begin
each shearing run in a finite energy configuration at the
desired packing fraction φ, with random initial particle
positions and orientations. To generate such initial con-
figurations we place the spherocylinders in the system
one-by-one, while rejecting and retrying any time a new
placement would lead to an unphysical overlap where the
spines of two spherocylinders intersect. In general we use
N = 1024 particles. Our simulations typically extend
to total strains of at least γ ≈ 150. Discarding an ini-
tial ∆γ ≈ 20 of the strain from the averaging so as to
eliminate transients effects, we find that our steady state
averages are generally insensitive to the particular start-
ing configuration. Note, we restrict the strain coordinate
γ used in our Lees-Edwards boundary condition to the
range γ ∈ (−Lx/2Ly, Lx/2Ly]; whenever it exceeds this
maximum it is reset by taking γ → γ − Lx/Ly, allowing
us to shear to arbitrarily large total strains.

III. SIZE-BIDISPERSE PARTICLES

In this section we consider a system of size-bidisperse
particles, with equal numbers of big and small sphero-
cylinders with radii in the ratio of Rb/Rs = 1.4. We will
consider both the case of moderately elongated sphero-
cylinders with α = 4, and nearly circular spherocylinders
with α = 0.01. To set the scale for the various packing
fractions φ that we will consider, in Fig. 2 we show a
plot of the magnitude of the nematic order parameter S2

vs φ for these two cases. As noted in our previous work
[8, 12], S2 is non-monotonic in φ, with a peak at φS2 max

that lies somewhat below the jamming φJ . For α = 4 we
have φS2 max ≈ 0.67 and φJ ≈ 0.906; for α = 0.01, we
have φS2 max ≈ 0.83 and φJ ≈ 0.845.

We start with a qualitative description of the spatial
structure of the system. In Fig. 3 we show snapshots of
typical configurations sampled during steady-state shear-
ing at strain rate γ̇ = 10−6. In Fig. 3(a) we show a system
with α = 4 at packing φ = 0.905, very close to the jam-
ming φJ = 0.906. In Fig. 3(b) we show a system with
α = 0.01 at packing φJ = 0.845. Because the α = 0.01
particles are to the eye indistinguishable from circles, we
draw a line on each particle to indicate the direction of
the particle’s spine. Animations showing the evolution
of particle positions and orientations, as these systems
are sheared starting from a random initial configuration,
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FIG. 2. Magnitude of the nematic order parameter S2 vs
packing φ, for elongated spherocylinders of α = 4 and nearly
circular spherocylinders of α = 0.01, in simple shear steady-
state. Dotted vertical lines locate the respective jamming
transitions, φJ(α = 4) ≈ 0.906 and φJ(α = 0.01) ≈ 0.845.
The vertical arrows indicate the location of the maxima in S2

at φS2 max ≈ 0.67 and 0.83 for α = 4 and 0.01 respectively.
For each case we show results at two different strain rates.
For α = 4, solid symbols are at strain rate γ̇ = 10−5, while
open symbols are at γ̇ = 4×10−5; for α = 0.01, solid symbols
are for γ̇ = 4× 10−7, while open symbols are for γ̇ = 10−6.

may be found in our Supplemental Material [20].

While the structure and flow pattern of the particles in
these animations look complex, especially for α = 4, the
orientational ordering of the particles can be represented
more simply by constructing a local nematic order pa-
rameter S2(r). To do this we divide our system up into
a 12 × 12 grid of square cells centered at fixed positions
r. At any given strain γ = γ̇t we take all particles whose
center of mass ri lie in the cell at r and construct the lo-
cal S2 of that cell, using Eqs. (15) and (16) but with the
sum restricted to only the particles in that cell; on aver-
age there are about 7 particles in each cell. In Figs. 3(c)
and 3(d) we show the resulting S2(r) corresponding to
the particle configurations in 3(a) and 3(b). For the
α = 4 configuration, which has a relatively large global
S2 ≈ 0.78, we see that the S2(r) clearly look ordered,
with for the most part nearly equal magnitudes S2(r)
and oriented close to the flow direction. For the α = 0.01
configuration, which has a smaller global S2 ≈ 0.23, the
S2(r) look more disordered, with a greater variation in
magnitudes and directions fluctuating about the global
orientation θ2 ≈ 45◦ [8].

Animations of the evolution of S2(r) as γ increases may
be found in our Supplemental Material [20]. We see in
these animations that the initial S2(r) are random, since
we start in a randomized initial configuration, but that
they then order as the system is sheared. After sufficient
shearing, the S2(r) tend to fluctuate about a well defined
average, and there is no evidence of any coherent time
dependent motion. Occasionally we see that S2(r) in a
given cell shrinks in size to a small value, then grows
back to the average; this occurs when there is a rotation

(b) ↵ = 0.01, � = 0.845
<latexit sha1_base64="BHE9GM5VSwwpYMA+45PmYgx81c0=">AAACKHicbVDLSgNBEJz1bXxFPXoZDIKChN2o6EURvHhUMCpkQ+id9JrB2dl1plcMS77B//DuVX/Bm3j15Gc4iTn4KmioqeqmpyvKlLTk+2/eyOjY+MTk1HRpZnZufqG8uHRu09wIrItUpeYyAotKaqyTJIWXmUFIIoUX0fVR37+4RWNlqs+om2EzgSstYymAnNQqb4SEd1SsRxu98CaHNg9BZR3Y96t+sBke8DDrSPfY295plStOHID/JcGQVNgQJ63yR9hORZ6gJqHA2kbgZ9QswJAUCnulMLeYgbiGK2w4qiFB2ywGJ/X4mlPaPE6NK018oH6fKCCxtptErjMB6tjfXl/8z2vkFO81C6mznFCLr0VxrjilvJ8Pb0uDglTXERBGur9y0QEDglyKP7ZoKTB2Rq/kogl+B/GXnNeqwVa1drpdOawNQ5piK2yVrbOA7bJDdsxOWJ0Jds8e2RN79h68F+/Ve/tqHfGGM8vsB7z3T/63pH8=</latexit>
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FIG. 3. Snapshot configurations in simple sheared steady-
state with strain rate γ̇ = 10−6 for spherocylinders of as-
phericity (a) α = 4 at packing φ = 0.905 near the jamming
φJ = 0.906, and (b) α = 0.01 at packing φJ = 0.845. In (b)
straight lines on particles indicate the directions of the spines.
Different colors are used to help distinguish different particles
and have no other meaning. (c) and (d) show the correspond-
ing configurations of the local nematic order parameter S2(r),
obtained by averaging over all particles whose center of mass
ri is contained in each square grid cell. Corresponding ani-
mations, showing the evolutions of these configurations under
shearing, are available in our Supplemental Material [20].

of particles in that cell. We now seek to quantify aspects
of the spatial flow and structure by measuring the spatial
correlations of several different observables.

A. Flow Profile

First we wish to check that the simple shearing in
the x̂ direction gives rise to the linear velocity profile,
〈vx(y)〉 = γ̇y, that is expected for a uniformly sheared
system. To compute 〈vx(y)〉 we divide the system into
strips of thickness ∆y running the length Lx of the sys-
tem parallel to the flow direction. We then compute for
a given configuration,

vx(y) =
1

Ny

Ny∑
i=1

vix (17)

where vix = ẋi is the x component of the center of mass
velocity of particle i, and the sum is over all the Ny parti-
cles i contained within the strip centered at height y. On
average Ny = N∆y/Ly. We then average this over con-
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FIG. 4. Average velocity of particles in the flow direction
scaled by the strain rate, 〈vx(y)〉/γ̇, as a function of height
y transverse to the flow. Curves labeled by a value of γ0
represent averages over a strain window from γ0 to γ0 + ∆γ,
with ∆γ = 5. Solid black circles labeled “all” are an average
over the entire shearing run, starting at an initial γ0 = 25
to allow for equilibration. The dotted black line gives the
expected linear profile 〈vx(y)〉/γ̇ = y. (a) Spherocylinders
with α = 0.01 at our densest packing φ = 0.90; (b), (c), (d)
spherocylinders with α = 4 at packings φ = 0.905 ≈ φJ ,
0.91, and 0.95 respectively. All configurations are sheared
at the rate γ̇ = 10−6. Configurations (a), (b), and (c) have
N = 1024 particles, while (d) has N = 2048 particles. In
all cases the horizontal axis runs from 0 to Ly. Lengths are
measured in units of the small particle diameter, 2Rs = 1.

figurations contained with in window of strain from γ0 to
γ0 + ∆γ, with ∆γ = 5, to compute an average 〈vx(y)〉γ0
after the system has been sheared to a strain γ0. We also
average over all configurations in the steady-state ensem-
ble, starting from γ0 = 25 to allow for equilibration, to
compute the ensemble average 〈vx(y)〉. We consider here
configurations sheared at a rate γ̇ = 10−6.

In Fig. 4(a) we show our results for nearly circular
spherocylinders with α = 0.01, at our densest packing
φ = 0.90, well above the jamming φJ = 0.845. We see
that the velocity profile agrees quite well with the ex-
pected linear 〈vx(y)〉/γ̇ = y, both for the ensemble aver-
age over the entire run, as well as the averages over the
strain windows of width ∆γ distributed throughout the
shearing. The same is true for all packings at smaller φ.

In Figs. 4(b), 4(c), and 4(d) we show results for elon-
gated spherocylinders with α = 4, at packings φ =
0.905 ≈ φJ , 0.91, and 0.95 respectively. Note, all sys-
tems have N = 1024 particles except for 4(d) which has
N = 2048 particles. For φ < φJ (not shown) the velocity
profiles on the short strain scale of ∆γ = 5 are all linear,
similar to what is seen in Fig. 4(a) for α = 0.01. How-

ever, as φ increases above φJ , we see in Figs. 4(b), 4(c),
and 4(d), that the velocity profiles averaged over ∆γ = 5
start to noticeably fluctuate away from linear, and this
effect grows in magnitude as φ increases. We see a step-
like structure, with distinct regions of different d〈vx〉/dy,
i.e., regions of different local strain rate. The system thus
displays shear banding. In some cases there are regions
where d〈vx〉/dy ≈ 0, indicating strongly correlated rows
of particles that move together as a block, with an in-
terface region of large strain rate between such blocks,
suggesting a stick-slip type of motion between rows of
particles. However, comparing velocity profiles at differ-
ent strains γ0 during the shearing run, we see that these
shear bands are not stationary, but wander as the system
is sheared. Averaging over the entire shearing run, the
expected linear profile for 〈vx(y)〉 is recovered, and so on
average the system is uniformly sheared as expected.

B. Transverse Velocity Correlations

Next we consider the correlations of the transverse ve-
locity, viy = ẏi. It was previously found for our model [3],
that when circular disks are sheared, then the transverse
velocity correlation

Cvy (r) ≡ 〈vy(x)vy(0)〉 (18)

goes negative and has a minimum at some xmin, before
decaying to zero at large x. It was observed that the
location of this minimum xmin increased in a seemingly
divergent way as jamming was approached. Thus xmin

was identified with the divergent correlation length ξ at
the jamming transition [3]. We now examine this velocity
correlation for spheorocylinders.

If rci is the center of mass position of particle i in con-
figuration c, and vci = ṙci is the center of mass velocity,
we compute the velocity correlation as,

〈vy(r)vy(0)〉 =
1

Nr

∑
c

∑
i,j

vciyv
c
jy∆(rci − rcj + r). (19)

Here the first sum is over configurations c in the sheared
steady-state, while the second sum is over all pairs of
particles (i, j) in configuration c. To coarse grain the
point center of masses, we take ∆(r) as a window func-
tion, such that ∆(r) = 1 within a small square area of
width ∆x = ∆y = Rs = 0.5 centered about r = 0, and
∆(r) = 0 elsewhere. Nr is the total number of non-zero
terms in the sum.

Setting r = xx̂, we show our results in Fig. 5 for nearly
circular spherocylinders with α = 0.01 and moderately
elongated spherocylinders with α = 4, considering differ-
ent packing fractions φ, below, near to, and above φJ ;
our results are for a strain rate γ̇ = 10−6. In order to
more easily compare correlations at different packings φ,
we show the normalized correlation Cvy (x)/Cvy (0) vs x.
For α = 0.01, shown in Fig. 5(a), we see behavior similar
to that found [3] for circular particles. The correlation
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FIG. 5. Transverse velocity correlation Cvy (x)/Cvy (0) vs dis-
placement x parallel to the shear flow, at different packing
fractions φ for spherocylinders of asphericity (a) α = 0.01
with φJ = 0.845 and system length L ≈ 40, and (b) α = 4
with φJ = 0.906 and system length L ≈ 90. Both systems
are sheared at a strain rate γ̇ = 10−6 and have N = 1024
particles. Lengths are measured in units of the small particle
diameter 2Rs = 1.

shows a clear minimum at an xmin that increases as φ
approaches φJ . Above φJ this xmin increases to Lx/2,
indicating long range transverse velocity correlations.

For the elongated particles with α = 4, shown in
Fig. 5(b), the situation is quite different. At small φ
behavior is similar to α = 0.01, with a minimum at an
xmin that increases as φ increases. However as the pack-
ing increases above φ ≈ 0.88, but still below the jamming
φJ = 0.906, the behavior changes dramatically with xmin

suddenly decreasing from xmin ≈ 18 to xmin ≈ 2, and
the correlations staying quite flat and zero for x & 10.
Increasing φ further, to jamming and above, results in
little further change in Cvy (x)/Cvy (0).

The difference in behavior at small x . 2Rs, between
α = 0.01 and 4, can partially be understood as an effect
of the change in particle shape. For small x, of order the
particle size, Cvy (x)/Cvy (0) is determined by contacts
between particles whose centers of mass are separated by
xx̂. Since the force is always directed normal to the parti-
cle’s surface, for circular and nearly circular particles this
force is typically closely aligned with the x̂ direction, and
so by itself induces no correlation in the vy components
of the two particles’ velocities. Any correlation in vy be-
tween these two particles presumably comes from a third
particle in contact with both, either from above or below,
as illustrated in Fig. 6(a), and so leads to a positive cor-
relation. For two elongated spherocylinders, however, if
the particles are oriented at some finite angle θi > 0, then
the force of the two contacting particles has a finite com-
ponent in the ŷ direction, leading to an anti-correlation
in the vy components of the two particles’ velocities, as
illustrated in Fig. 6(b). This explains the negative values
of Cvy (x)/Cvy (0) at small x, seen in Fig. 5(b). However
we have no clear understanding why this effect for α = 4
seems to only occur for φ > 0.88, or why for φ > 0.88 the
correlation Cvy (x)/Cvy (0) becomes quite flat, and shows
no other structure for x & 5.

We note that the identification of xmin with a diverg-
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FIG. 6. (a) Sketch of a configuration of nearly circular sphe-
rocylinders that contributes to Cvy (x)/Cvy (0) for small x.
The contact force between particles i and j is in the x̂ direc-
tion; any correlation in the vy components of the velocities
of i and j must therefore come from contact with a third
particle k, and gives a positive correlation. (b) Sketch of a
configuration of elongated spherocylinders that contributes
to Cvy (x)/Cvy (0) for small x. Now the contact force between
i and j will have a component in the ŷ direction, and so
lead to a negative correlation between the vy of i and j since
Fel
ij = −Fel

ji.

ing correlation length ξ has recently been questioned
[21]. Were xmin ∝ ξ, one would expect that a scaled
Cvy (x)/Cvy (0), when plotted vs x/xmin at different φ or
γ̇, would show a collapse to a common curve at large
x/xmin. But, for circular particles, this has been found
not to be the case; rather the minimum at xmin is now
believed to be a consequence of competition between two
different length scales. One should therefore not take the
results of Fig. 5(b) as clear evidence for the absence of
a diverging ξ for α = 4, and indeed the critical scaling
analysis of pressure that we have recently done for α = 4
[7] suggests that such a diverging ξ does indeed exist,
although it is apparently not evident in the transverse
velocity correlations.

C. Positional Correlations

For spherical particles, it is observed that there is no
long range translational ordering when the particles are
sheared [22]. Since our spherocylinders do show orienta-
tional ordering when sheared, it is of interest to see if such
orientational ordering might induce any translational or-
dering. We therefore consider the positional correlations
of the particles, to confirm that there is no such transla-
tional ordering. With the average particle density given
by n0 ≡ N/L2, we define the density-density correlation
function as,

Cn(r) =
1

n20

[
〈n(r)n(0)〉 − n20

]
. (20)

To evaluate Cn(r), we compute the ensemble average,

Cn(r) =
1

n20

〈
1

L2

∑
i,j

δ(ri − rj + r)

〉
− 1, (21)
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FIG. 7. Density correlation Cn(r) vs coordinates x′ and y′,
parallel and perpendicular to the nematic order parameter
S2, at different packing fractions φ. (a) and (b) are for sphe-
rocylinders of α = 0.01, with φJ = 0.845 and system length
L ≈ 40; (c) and (d) are for α = 4, with φJ = 0.906 and
L ≈ 90. Both systems are sheared at a strain rate γ̇ = 10−6

and have N = 1024 particles. Lengths are measured in units
of the small particle diameter, 2Rs = 1.

where in practice the δ(r) is smeared out over a small bin
of area ∆a centered at the origin, so that δ(r) = 0 out-
side the bin and 1/∆a within the bin; the width of the

bin is roughly
√

∆a ≈ 0.1 for α = 0.01 and
√

∆a ≈ 0.2
for α = 4, where Rs = 0.5 is the radius of the small par-
ticles. The finite width of our bins will effect the heights
and fine structure of the sharp peaks in Cn(r) that occur
at separations corresponding to neighboring particle con-
tacts, but otherwise does not effect the large |r| behavior
that is our interest here. With the normalization we have
chosen, our density correlation Cn(r) is simply related to
the usual pair correlation function g(r) by,

g(r) = Cn(r) + 1. (22)

Because the rotational symmetry of the system is bro-
ken by both the flow direction x̂ and by the direction of
the nematic order parameter S2, the correlation Cn(r)
will not be rotationally invariant. Therefore, instead of
averaging over orientations and plotting as a function of
the radial coordinate, as is often done, we will instead
consider separately the behavior of Cn(r) in orthogonal
directions. One choice would be to look along the x and
y directions, parallel and transverse to the shear flow.
However, since individual particles tend to align parallel
to S2, we consider instead the direction oriented parallel
to S2, which we denote as x′, and the orthogonal direc-
tion, which we denote as y′. Writing r = (x′, y′), in Fig. 7
we plot Cn(x′, 0) vs x′, and Cn(0, y′) vs y′, for sphero-
cylinders of asphericity α = 0.01 and α = 4. We show
results at several different packings φ, below, near to, and
above φJ ; our results are for a strain rate γ̇ = 10−6.

For the nearly circular particles with α = 0.01, shown
in Figs. 7(a) and 7(b), we see little difference between the
x′ and y′ directions, or among the different φ. Fitting the

peak heights to an exponential decay, we find that the
correlation Cn(r) decays to zero on a length scale ≈ 1,
much shorter than the system half length, L/2 ≈ 20. We
see that Cn(r) = −1 for x′, y′ . 1, since no particles
may come closer to each other than 2Rs = 1 without an
unreasonable particle overlap. We see the nearest neigh-
bor peak is split into three at distances x′, y′ ≈ 1.0, 1.2,
and 1.4, corresponding to contacts between small-small,
small-big, and big-big particles.

For the elongated particles with α = 4, shown in
Figs. 7(c) and 7(d), however, we see a big difference
between the x′ and y′ directions. Since the (x′, y′) co-
ordinates are aligned parallel and perpendicular to S2,
and since particles on average are also aligned with their
spines parallel to S2, the x′ coordinate on average runs
parallel to the particle spines. Therefore, for parallel ori-
ented particles aligned in a row, the closest approach an-
other particle can make in the x′ direction is the length
of a small particle, 2Rs(α+1) = 5, and hence in Fig. 7(c)
we see the nearest neighbor peaks at x′ ≈ 5, 6, and 7,
corresponding to nearest contacts between small-small,
small-big, and big-big particles. In the transverse y′ di-
rection, however, corresponding to the narrow width of
the particle, the closest parallel oriented particles aligned
in a row may come is 2Rs = 1. In principle we would ex-
pect to see peaks at y′ = 1, 1.2 and 1.4, corresponding
to small-small, small-big, and big-big particle contacts,
however the finite size of our bins (which are a bit larger
here than for α = 0.01) make these less sharply distin-
guished.

Note, for α = 4, the correlation Cn(0, y′) drops sharply
to −1 as y′ decreases below unity. This is because the
shortest distance any two particles may approach each
other, without unreasonable overlaps, is 2Rs = 1. How-
ever for Cn(x′, 0) we see no such sharp drop as x′ de-
creases below 2Rs(α + 1) = 5. In fact, Cn(x′, 0) be-
comes, and stays equal to, −1 only when x′ decreases
below 2Rs = 1. The reason for this is that not all parti-
cles are aligned nearly parallel to S2. When two adjacent
particles are aligned nearly perpendicular to S2, then one
can have a contact at x′ ≈ 1; although this is possible
(see Fig. 3(a)), it is relatively uncommon, hence Cn(r) in-
creases slowly above −1 as x′ increases above unity, then
takes a rapid increase at x′ ≈ 5. This lack of perfect
alignment of particles parallel to S2 is also responsible
for the the fact that the sharp peaks in Fig. 7(c) are not
exactly at x′ = 5, 6, and 7, but rather are at slightly
smaller values.

Comparing the φ dependence of Cn(r) for α = 4, we
see little effect in the transverse direction y′, but in the
x′ direction one sees more clearly higher order peaks as
φ approaches and goes above φJ . In all cases, however,
Cn(r) decays to zero as |r| increases; for the y′ direction
the decay length is ≈ 1.3, while in the x′ direction it is
≈ 4.

The above calculations show that the particles have
no long range translational order in the sheared system.
However we still wish to investigate if there can be any
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FIG. 8. Transverse density correlation C̃n(y) vs y, at different
packing fractions φ, for spherocylinders of (a) α = 0.01, with
φJ = 0.845 and system length L ≈ 40; (b) α = 4, with
φJ = 0.906 and L ≈ 90. Both systems are sheared at a strain
rate γ̇ = 10−6 and have N = 1024 particles. Lengths are
measured in units of the small particle diameter, 2Rs = 1.

shear induced columnar-like ordering, where particles or-
der into well defined channels oriented parallel to the flow
direction x̂. To investigate this we average the Cn(r)
correlation over the x direction to define the transverse
density correlation function C̃n(y),

C̃n(y) = n0

∫ L

0

dxCn(x, y). (23)

Our results are shown in Fig. 8 for spherocylinders of
α = 0.01 and 4. Again we see that these correlations
rapidly decay to zero as the separation y increases. Fit-
ting the peak heights to an exponential gives a decay
length between 1 and 2. Thus we conclude that the par-
ticles do not flow in well defined channels and there is no
columnar ordering.

D. Nematic Correlations

Next we wish to consider the correlations of the ne-
matic order parameter S2. Shearing induces a finite S2

in the system at any φ, as shown in Fig. 2, but our ar-
guments in Ref. [8] suggested that this finite S2 arises
because the shearing acts like an ordering field, rather
than because of many-particle cooperative behavior aris-
ing from a long range coherence of particle orientations.
Computing the correlations of the nematic order param-
eter S2 will confirm this.

The nematic correlation function is,

CS2
(r) = 〈cos 2[θ(r)− θ(0)]〉 − S2

2 , (24)

where the first term is computed similarly to Eq. (19). If
θci is the orientation of particle i in configuration c, then

〈cos 2[θ(r)−θ(0)]〉 =
1

Nr

∑
c

∑
i,j

cos 2(θci−θcj)∆(rci−rcj+r),

(25)
where ∆(r) is the same window function as used in com-
puting Cvy (x), and Nr is the number of non-zero terms
being summed.

In Fig. 9 we show our results for CS2
(r)/CS2

(0) in the
x′ and y′ directions, parallel and perpendicular to the
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FIG. 9. Nematic ordering correlation CS2(r)/CS2(0) vs coor-
dinates x′ and y′, parallel and perpendicular to the global ne-
matic order parameter S2, at different packing fractions φ. (a)
and (b) are for spherocylinders of α = 0.01, with φJ = 0.845
and system length L ≈ 40; (c) and (d) are for α = 4, with
φJ = 0.906 and L ≈ 90. Both systems are sheared at a strain
rate γ̇ = 10−6 and have N = 1024 particles. Lengths are
measured in units of the small particle diameter, 2Rs = 1.

global nematic order parameter S2. We show results for
different packings φ, below, near to, and above φJ , for
systems sheared with strain rate γ̇ = 10−6. For nearly
circular particles with α = 0.01, shown in Figs. 9(a) and
9(b), we see that there is little difference in the corre-
lation function comparing the different packings φ, or
comparing the x′ and y′ directions, and that the corre-
lations decay rapidly to zero within one small particle
width, 2Rs = 1 (note, although no two particles may
come much closer than 2Rs = 1 without an unreason-
able overlap, here we see a large drop at x′ = y′ = 0.75;
this is an artifact of the finite width ∆x = ∆y = 0.5
of our window function ∆(r)). The very rapid decay of
the correlation function, and the absence of any notice-
able variation of the decay length with the packing φ,
indicate that there are no long-range orientational corre-
lations between the particles.

For moderately elongated particles with α = 4, shown
in Figs. 9(c) and 9(d), we see a noticeable difference be-
tween the x′ and y′ directions. Along the x′ direction
CS2(r)/CS2(0) is a decaying oscillation with a period of
roughly ≈ 6, corresponding to the average length of the
particles. A rough estimate gives a decay length of com-
parable size ≈ 5. Along the y′ direction correlations re-
main positive, and we see that the decay length takes
a noticeable increase as φ increases, from roughly ≈ 1.5
at φ = 0.80 to ≈ 5 at φ = 0.90 and above. Indeed for
the packing φ = 0.905, shown in Fig. 3(a) and the cor-
responding animation [20], it is easy to see that one has
many local stacks of particles in side-to-side contact along
their flat edges, nearly one on top of the other. Such local
stackings presumably result from the system adjusting
to reduce the pressure at a given packing. These stacks,
often consisting of ∼ 10 or more particles, are then re-
sponsible for the larger decay length in the y′ direction
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FIG. 10. Angular velocity correlation Cθ′(r)/Cθ′(0), where

θ′i = θ̇i/γ̇, vs coordinates x′ and y′, parallel and perpendicular
to the global nematic order parameter S2, at different packing
fractions φ. (a) and (b) are for spherocylinders of α = 0.01,
with φJ = 0.845 and system length L ≈ 40; (c) and (d) are
for α = 4, with φJ = 0.906 and L ≈ 90. Both systems
are sheared at a strain rate γ̇ = 10−6 and have N = 1024
particles. Lengths are measured in units of the small particle
diameter, 2Rs = 1.

as φ increases above jamming. Nevertheless, despite this
increase in decay length as φ increases, the decay length
appears to remain finite at all φ, CS2

(r)/CS2
(0) decays to

zero on the order of a typical particle size as |r| increases,
and we thus conclude that there are no long-range orien-
tational correlations between the particles.

E. Angular Velocity Correlations

Finally we consider the correlations of the scaled an-
gular velocity, θ′i = dθi/dγ = θ̇i/γ̇,

Cθ′(r) =
[
〈θ̇(r)θ̇(0)〉 − 〈θ̇i〉2

]
/γ̇2. (26)

As we have done for other quantities, if θ̇ci is the angular
velocity of particle i in configuration c, then we compute

〈θ̇(r)θ(0)〉 =
1

Nr

∑
c

∑
i,j

θ̇ci θ̇
c
j∆(rci − rcj + r). (27)

In Fig. 10 we show our results for Cθ′(r)/Cθ′(0) in
the x′ and y′ directions, parallel and perpendicular to
the global nematic order parameter S2. We show re-
sults for different packings φ, below, near to, and above
φJ , for systems sheared with strain rate γ̇ = 10−6. For
both nearly circular particles with α = 0.01, shown in
Figs. 10(a) and 10(b), and for moderately elongated par-
ticles with α = 4, shown in Figs. 10(c) and 10(d), we see
that the correlation drops rapidly and stays flat at zero,
once |r| is greater than the particle length 1 + α. Only
nearest neighbor particles are at all correlated, and those
are anti-correlated, as indicated by the negative value of
Cθ′(r)/Cθ′(0) at |r| ≈ 1.

•	 j 
i 

•	

FIG. 11. Sketch of two nearly parallel particles to illustrate
how a collision leads to oppositely oriented changes in angular
velocity, and thus explains the anti-correlation seen in Cθ′(r)
for |r| ≈ 1.

To illustrate the origin of this anti-correlation of near-
est neighbor angular velocities, in Fig. 11 we sketch two
nearest neighbor, nearly parallel, particles with separa-
tion |r| ≈ 1. We see that a collision between the two par-
ticles, indicated by the double headed arrow in the sketch,
leads to oppositely oriented changes in angular veloc-
ity for the two particles, and hence the anti-correlation.
However for larger |r|, on the order of a few or more
particle separations, our results in Fig. 10 indicate that
fluctuations in the particles’ angular velocities are com-
pletely uncorrelated.

IV. SIZE-MONODISPERSE PARTICLES

When studying jamming in two dimensional systems
of circular particles, it is common to consider bidisperse
or polydisperse distributions of particle sizes, so as to
avoid crystallization into an ordered hexagonal lattice.
When studying aspherically shaped particles, one can ask
if the possibility of such crystallization still remains for
size monodisperse particles. In particular, for particles
driven by simple shear, the shear-driven rotation of par-
ticles could conceivably disrupt crystalline structure in
densely packed systems, if the particles are sufficiently
aspherical.

In this section, therefore, we study the case of a size
monodisperse system of moderately elongated sphero-
cylinders with asphericity α = 4. For the bidisperse dis-
tribution of α = 4 spherocylinders we have previously
determined [7] the shear-driven jamming transition to be
at φ ≈ 0.906. For the monodisperse distribution we have
not carried out a similar detailed analysis to try and lo-
cate φJ accurately. However, by comparing the depen-
dence of the pressure on φ and γ̇, our crude estimate for
the jamming of the monodisperse system is φJ ≈ 0.92. In
Fig. 12(a) we show a snapshot of a typical configuration
sampled during steady-state shearing at packing φ = 0.90
and strain rate γ̇ = 10−6. In Fig. 12(b) we show the cor-
responding configuration of the local nematic order pa-
rameter S2(r), computed as described earlier in connec-
tion with Fig. 3. An eyeball comparison of Figs. 12(a)
and (b) with the bidisperse case in Figs. 3(a) and (c)
suggests that for dense monodisperse systems there is a
larger probability for particles to be aligned parallel to
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FIG. 12. (a) Snapshot configuration of a system of size-
monodisperse particles of asphericity α = 4, at packing
φ = 0.90, sheared at γ̇ = 10−6. Different colors are use to
help distinguish different particles and have no other mean-
ing. (b) The corresponding configuration of the local nematic
order parameter S2(r), obtained by averaging over all parti-
cles whose cneter of mass ri is contained in each square grid
cell. A corresponding animation, showing the evolution of this
configuration as it is sheared, is available in our Supplemental
Material [20].

the flow direction x̂. We will return to this matter below
in Sec. IV D.

A. Flow Profile

We have found that reliable results for the monodis-
perse system are difficult to obtain much above the jam-
ming φJ ≈ 0.92, because at large packings the particles
tend to lock into local configurations. This is illustrated
by considering the flow profile 〈vx(y)〉, defined earlier in
Sec. III A.

In Fig. 13 we show 〈vx(y)〉/γ̇ vs y, averaged over strain
windows of width ∆γ = 5, at different total strains γ0
within the shearing ensemble. We also show the aver-
age over the entire shearing run. For φ = 0.90, shown
in Fig. 13(a), we see that the flow profile 〈vx(y)/〉/γ̇ is
almost perfectly linear for all strain windows, indicating
that the shear flow is uniform even on short strain scales.
For φ = 0.92 near jamming, shown in 13(b), we see the
step-like structure indicative of shear banding on short
strain scales; however the location and size of these steps
fluctuate with γ0, and when averaging over the entire run
we regain the expected linear flow profile.

However for φ = 0.95, above jamming, something dra-
matically different occurs. In the earlier part of the shear-
ing run we see wandering shear bands on short strain
scales, similar to what is seen at the smaller φ = 0.92,
only now with wider bands. But after shearing a large
total strain, we see that the system separates into two
sharply defined bands, each with constant velocity, one
small, one large, with a large velocity jump between
them. The velocity profiles 〈vx(y)〉/γ̇ at γ0 = 225 and
γ0 = 275 are identical, indicating that the system has
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FIG. 13. For N = 1024 monodisperse particles of asphericity
α = 4, sheared at γ̇ = 10−6: Average velocity of particles in
the flow direction scaled by the strain rate, 〈vx(y)〉/γ̇, as a
function of height y transverse to the flow, for packing frac-
tions (a) φ = 0.90, (b) φ = 0.92, and (c) φ = 0.95. Curves la-
beled by a value of γ0 represent averages over a strain window
from γ0 to γ0 + ∆γ, with ∆γ = 5. Solid black circles labeled
“all” are an average over the entire shearing run, starting at
an initial γ0 = 25 to allow for equilibration. The dotted black
line gives the expected linear profile 〈vx(y)〉/γ̇ = y. Lengths
are measured in units of the small particle diameter, 2Rs = 1.
In (d) is shown a snapshot of the configuration at φ = 0.95 af-
ter a strain of γ0 = 250; the horizontal dotted line locates the
interface between two coherently moving blocks of particles,
as shown by the sharp jump in velocity of the corresponding
curve in (c). Different colors in (d) are used to help distinguish
different particles and have no other meaning. An animation
of this configuration is available in our Supplemental Material
[20].

locked into this particular state, characterized by two
blocks of coherently flowing particles, each moving at
different constant velocities, and sliding over each other
along a sharply defined interface.

In Fig. 13(d) we show a snapshot of the configuration
for φ = 0.95 at γ0 = 250, after the system has locked
into this state of coherently sliding blocks. The inter-
face between the two blocks of particles is indicated by
the horizontal dotted line at height y = 50. In either
block there is neither more spatial nor orientational or-
der than typical in a homogeneously shearing configura-
tion, although there exist many local clusters of particles
contacting along their flat sides, oriented nearly in paral-
lel; many of these clusters are oriented with the particle
spines nearly parallel to the flow direction x̂, however
many are oriented at relatively large angles with respect
to the flow. Along the interface where the sliding takes
place, one sees two rows of particles, oriented parallel to
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FIG. 14. For N = 1024 monodisperse particles of asphericity
α = 4, sheared at γ̇ = 10−6: Density correlation Cn(r) vs
coordinates (a) x and (b) y, parallel and perpendicular to
the flow direction x̂, for different packing fractions φ. Peak
heights in (c) Cn(x, 0) vs x for xm ≈ 5m, and in (d) Cn(0, y)
vs y for ym ≈ m; straight lines are fits to an exponential
decay. Lengths are measured in units of the particle diameter,
2R = 1 and the system width is L ≈ 90.

the flow, extending the length of the system; it is these
rows, sliding one upon the other, that cause the large
jump in velocity between the two blocks. An animation of
the shearing at φ = 0.95 is available in our Supplemental
Material [20]; the animation starts after the system has
already been sheared a considerable amount, but before
it has locked into the state of coherently sliding blocks,
which occurs around the midpoint of the animation.

B. Positional Correlations

We next consider the positional correlations in the
monodisperse system, computing the correlation function
Cn(r), as defined earlier in Sec. III C. Since the configura-
tion shown in Fig. 12 suggests (and as will be confirmed
below in Fig. 17) that many of the particles align near to
the flow direction x̂, here we will plot the correlation as
a function of the x and y coordinates, parallel and per-
pendicular to the flow direction, rather than the x′ and
y′ coordinates (parallel and perpendicular to S2) used
earlier for the bidisperse system in Sec. III C.

In Figs. 14(a) and 14(b) we show Cn(r) vs x and y,
respectively, at several different values of the packing φ
for a system strained at the rate γ̇ = 10−6. Comparing
to Figs. 7(c) and 7(d) for a bidisperse system, we see that
in the monodisperse system the peaks in both the x and
y directions are more sharply defined and persist out to
considerably longer length scales. Similar results have
been suggested in simulations comparing monodisperse
and polydisperse spherocylinders in three dimensions, for
a model in which energy dissipation is by inelastic par-
ticle collisions rather than the viscous drag we use here
[23].

In Figs. 14(a) and 14(b) the peaks are perfectly peri-
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FIG. 15. For N = 1024 monodisperse particles of asphericity
α = 4, sheared at γ̇ = 10−6: Nematic order parameter corre-
lation CS2(r)/CS2(0) vs coordinates (a) x and (b) y, parallel
and perpendicular to the flow direction x̂, for different pack-
ing fractions φ. Peak heights in (c) CS2(x, 0)/CS2(0, 0) vs x
for xm ≈ 5m, and in (d) CS2(0, y)/CS2(0, 0) vs y for ym ≈ m;
straight lines are fits to an exponential decay. Lengths are
measured in units of the particle diameter, 2R = 1 and the
system width is L ≈ 90.

odic with a spacing ∆x = 5 along the x direction, and
∆y = 1 along the y direction. Nevertheless, the peak
heights still decay exponentially with distance, as is seen
in Figs. 14(c) and 14(d) where we plot just the peak
heights at xm ≈ 5m and ym ≈ m on a semi-log plot (we
note that the location of these peaks are not exactly at
integer values of x, but are very close to them). The
straight lines in these figures are fits to an exponential
decay, and we see reasonably good agreement.

C. Nematic Correlations

We now consider the correlations of the nematic or-
der parameter, computing CS2

(r) as defined earlier in
Sec. III D. In Figs. 15(a) and 15(b) we show plots of
CS2

(r)/CS2
(0) vs x and y, parallel and perpendicular

to the flow direction. Comparing to Figs. 9(c) and 9(d)
for a bidisperse system, we see that the peaks in the x
direction are again sharper, with periodicity of ∆x = 5,
and persist to longer length scales. Along the y direc-
tion we see sharp oscillations with periodicity ∆y = 1,
but the heights decay more quickly. In Figs. 15(c) and
15(d) we plot the peak heights vs x and y and fit to an
exponential decay. For the smaller φ = 0.70 and 0.75 the
peak heights decay too quickly for an accurate determi-
nation, and we omit these from Figs. 15(c) and 15(d).
For the y direction, shown in Fig. 15(d) the heights can
be non-monotonic, and the location of the peaks varies
somewhat with φ; errors are large and so our fits should
be regarded as just estimates.

In Fig. 16 we show the decay lengths ξx and ξy that
come from the exponential fits of Figs. 14(c) and 14(d)
for the positional correlation Cn(r), and from Figs. 15(c)
and 15(d) for the nematic correlation CS2

(r). From the
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FIG. 16. For N = 1024 monodisperse particles of asphericity
α = 4, sheared at γ̇ = 10−6: Correlation lengths in the x
and y directions, parallel and perpendicular to the flow, as
obtained from the exponential fits to the peaks in the density
correlation Cn(r) and the nematic order parameter correla-
tion CS2(r), shown in Figs. 14(c) and 14(d) and 15(c) and
15(d).

positional correlation Cn we get a decay length in the x
direction that varies between 2.6 and 9.6 over the range
of φ shown; in the y direction the decay length varies
between 1.8 and 7.3. These are roughly twice as large as
the corresponding decay lengths for the bidisperse sys-
tem, but still no greater than two particle lengths. The
monodisperse system thus does not have any long range
translational order. From the nematic order parameter
correlation CS2

we get a decay length in the y direction
that varies between 1.5 and 7.3, comparable to that found
from Cn. In the x direction the decay length from CS2

varies between 6.5 and 22, roughly double that found
from Cn. The largest value ξx ≈ 22 ≈ L/4 is roughly one
quarter the length of the system, and so in Fig. 15(a)
one does not see the peaks in CS2(x, 0) decaying to zero,
although from Fig. 15(c) the decay does appear to be ex-
ponential. Simulations of a larger length system would
be needed to confirm that the value ξx ≈ 22 really is
finite, and that there is no long range nematic ordering.

D. Global Nematic Ordering

Finally we consider several quantities related to the
global nematic ordering of the system. We are interested
in how the differing packing geometry and greater local
spatial ordering found in dense packings of the monodis-
perse system, as compared to the bidisperse system, will
effect such orientational ordering.

We start by returning to an observation made at the
start of this Sec. IV on monodisperse systems. Looking
at the dense monodisperse configuration of Fig. 12, the
particles generally appear to be more aligned with the
flow directions as compared with the dense bidisperse
configuration of Fig. 3(a). To quantify this observation,
in Fig. 17 we plot the probability density P(θ) for a par-
ticle to be oriented at angle θ. In Fig. 17(a) we compare
P(θ) for monodisperse and bidisperse systems, both with
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FIG. 17. Probability density P(θ) for particles of asphericity
α = 4 to be oriented at angle θ with respect to the flow direc-
tion: comparing size-monodisperse and size-bidisperse parti-
cles at packings (a) φ = 0.70 and (b) φ = 0.92; (c) monodis-
perse particles at different φ, and (d) bidisperse particles at
different φ. Strain rate is γ̇ = 10−6 for the monodisperse
system and γ̇ = 10−5 for the bidisperse system.

particles of asphericity α = 4, at the relatively dilute
packing φ = 0.70. Here we see that the distributions
for the two cases are essentially identical. However in
Fig. 17(b) we compare the two cases at the denser pack-
ing φ = 0.92. Here we see a rather dramatic difference.
For the bidisperse case P(θ) is qualitatively similar to
that at the lower packing, with a broad unimodal peak
that is skewed to the right. For the monodisperse case,
however, we see a primary peak that remains compara-
tively sharp and centered close to zero at θpeak ≈ 1.5◦,
but there is also a shoulder extending to larger angles
that becomes a smaller secondary peak around θ ≈ 60◦.
In Fig. 17(c) we plot P(θ) for the monodisperse system
for several different packings from φ = 0.70 to 0.92, to
show how this secondary peak develops as φ increases.
In Fig. 17(d) we similarly plot P(θ) at different φ for the
bidisperse case; we see that the width of the distribution
broadens and the location of the peak shifts to slightly
larger θ as φ increases, but otherwise the shape of the
distribution stays qualitatively the same.

While the distributions P(θ) for monodisperse and
bidisperse systems are thus significantly different for
dense packings, it is interesting to consider a measure
of the average particle orientation. This is most natu-
rally given by the orientation θ2 of the nematic order
parameter, which is computed from the individual par-
ticle orientations by Eq. (16); the sums in that equation
are equivalent to averages over the distribution P(θ). In
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Fig. 18(a) we plot the resulting θ2 vs packing φ for the
mondisperse system considered in this section, as com-
pared to the bidisperse system studied in Sec. III. We
show results for the two strain rates γ̇ = 10−5 (open
symbols) and γ̇ = 10−6 (solid symbols). Just as we saw
in Fig. 17(a) that P(θ) was the same for monodisperse
and bidisperse systems at low φ, here we see that θ2 for
the two cases are similarly equal at low φ. However, as φ
increases and the distributions P(θ) start to differ, so do
the values of θ2 for the two cases differ, though in both
cases θ2 remains in the range 5 − 10◦. It is interesting
to note that, for some range of φ, the value of θ2 for the
monodisperse system is greater than that for the bidis-
perse system, even though the monodisperse P(θ) has a
sharper peak that lies closer to θ ≈ 0. This is presumably
due to the weight in the broad shoulder that extends to
larger angles.

In Figs. 18(b) and 18(c) we show similar comparisons
between monodisperse and bidisperse systems for the
magnitude of the global nematic order parameter S2,
and the average particle angular velocity −〈θ̇i〉/γ̇, re-
spectively. As with θ2 we see that these quantities agree
between the monodisperse and bidisperse systems for low
φ . 0.70, but they differ for denser packings.

In a previous work [8], that dealt strictly with bidis-
perse systems, we argued that the peak in the nonmono-
tonic S2 marks a crossover from a region of qualitatively
single particle behavior below φS2 max, to a region above
φS2 max where decreasing free volume causes behavior to
be dominated by the local structure of the dense packing.
The results in Figs. 17 and 18 give strong support for this
scenario. At small φ . φS2 max we see that P(θ), θ2, S2,

and −〈θ̇i〉/γ̇ are essentially equal for the monodisperse
and the bidisperse systems. This is as would be expected
for a single-particle-like limit, where the size of the par-
ticle would play no role in determining these quantities
[8]. However at larger φ, the results in Figs. 7 and 14
for positional correlations, and in Figs. 9 and 15 for ne-
matic correlations, show that the monodisperse system
has a much stronger local order than the bidisperse sys-
tem. The differences we find in P(θ), θ2, S2, and −〈θ̇i〉/γ̇
in such dense packings above φS2 max thus reflect this dif-
ference in local packing structure.

In our prior work [8] we discussed how the orientation
of particles appears to arise from a competition between
aligning with the shear flow, as an isolated particle would
do, vs aligning with the direction of minimal stress. The
details of this remain poorly understood. It would appear
that the strong local ordering of the monodisperse system
at dense packings, as indicated by Figs. 14 and 15, shifts
this competition to favor increased alignment of many of
the particles parallel to the flow.
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FIG. 18. (a) Orientation of the nematic order parameter θ2,
(b) magnitude of the nematic order parameter S2, and (c) av-

erage angular velocity−〈θ̇i〉/γ̇, vs packing φ, for size monodis-
perse compared to size bidisperse spherocylinders of aspheric-
ity α = 4. Open symbols are for a strain rate γ̇ = 10−5

while solid symbols are for γ̇ = 10−6. For the bidisperse sys-
tem φJ ≈ 0.906; for the monodisperse system we estimate
φJ ≈ 0.92.

V. SHEARING HIGHLY ORDERED
CONFIGURATIONS

In the previous parts of this work, as well as in our ear-
lier works [7, 8], we began our shearing simulations from
a random initial configuration, and shear to large total
strains γ so as to reach the steady state. The assump-
tion, motivated by results for sheared circular disks [24],
is that by shearing long enough, one creates a well de-
fined ensemble of states that is independent of the initial
configuration. In contrast, one can wonder whether the
same steady-state ensemble will result if one starts from
an initial configuration of locally well ordered particles.
Will such a system remain ordered as it shears, or will
it revert to the same ensemble obtained from the ran-
dom initial configurations? In this section we investigate
this question for spherocylinders of asphericity α = 4.
We consider, for systems of both size-bidisperse and size-
monodisperse particles, several different initial configura-
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tions designed to be locally ordered in such a way that we
can pack particles to large density without any particle
overlaps.

A. Size-Bidisperse Particles

We start by constructing a close packed, locally or-
dered, configuration as follows. We take a stack of 5 big
spherocylinders, all oriented parallel to the flow direction
x̂ and lying perfectly one on top of another so that their
centers of mass align vertically. We then take a stack of 7
small spherocylinders in the same fashion; the heights of
these two stacks are equal (recall, Rb/Rs = 1.4 = 7/5).
We then randomly place 7 stacks of the big particles and
5 stacks of the small particles next to each other in a
horizontal row, so that there are the same number of
big and small particles in this row of stacks. We then
construct 16 such rows of stacks, each row being con-
structed in an independent random fashion, so that we
have a total of N = 1120 particles. We then affinely ex-
pand the system to the desired packing fraction φ, and
introduce a small length scale disorder by making a ran-
dom displacement of each particle, with the displacement
sampled uniformly over the particle’s Voronoi cell. The
resulting configuration contains no particle overlaps. An
example of such an initial configuration at the packing
φ = 0.75 is shown in Fig. 19(a). In this and subsequent
similar figures, blue hues are used for the big particles
and red hues for the small particles, but in each case
we use a small spread of colors so as to help distinguish
different particles.

Shearing such initial, locally ordered, configurations
at a strain rate γ̇ = 10−5 we compute the instantaneous
pressure p(γ), as well as the magnitude S2(γ) and ori-
entation θ2(γ) of the nematic order parameter. Because
fluctuations in these instantaneous values can be large,
we choose to smooth out the fluctuations by averaging
the instantaneous values over a strain window of width
∆γ = 5. We plot the resulting strain averaged values of
p, S2 and θ2 in Figs. 19(b), 19(c), and 19(d), respectively,
for a range of packings φ. The dotted horizontal lines in
these figures give the ensemble averaged values of these
quantities, when starting from a random initial configu-
ration, as obtained from our earlier work in Refs. [7, 8].

For all φ we see that p starts from zero in the initial
configuration with no particle overlaps, but then rises to
saturate at the same value as obtained from a random ini-
tial configuration. Similarly the nematic order parameter
starts from an initial S2 = 1 and θ2 = 0, but then evolves
to saturate at the same values of S2 and θ2 found when
shearing from a random initial configuration. Shearing
an initial, locally ordered, size bidisperse configuration
constructed as in Fig. 19(a) thus results in the same spa-
tially disordered steady-state ensemble as obtained from
an initial random configuration. This disordering is read-
ily seen in animations of the shearing at φ = 0.90 and
0.95, which are available in our Supplemental Material

10-6

10-5

10-4

10-3

10-2

0 50 100 150

0.75
0.80
0.85
0.88
0.90
0.92
0.95

p

γ

φ (b)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 50 100 150

0.75
0.85

0.90
0.95

S 2

γ
φ

(c)

0

2

4

6

8

10

12

0 50 100 150

0.75
0.85
0.90
0.95

θ 2
 (d

eg
re

es
)

γ

φ

(d)
(a)  φ = 0.75 

FIG. 19. (a) Snapshot of a size bidisperse configuration of
locally ordered stacks of particles at a packing φ = 0.75; big
spherocylinders are shown in blue hues, while small sphero-
cylinders are shown in red hues. Shearing initial configura-
tions as in (a) at the strain rate γ̇ = 10−5, we show (b) pres-
sure p, and (c) magnitude S2 and (d) orientation θ2 of the
nematic order parameter vs net strain γ at different packings
φ. The data points in (b), (c), and (d) represent averages of
the instantaneous values over strain windows of ∆γ = 5. The
dotted horizontal lines in (b), (c) and (d) give the ensemble
averaged values when starting from a random initial configu-
ration. A reduced set of φ are shown in (c) and (d) for clarity.
Animations of the shearing at φ = 0.90 and 0.95 are available
in our Supplemental Material [20].

[20]. From Figs. 19(b), 19(c) and 19(d) we see that this
disordering takes place fairly quickly, except for φ = 0.95
which is considerably above the jamming φJ = 0.906; in
that latter case the system stays ordered up to some con-
siderable strain γ ≈ 60, but then disorders just as at the
smaller φ.

We next consider an initial configuration that is even
more ordered than that of Fig. 19(a). We start with
stacks of ordered big and small spherocylinders as de-
scribed above, but now we phase separate the particles
so that the big particles are all on the bottom of the sys-
tem while the small particles are all on the top of the
system. At each of the two horizontal interfaces between
big and small particles (there are two interfaces due to
our periodic Lees-Edwards boundary conditions) we put
a randomly ordered row consisting of 7 stacks of 5 big
particles and 5 stacks of 7 small particles, as in the case
previously discussed. We then affinely expand the system
to the desired packing fraction φ, and make a random
displacement of each particle uniformly over its Voronoi
cell, so that the resulting configuration has no particle
overlaps. An example of such an initial configuration at
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FIG. 20. (a) Snapshot of a size bidisperse, phase separated,
configuration of particles at a packing φ = 0.75; big sphero-
cylinders are shown in blue hues, while small spherocylinders
are shown in red hues. The interfaces between the regions of
big and small particles consist of a random set of stacks of
5 big particles and 7 small particles. Shearing initial config-
urations as in (a) at the strain rate γ̇ = 10−5, we show (b)
pressure p, and (c) magnitude S2 and (d) orientation θ2 of the
nematic order parameter vs net strain γ at different packings
φ. The data points in (b), (c), and (d) represent averages
of the instantaneous values over strain windows of ∆γ = 10.
The dotted horizontal lines in (b), (c) and (d) give the en-
semble averaged values when starting from a random initial
configuration. A reduced set of φ are shown in (c) and (d) for
clarity. Animations of the shearing at φ = 0.90 and 0.95 are
available in our Supplemental Material [20].

the packing φ = 0.75 is shown in Fig. 20(a).
Shearing such configurations at a strain rate γ̇ = 10−5,

in Figs. 20(b), 20(c), and 20(d) we plot the resulting
p, S2, and θ2 vs γ, obtained by averaging over strain
windows of ∆γ = 10, for a range of packings φ. We see
from Fig. 20(b) that for all packings, except the largest
φ = 0.95, the pressure p increases and appears to saturate
at the same value found for the ensemble average starting
from a random initial configuration. This suggests that
the phase separated initial configurations are disordering
as they are sheared. However, considering Figs. 20(c) and
20(d), it is less clear whether S2 and θ2 are saturating to
the same values as when shearing from a random initial
configuration.

To see what is happening, in Fig. 21 we show snap-
shots of the final configurations obtained after shearing
the initial configurations as in Fig. 20(a) to a total shear
strain γ = 500. While the system at φ = 0.95, shown in
Fig. 21(c), stays mostly phase separated and highly ori-
entationally ordered, we see that for φ = 0.70 and 0.90,
shown in Figs. 20(a) and 20(b), the system remains phase

(a)  φ = 0.70 (b)  φ = 0.90 (c)  φ = 0.95 

FIG. 21. Snapshots of the final configurations, after a total
shear strain of γ = 500, corresponding to initial phase sepa-
rated configurations as in Fig. 20(a). Results are shown for
packings (a) φ = 0.70, (b) φ = 0.90, and (c) φ = 0.95, sheared
at a rate γ̇ = 10−5. Animations of the shearing at φ = 0.90
and 0.95 are available in our Supplemental Material [20].
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FIG. 22. For initial configurations as in Fig. 20(a), the ratio
of the number of contacts per particle between big and small
spherocylinders, Zb-s, to the total number of all contacts per
particle, Z, vs shear strain γ for systems at different packings
φ. Data points represent averages of the instantaneous values
over strain windows of ∆γ = 10. The system is sheared at a
rate γ̇ = 10−5.

separated to a considerable degree, but each of the re-
gions of big and small particles has separately decreased
its orientational ordering. Because the values of S2 and
θ2 are different comparing bidisperse and monodisperse
systems, as shown in Fig. 18, it is thus not surprising that
the S2 and θ2 that we find here for our phase separated
system is not quite in agreement with what is found when
shearing from a bidisperse random initial configuration.

Comparing the configurations shown in Figs. 21(a) and
21(b), we see that the width of the interface between the
two regions, and the penetration of one phase into the
other, seems to increase as the packing φ increases. To
quantify this observation we compute the following. If
Z is the average number of contacts per particle, and
Zb-s is the average number of contacts between big and
small particles per particle, in Fig. 22 we plot the ra-
tio Zb-s/Z vs strain γ at different packings φ. Each
data point in Fig. 22 is an average of the instantaneous
Zb-s/Z over a strain window of ∆γ = 10. The larger
is the fraction Zb-s/Z, the more contacts there are be-
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tween big and small particles, and the less is the extent
of the phase separation. When shearing from a random
initial configuration one finds in the steady-state that
Zb-s/Z ≈ 0.5 at any packing φ. We clearly see in Fig. 22
that, aside from an initial decrease at small strains γ,
the ratio Zb-s/Z steadily increases with increasing strain
γ, suggesting that the big and small particles will com-
pletely mix if we are able to shear to large enough strains.
Moreover, as suggested by Figs. 21(a) and 21(b), we see
that Zb-s/Z generally increases as φ increases, indicat-
ing a greater degree of phase mixing as the system gets
denser. The only exception is for the largest packing
φ = 0.95 where Zb-s/Z stays small and is constant with
γ, indicating the persistence of the phase separated state
in this dense packing.

We can understand the variation of Zb-s/Z with the
net strain γ as follows. The initial decrease at small γ
is because in the initial configuration of non-overlapping
particles there are no contacts of any type; as the system
first starts to shear, it is the particles within the interfaces
between the regions of big and small particles that first
come into contact, and so a large fraction of the particles
that have any contacts at all have contacts with parti-
cles of a different size. As shearing continues, however,
particles in the bulk of the system form contacts as well;
these are generally with particles of the same size, and so
Zb-s/Z decreases. Finally, as the system shears further,
the width of the interface region increases, and penetra-
tion of one phase into the other increases, so Zb-s/Z now
increases. In this latter region Zb-s/Z steadily grows as
γ increases. Animations of the shearing of these phase
separated systems at φ = 0.90 and 0.95 are available in
our Supplemental Material [20].

As seen in Fig. 21, the shearing of the system both
disorders the perfect orientational ordering of the initial
configuration, as well as causes the big and small par-
ticles to mix. The orientational disordering takes place
on a faster strain scale than does the mixing. The for-
mer may be estimated by the increase to saturation of
the pressure in Fig. 20(b), and is presumably a result of
shear induced particle rotations. The latter is measured
by the behavior of Zb-s/Z in Fig. 22, and is a result of the
slower process of transverse diffusion of particles at the
interface. It generally appears that both processes occur
more rapidly as the packing φ increases. We speculate
that the increased number and magnitude of collisions as
φ increases leads to larger fluctuations and thus a faster
rate of disorienting and diffusing. However the failure of
φ = 0.95 to disorder indicates that this simple picture
must be taken with caution.

We have also considered shearing from an initial con-
figuration in which each row of particles is entirely com-
posed of spherocylinders all of the same size. Such rows of
big or small spherocylinders are then stacked randomly.
We find that, for φ < 0.8, such initial configurations dis-
order and result in the same steady-state ensemble as
found from a random initial configuration. For φ ≥ 0.8,
however, the systems remain ordered at least up to the
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FIG. 23. (a) Snapshot of a size monodisperse, locally ordered,
configuration of particles at a packing φ = 0.75; colors are
used to help distinguish different particles and have no other
meaning. Shearing initial configurations as in (a) at the strain
rate γ̇ = 10−4, we show (b) pressure p, and (c) magnitude S2

and (d) orientation θ2 of the nematic order parameter vs net
strain γ at different packings φ. The data points in (b), (c),
and (d) represent averages of the instantaneous values over
strain windows of ∆γ = 10. The dotted horizontal lines in
(b), (c) and (d) give the ensemble averaged values when start-
ing from a random initial configuration. Animations of the
shearing at φ = 0.75 and 0.85 are available in our Supplemen-
tal Material [20].

maximum strain γ = 200 that we have simulated for
these cases.

B. Size-Monodisperse Particles

For size monodisperse systems we have already seen, in
connection with Fig. 13(c), that at large packings the sys-
tem can get locked into a spatially inhomogeneous flowing
state, even when starting from an initial random config-
uration. Here we consider what happens if the initial
configuration is well ordered. All our systems in this sec-
tion are sheared at the rate γ̇ = 10−4.

Since particles are monodisperse in size, it is easy to
construct highly ordered configurations. We start first
with an ordered rectangular lattice of particles, all ori-
ented along the flow direction x̂. We then affinely expand
the system to the desired packing fraction φ, and intro-
duce a small length scale disorder by making a random
displacement of each particle uniformly over its Voronoi
cell. The resulting configuration has no particle over-
laps. An example of such an initial configuration at the
packing φ = 0.75 is shown in Fig. 23(a).
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FIG. 24. Variation of the instantaneous (a) pressure p, and
(b) magnitude S2 and (c) orientation θ2 of the nematic order
parameter, with shear strain γ, for the system of Fig. 23 at
packing φ = 0.80. The periodic behavior seen in these quan-
tities illustrates the periodic wagging of the nematic order
parameter in this highly ordered configuration. The period
of oscillation is γ = 5, corresponding to the relative displace-
ment of particles in adjacent rows by one particle length.

In Figs. 23(b), 23(c), and 23(d) we show the resulting
p, S2, and θ2 vs γ for a range of packings φ, obtained
by averaging the instantaneous values over strain win-
dows of ∆γ = 10. The dotted horizontal lines in these
figures give the ensemble averaged values of these quan-
tities when starting from a random initial configuration.
The configuration at φ = 0.70 is seen to quickly disorder
upon shearing, reaching the same steady-state as found
from a random initial configuration. At φ = 0.75 we see
the system disordering, but over a much longer strain
interval; only towards the end of our simulation, after a
strain of γ = 400, does it appear to be converging to the
steady-state values found from a random initial configu-
ration. For φ = 0.80 and larger, the system remains in
an ordered state for as long as we have sheared. In such
ordered states the particles show a periodic wagging of
the nematic order parameter; the particles in a given row
coherently rotate clockwise to negative angles θi < 0 be-
low the flow direction, where they hit the particles in
the row below them and then bounce back to start an-
other cycle of oscillation. This wagging is manifest in the
periodic behavior of the instantaneous p, S2, and θ2, as
shown in Fig. 24 for the packing φ = 0.80. The period of
these oscillations is γ = 5, corresponding to the relative
displacement of particles in adjacent rows by one particle
length.

To see how stable the ordered configurations of Fig. 23
are to preserving their order upon shearing at large den-
sity, we next construct an initial configuration, starting
just as before, but now introducing a new localized defect
by rotating a group of 5 stacked particles by 90◦, so that
these are oriented perpendicular to the flow. An example
of such an initial configuration at the packing φ = 0.75 is
shown in Fig. 25(a); the rotated particles are in the lower
left corner of the image. In Figs. 25(b), 25(c), and 25(d)
we show the resulting p, S2 and θ2 as such configurations
are sheared at different packings φ. The plotted values
are obtained by averaging the instantaneous values over
strain windows of ∆γ = 10.

In contrast to the behavior seen in Fig. 23(b) for the
defect free configuration, in Fig. 25(b) we see for all pack-
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FIG. 25. (a) Snapshot of a size monodisperse, locally ordered,
configuration of particles at a packing φ = 0.75, where a de-
fect has been introduced by the rotation by 90◦ of 5 adjacent
particles in the lower left corner; colors are used to help distin-
guish different particles and have no other meaning. Shearing
initial configurations as in (a) at the strain rate γ̇ = 10−4, we
show (b) pressure p, and (c) magnitude S2 and (d) orientation
θ2 of the nematic order parameter vs net strain γ at different
packings φ. The data points in (b), (c), and (d) represent
averages of the instantaneous values over strain windows of
∆γ = 10. The dotted horizontal lines in (b), (c) and (d) give
the ensemble averaged values when starting from a random
initial configuration. Animations of the shearing at φ = 0.90
and 0.92 are available in our Supplemental Material [20].

ings φ = 0.70 to 0.92 that the system disorders as it
shears, with the pressure rising from its initial small value
to the same steady-state value found from a random ini-
tial configuration. Interestingly, it is the larger φ that
disorder more quickly than the smaller φ. In Figs. 25(c)
and 25(d), although the data is more scattered, we see
that S2 and θ2 similarly reach the same values found
from shearing from a random initial configuration; the
only exception is for φ = 0.85 where S2 remains larger
and θ2 remains smaller, indicating that the initial config-
uration has not yet disordered to the extent found when
shearing from a random initial configuration. Looking at
animations of the shearing, available in our Supplemental
Material [20], we see that the localized defect of rotated
particles, introduced in the initial configuration, induces
a region of nearby disorder, that grows and eventually
fills the system as the system is sheared. For our larger
packing φ = 0.95, however, we find that after a strain of
γ ≈ 260, the defect of rotated particles disappears, the
particles all become aligned parallel to the flow, and the
system persists in an ordered state for the remainder of
the simulation up to γ = 500.

We have also considered other particular initial config-
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urations. In one case we take the same configurations as
in Fig. 23(a) and then randomly displace the rows of par-
ticles in the horizontal direction, with all the particles in
a given row displacing the same amount. Such configura-
tions behave qualitatively the same as the ones without
the row displacements; large packings φ remain ordered
while small packings φ disorder, although the disorder-
ing takes place somewhat sooner and extends to a slightly
larger φ than without the row displacements. We have
similarly taken the same configurations as in Fig. 23(a)
but then randomly displace the columns of particles in
the vertical direction, with all the particles in a given
column displacing the same amount. In this case we find
that all φ ≤ 0.88 disorder by roughly γ = 50, but larger
φ ≥ 0.90 remain ordered out to γ = 200.

From our results in this section we conclude that, for
both size-bidisperse and size-monodisperse systems, even
highly ordered initial configurations will disorder upon
shearing, and result in the same steady-state ensemble
as found when starting from a random initial configura-
tion, if the packing φ is small or moderate; for our sphero-
cylinders with α = 4 we find this to be the case whenever
φ < 0.80. However, even for more dense systems, we find
in many cases that the initial highly ordered configura-
tion will also disorder and result in the same ensemble
as found from a random initial configuration. The initial
configurations that remain highly ordered out to large
total stains γ seem to be those in which the particles
are able to flow over each other in well defined channels,
resulting only in a coherent wagging of the nematic or-
der parameter. However, when the initial configuration
contains sufficient variation in the vertical alignment of
particles, even if this occurs only locally, the wagging
of particles near these vertical misalignments turns into
full particle rotations, which then serve to increase and
propagate disorder in the flowing configuration. We can-
not rule out the possibility that even highly ordered ini-
tial configurations might eventually disorder if sheared to
larger strains than we have been able to consider here.

VI. SUMMARY

In this work we have considered a model of sheared,
athermal, frictionless two dimensional spherocylinders in
suspension at constant volume. The simplicity of our
model, in which the only interactions are pairwise repul-
sive elastic forces and a viscous damping with respect to
the suspending host medium, allows us to shear to very
long total strains and completely characterize the behav-
ior of the system over a wide range of packing fractions
φ, strain rates γ̇, and particle asphericities α. In two
prior works we focused on the rheological properties of
this model and the variation of the jamming transition
φJ with particle asphericity [7], and on the rotational mo-
tion and nematic orientational ordering induced by the
shearing [8]. In the present work we have focused on the
spatial structure and correlations of the sheared system.

For a size-bidisperse system of particles, we have con-
sidered the average velocity profile to check for shear
banding, and we have looked at correlations of the trans-
verse velocity, particle position, the nematic order param-
eter, and the particle’s angular velocity. We find that,
while dense systems near and above jamming can form
shear bands on short strain scales, these bands wander
over time and so give rise to the expected linear velocity
profile when averaging over long strain scales. We find
that transverse velocity correlations give evidence for a
diverging length scale as the jamming transition is ap-
proached, however this is only so for nearly circular par-
ticles with small α = 0.01; for more elongated particles
with α = 4, the location of the minimum in the correla-
tion function seems to decrease to smaller distances as the
packing approaches and goes above the jamming φJ . We
find that the positional and the nematic order parameter
correlations remain short ranged, even as the packing φ
approaches and goes above φJ . We thus confirm the con-
clusion of our prior Ref. [8] that the finite nematic order
parameter S2 of the sheared system is not a consequence
of long range cooperative behavior among the particles,
but is rather because the finite shearing rate γ̇ acts like
an ordering field. We also have computed the angular
velocity correlation between particles, and find that par-
ticles in contact are anti-correlated, while the correlation
essentially vanishes at larger distances. Particles thus
rotate incoherently.

For a size-monodisperse system of elongated particles
with α = 4, we have considered several of the same quan-
tities, in order to quantify what structural differences
might exist between the monodisperse and bidisperse sys-
tems. Considering the velocity profile, as with bidisperse
systems we find a similar shear banding on short strain
scales that averages to the expected linear velocity profile
on long strain scales. However, unlike the bidisperse sys-
tem, for dense systems well above jamming we have found
that the system can also lock into coherent blocks of par-
ticles that move at constant velocity, sliding over one
another to give the imposed fixed strain rate. Measure-
ment of the distribution P(θ) of particle orientations also
shows a distinct difference from the bidisperse system;
whereas in a dense bidisperse system P(θ) has a single
broad peak, located at a finite angle with respect to the
flow direction, in a dense monodisperse system the peak
in P(θ) stays comparatively sharp and is located close to
θ = 0, while a shoulder that develops into a secondary
peak develops at large θ. Thus in the monodisperse sys-
tem the particles are most likely to orient parallel to the
flow direction.

We have also computed the positional and nematic or-
der parameter correlations for the monodisperse system
and find a set of sharper peaks that persist to larger
distances than in the bidisperse case. The monodisperse
system thus has greater local ordering than the bidisperse
system. But still we find that correlations decay expo-
nentially and so correlation lengths remain finite. Our
finding that there are significant structural differences
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in dense packings, comparing monodisperse and bidis-
perse systems, supports our conclusion in Ref. [8] that
there is a crossover from a single-particle-like behavior
at small φ, to a behavior dominated by the geometry of
the dense packing at large φ, and that this is responsi-
ble for the non-monotonic variation we see in the mag-
nitude of the nematic order parameter S2 as φ increases.
Comparing the magnitude of S2, as well as the average
angular velocity −〈θ̇i〉/γ̇, for monodisperse vs bidisperse
systems, we see that the two are in good agreement for
all φ < φS2 max, but then disagree for φ > φS2 max.

Finally we have studied the behavior when we shear
starting from well ordered initial configurations, as com-
pared to the random initial configurations that we use
elsewhere in our work. In many cases we find that the or-
dered initial configuration eventually evolves to the same
steady-state ensemble obtained from an random initial
configuration. However it is difficult to generalize about
the process that leads to this disordering. For initial con-
figurations with no particle contacts, particle rotations
induced by the viscous drag force lead to the collisions
that are essential to this disordering. At dilute pack-
ings φ, where the free volume available to each particle is
larger, we always find that the initial configuration dis-
orders. But at denser packings, whether such collisions
are effective to disrupt the particle ordering, or whether
they lead merely to the wagging of particles as in Fig. 24,
seems to depends on details of the initial configuration.
One factor that increases disordering is when there is
greater misalignment of the particle positions yi in the
direction transverse to the flow. Since the average flow

velocity vix of a particle is set by the particle’s coordi-
nate yi, the greater the misalignment of the particles, the
more are the collisions that are induced by translational
motion; combined with particle rotations, such collisions
act to break up the initial ordering of particles in well
defined rows. When there is little vertical misalignment,
particles more easily slide over one another, preserving
the row ordering.

The dependence of the time required to disorder on the
packing density φ seems to vary with the particular initial
configuration. In some cases, such as the phase separated
bidisperse configurations of Fig. 20 or the monodisperse
configurations with the localized defect of Fig. 25, the
configurations seem to disorder faster as the packing φ
increases, (though in both cases the most dense φ fails
to follow this trend). In other cases, such as the bidis-
perse configurations of particle stacks in Fig. 19 or the
monodisperse configurations of Fig. 23, disordering takes
longer as φ increases. We have no clear understanding
of why this is so, and we therefore leave this question for
future work.
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