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Abstract

Nematic liquid crystals exhibit configurations in which the underlying ordering changes markedly

on macroscopic length scales. Such structures include topological defects in the nematic phase and

tactoids within nematic-isotropic coexistence. We discuss a computational study of inhomogeneous

configurations that is based on a field theory extension of the Maier-Saupe molecular model of

a uniaxial, nematic liquid crystal. A tensor order parameter is defined as the second moment

of an orientational probability distribution, leading to a free energy that is not convex within

the isotropic-nematic coexistence region, and that goes to infinity if the eigenvalues of the order

parameter become non-physical. Computations of the spatial profile of the order parameter are

presented for an isotropic-nematic interface in one dimension, a tactoid in two dimensions, and

a nematic disclination in two dimensions. We compare our results to those given by the Landau

de-Gennes free energy for the same configurations and discuss the advantages of such a model over

the latter.

I. INTRODUCTION

Liquid crystals represent an interesting opportunity to study a unique interplay between

topology, anisotropy, and elasticity in materials. The entropy driven local ordering of rod-

like molecules accounts for anisotropic optical and transport properties even in homogeneous

nematics. Furthermore, external fields or topological defects can distort the local ordering

of the molecules giving rise to several elastic modes [1, 2]. The ability to quantitatively

model these complex features of liquid crystals is imperative to address recent applications,

including electrokinetics of colloidal particles or biological materials [3–5], surface and tex-

ture generation and actuation in nematic surfaces [6, 7], systems of living nematics [8], and

stabilization of liquid shells [9].

Liquid crystals generally belong to one of two main classes: Thermotropics are short

molecules that undergo ordering through changes in temperature, while lyotropics are more

complex molecules or assemblies of molecules in solvent that order through changes in con-

centration. Thermotropics have been extensively studied, both theoretically and experi-

mentally, due to their applications in displays [1, 10]. However, because of their small
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characteristic length scale, the fine structure of defects and two phase domains (commonly

referred to as tactoids) are generally beyond the resolution of standard optical techniques.

On the other hand experimental studies of defect core structures and tactoids have been

recently undertaken in so called lyotropic chromonic liquid crystals. These materials are

composed of disc-like molecules that stack to form rod-like structures [11, 12]. The charac-

teristic length scale that determines the size of defects and tactoid interfacial thickness in

chromonics are thousands of times larger than those in thermotropics, and hence are readily

observable with conventional optical techniques. Such experiments have revealed anisotropic

geometries of the order parameter near the core of defects, and “cusp-like” features on the

interface of tactoids [13, 14].

To mathematically model a liquid crystal in its nematic phase a unit vector n, the direc-

tor, is typically defined to characterize the local orientation of the molecules. Because the

molecules are apolar, any model involving n must be symmetric with respect to n → −n.

Distorted nematic configurations are described by three independent elastic modes: splay,

twist, and bend. The energy cost of each mode is associated with three elastic constants K1,

K2, and K3 in the Oseen-Frank free energy [2, 15]. Models and computations often assume

that these constants are equal, though it has been shown for chromonics that the values of

all three constants are widely different for the relevant range of temperatures and molecular

concentrations [16]. Additionally, topological defects and tactoids lead to large distortions

of the underlying order. To model defected configurations using the Oseen-Frank free energy

either a short distance cutoff is introduced, and the defect core treated separately, or a new

variable representing the degree of order of the molecules is added to the free energy [17, 18].

This new variable also has the effect of regularizing singularities at the core of defects. The

method has recently allowed the study of tactoids within the coexistence region [19].

Resolving the degree of orientational order and the orientation poses several challenges

computationally, however. The director is undefined both at the core of defects and in the

isotropic phase, and half-integer disclinations (the stable line defects in liquid crystals) can-

not be adequately described computationally with a polar vector. Therefore, the model that

is widely used to describe either disclinations or tactoids is the phenomenological Landau-de

Gennes (LdG) free energy [20–22]. In the LdG framework, the order parameter is defined

to be a traceless and symmetric tensor, Q, typically proportional to a macroscopic quantity,

e.g. the magnetic susceptibility [23, 24]. The free energy is then assumed to be an analytic
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function in powers of Q. To model spatial inhomogeneity, an expansion in gradients of Q

is typically added to the free energy. Such an expansion in gradients can be mapped to the

elastic modes in the director n in the Oseen-Frank elastic energy [2].

The validity of the LdG free energy in regions of large variation of the order is not well

understood, and it has been shown that the simplest LdG elastic expansions that capture dif-

ferences in the Oseen-Frank constants result in unbounded free energies [25, 26]. Therefore,

when working in the LdG framework, one must introduce more computationally complex

assumptions to bound the free energy. In this work, we present an alternative field theo-

retic model of a nematic liquid crystal that is based on a microscopic description, and that

allows for anisotropic elastic energy functionals that can capture the elasticity observed in

chromonics. The model presented here is a computational implementation of the model in-

troduced by Ball and Majumdar [26], which itself is a continuum extension of the well known

Maier-Saupe model for the nematic-isotropic phase transition [27]. The Maier-Saupe model

is a mean field molecular theory in which the orientation of the molecules of the liquid crystal

is described by a probability distribution function, so that each molecule interacts only with

the average of its neighbors. Below, we define Q microscopically, based on a probability

distribution that is allowed to vary spatially (as in the hypothesis of local equilibrium in

nonequilibrium thermodynamics). Our ultimate goal is to develop a computationally viable

implementation of the model for fully anisotropic systems. We present below the results of

several proof of concept computations on various prototypical liquid crystal configurations,

albeit in the one elastic constant approximation. All our results are compared with those

from the LdG free energy for analogous configurations.

In Section II we briefly summarize the model as put forth in Ref. [26] with minor ad-

justments to notation and conceptual understanding. In Section III we present the compu-

tational implementation of the model and derive the equations that are solved numerically.

We also briefly discuss the conventions used to compare to the LdG free energy. In Sec-

tion IV we compare the free energies of the model presented here with that given by LdG

and show that they are both non-convex. We then present computational results from the

model for a one dimensional nematic-isotropic interface, a two-dimensional tactoid, and a

two-dimensional disclination. All of these are compared to results given by LdG. Finally,

in Section V we summarize and discuss the computational model and results, and discuss

future potential for the model.
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II. MODEL

Following Ref. [26], we consider a tensor order parameter defined over a small volume at

r

Q(r) =

∫

S2

(

ξ ⊗ ξ − 1

3
I
)

p(ξ; r) dξ (1)

where ξ is a unit vector in S2, I is the identity tensor, and p(ξ; r) is the canonical probability

distribution of molecular orientation in local equilibrium at some temperature T at r. Due

to the symmetry of the molecules, p(ξ; r) must have a vanishing first moment; hence, Q is

defined as the second moment of the orientational probability distribution. With this defi-

nition, the order parameter is symmetric, traceless, and, most importantly, has eigenvalues

that are constrained to lie in the range −1/3 ≤ q ≤ 2/3. The situation where q = −1/3, 2/3

represents perfect ordering of the molecules (i.e. the variance of the distribution goes to

zero), and is therefore interpreted as unphysical. We note that Eq. (1) can be generalized

to biaxial molecules, that is, molecules that are microscopically plate-like, by appropriately

changing the domain of the probability distribution to three Euler angles, and considering

the second moment of the extended probability distribution. Such a description may be

useful in studying similar defects and domains for biaxial molecules, as in Ref. [28].

A mean field free energy functional of Q(r) is defined by

F [Q(r)] = H [Q(r)]− T∆S (2)

where H is the energy of a configuration, and ∆S its entropy relative to the uniform distri-

bution. The energy is chosen to be

H [Q(r)] =

∫

Ω

(

− αTr[Q2] + fe(Q,∇Q)
)

dr (3)

where α is an interaction parameter, and fe is an elastic energy. The term −αTr[Q2]

originates from the Maier-Saupe model, and incorporates an effective contact interaction

that promotes alignment [27, 29]. In the spatially homogeneous case fe = 0. The entropy is

the usual Gibbs entropy

∆S = −nkB

∫

Ω

(
∫

S2

p(ξ; r) ln
(

4πp(ξ; r)
)

dξ

)

dr (4)

where n is the number density of molecules. It should be noted that the outer integral is on

the physical domain of the system, and the inner integral is on the unit sphere, the domain of

5



(a) (b)

FIG. 1. Examples of the probability distribution, p(ξ) of Eq. (5), on the sphere spanned by ξ for

(a) a uniaxial configuration and (b) a biaxial configuration. Note that the probability distribution

involves a uniaxial molecule, but a biaxial order parameter can occur for a probability distribution

with biaxial second moment. Only northern hemispheres are displayed since the probability dis-

tribution is symmetric about the equator due to the symmetry of the molecules. For these plots,

(a) Λ = 4diag(−1, −1, 0.5) and (b) Λ = 10diag(−0.25, −1, 0.25).

the probability distribution. This model, with these definitions, is equivalent to the Maier-

Saupe model in the spatially homogeneous case [27]. We extend the Maier-Saupe treatment

to spatially nonuniform configurations by minimization of Eq. (2) subject to boundary

conditions that lead to topological defects in the domain, or two-phase configurations at

coexistence. We then find configurations Q(r) that are not uniform, and that minimize Eq.

(2) subject to the constraint (1).

The entropy, Eq. (4), can be maximized, subject to the constraint (1), by introducing

a tensor of Lagrange multipliers, Λ(r), for each component of the constraint [26, 30]. The

resulting probability that maximizes the entropy is given by

p(ξ; r) =
exp[ξTΛ(r)ξ]

Z[Λ(r)]
(5)

Z[Λ(r)] =

∫

S2

exp[ξTΛ(r)ξ] dξ (6)

where Z can be interpreted as a single particle partition function. Fig. 1 shows graphical

examples of the probability distribution on the unit sphere. We mention that the single
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particle partition function can only be computed numerically, and hence the minimization

procedure described next has to be carried out numerically in its entirety.

The minimization of F in Eq. (2) with p(ξ; r) given by Eqs. (5) and (6) is therefore

reformulated in terms of two tensor fields on the domain, Q(r) and Λ(r) (from here on the

dependence on r will be dropped for brevity). Λ acts as an effective interaction field which

mediates interactions among molecules. Substituting Eq. (5) into the constraint, Eq. (1),

leads to a relation between Q and Λ:

Q +
1

3
I =

∂ lnZ[Λ]

∂Λ
. (7)

It has been shown that if the eigenvalues of Q approach the endpoints of their physically

admissible values, both Λ and the free energy diverge. This feature is not present in the

LdG theory, which can lead to nonphysical configurations for certain choices of the elastic

energy, fe, in Eq. (3) [26, 31].

The fields Q and Λ that minimize Eq. (2) and satisfy Eq. (7) are the equilibrium

configuration for a given set of boundary conditions. In the next section we describe a

computational implementation of the model presented here.

III. COMPUTATIONAL METHOD

A. Molecular Theory

To find the configuration Q that minimizes the free energy of the molecular field theory

we numerically solve the differential equations δF/δQ = 0. This, in principle, is a system

of nine equations. However, since Q is traceless and symmetric, there are only five degrees

of freedom. The eigenvalues of Q describe two degrees of freedom since Q is traceless. The

eigenvectors of Q form an orthonormal frame (since Q is symmetric) which accounts for the

other three degrees of freedom: the first vector has two degrees of freedom since it is a unit

vector, the second vector has one degree of freedom since it is a unit vector and must be

orthogonal to the first vector, and the third vector is determined from the other two vectors

since it must be orthogonal to both. The eigenvalues are related to the amount of order in

the system, while the eigenvector which corresponds to the largest eigenvalue is the director,

n. This is illustrated in Fig. 1 which shows the probability distribution for molecules with

a director along the z-axis. Fig. 1a shows a uniaxial configuration in which two of the
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eigenvalues are degenerate, leading to arbitrary eigenvectors in the xy-plane. It is possible

for the probability distribution to be of the form in Fig. 1b in which the director is still

along the z-axis, but all three eigenvalues are distinct. In this case, we call the probability

distribution biaxial since it leads to a second moment, Q, that is biaxial. It is known that

biaxiality of the order parameter is important near defects and at interfaces in systems of

uniaxial molecules as modeled by the LdG free energy [22, 32, 33]. Despite the uniaxial

character of the molecules, Eq. (1), the molecular theory detailed here can accommodate

biaxial order.

Local biaxial order will be parametrized as

Q = S(n⊗ n− 1

3
I) + P (m⊗m− ℓ⊗ ℓ) (8)

where {n,m, ℓ} are an orthonormal triad of vectors. This representation explicitly includes

the five degrees of freedom of Q, namely, three for the orthonormal set of vectors and

two for the amplitudes S and P . In addition to n being the director, S represents the

amount of uniaxial order, and P the amount of biaxial order. That is, S = (3/2) q1 and

|P | = (1/2) (q2 − q3) where qi are the eigenvalues of Q, and q3 ≤ q2 ≤ q1.

Because we are primarily concerned with experiments in thin nematic films, we further

reduce the degrees of freedom of Q by only considering spatial variation in at most two

dimensions. If we write n = (cosφ, sinφ, 0), m = (− sin φ, cosφ, 0), and ℓ = (0, 0, 1),

where φ is the angle the director makes with the x-axis, we need only one degree of free-

dom to describe the eigenframe of Q. We can then further simplify the computations by

transforming to the auxiliary variables [34]

η = S − 3

2
(S − P ) sin2 φ

µ = P +
1

2
(S − P ) sin2 φ (9)

ν =
1

2
(S − P ) sin 2φ.

This transformation is equivalent to expressing Q in terms of a new basis for traceless,

symmetric matrices. While we do this for ease of computation, we can transform back to the

original parametrization after calculating the eigenvalues and eigenvectors of Q. Although

all of our calculations are conducted with the set {η, µ, ν}, we will present our results in

terms of the more physically intuitive S, P , and φ.
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The tensor order parameter in this representation is

Q =











2

3
η ν 0

ν −1

3
η + µ 0

0 0 −1

3
η − µ











. (10)

We can now substitute Eq. (10) into Eq. (1) to write the constraint in terms of η, µ, and ν.

Following the procedure of Section II, we introduce three Lagrange multipliers Λ1, Λ2, and

Λ3 corresponding to η, µ and ν respectively, and a partition function

Z[Λ1,Λ2,Λ3] =

∫

S2

exp

[

3

2
Λ1ξ

2

1
+ Λ2(

1

2
ξ2
1
+ ξ2

2
) + Λ3ξ1ξ2

]

dξ (11)

while the relation from Eq. (7) manifests itself as the three equations

∂ lnZ

∂Λ1

= η +
1

2
∂ lnZ

∂Λ2

= µ+
1

2
(12)

∂ lnZ

∂Λ3

= ν

that implicitly relate the variables η, µ, and ν to the Lagrange multipliers. Note that since

Z[Λ1,Λ2,Λ3] cannot be obtained analytically, relation (12) can only be solved numerically.

The free energy, Eq. (2), is rewritten as

F =

∫

Ω

(

fb(η, µ, ν,Λ1,Λ2,Λ3) + fe(η, µ, ν,∇η,∇µ,∇ν)
)

dr (13)

where fb is a bulk free energy density that does not depend on gradients of the fields. Written

explicitly,

fb = −2α
(1

3
η2+µ2+ ν2

)

+nkBT
(

Λ1

(

η+
1

2

)

+Λ2

(

µ+
1

2

)

+Λ3ν+ln(4π)− lnZ[Λ1,Λ2,Λ3]
)

.

(14)

We will focus in this paper on an isotropic elastic energy fe = L∂kQij∂kQij where repeated

indices are summed, and L is the elastic constant. This is the ‘one constant approximation’

so that mapping this elastic energy to the Oseen-Frank elastic energy yields the same value

for all three elastic constants [25]. Written in terms of the auxiliary variables we have

fe = 2L
(1

3
|∇η|2 + |∇µ|2 + |∇ν|2

)

. (15)
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Before deriving the differential equations to be solved we redefine quantities in a dimension-

less way:

f̃b =
fb

nkBT
, f̃e =

fe
nkBT

, x̃ =
x

ξMS

, L̃ =
L

ξ2MSnkBT
(16)

where ξMS is a length scale which we set by defining the value of the dimensionless parameter

L̃ instead. For the rest of the paper the tildes are omitted for brevity.

To derive the equilibrium equations, we note that Eq. (12) relates η, µ, and ν as functions

of {Λi} through the unknown single particle partition function. It has been shown that these

relations are invertible when η, µ, and ν give physical eigenvalues of Q [30]. We can then

regard Λ1, Λ2, and Λ3 as functions of η, µ, and ν via the inverse of Eq. (12). Although

an analytic inverse does not exist we can numerically invert this equation using a Newton-

Raphson method. We create a MATLAB scattered interpolant from values given by the

Newton-Raphson method. We select interpolant points from the values 0 ≤ S ≤ 0.7,

0 ≤ P ≤ 0.1, and −π/2 ≤ φ ≤ π/2 with ∆S = ∆P = 0.05 and ∆φ = 0.0245. These values

are then transformed to η, µ, and ν through Eqs. (9) and the Newton-Raphson method is

run using these values to find Λi for the chosen interpolant points. The MATLAB scattered

interpolant is then created and used in the numerical minimization procedure. The Euler-

Lagrange equations are derived by taking the variations of Eqs. (14) and (15) with respect

to η, µ, and ν while using Eqs. (12) to simplify. The dimensionless equations are

4

3
L∇2η = Λ1 −

4

3

α

nkBT
η

4L∇2µ = Λ2 − 4
α

nkBT
µ (17)

4L∇2ν = Λ3 − 4
α

nkBT
ν

where, again, Λi are numerically calculated as functions of η, µ, and ν. Eqs. (17) are the

central equations of this study and are solved numerically in the following section for various

cases of interest.

To numerically solve Eqs. (17) we use a finite differencing scheme. For one-dimensional

configurations, an implicit backward Euler method is used with 129 discrete points and time

step ∆t = 0.1∆x2. For two-dimensional configurations a Gauss-Seidel relaxation method

with 2572 discrete points is used [35]. We iterate until the calculated energy of a configuration

fails to change to within 10−7. We check that the calculated energy of the initial condition

is larger than the energy of the final configuration. In all cases we use Dirichlet boundary
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conditions that depend on the case being studied, as described in the relevant section. The

MATLAB code used for the numerical solutions can be found in Ref. [36].

B. Landau-de Gennes Theory

Here, we summarize the conventions and notation used in the calculations to compare

the LdG free energy with the molecular field theory presented in the previous section. The

bulk energy density is of the form

fLdG =
1

2
a(T − T ∗) Tr[Q2]− 1

3
B Tr[Q3] +

1

4
C
(

Tr[Q2]
)2

(18)

where a, B, and C are material parameters, and T ∗ is the temperature at which the isotropic

phase loses its stability. We use the same elastic free energy defined above when comparing

to the molecular field theory as well. For the sake of computation, we define the following

dimensionless quantities:

f̃LdG =
fLdG
C

, f̃e =
fLdG
C

, x̃ =
x

ξLdG
, L̃ =

L

ξ2LdGC
(19)

which leaves a(T − T ∗)/C, B/C, and L̃ as dimensionless parameters for the model. ξLdG

here is a length scale for the model defined by the value of L̃ similar to ξMS in Eq. (16). As

before, the tilde is subsequently dropped for brevity.

Computations are done using the same auxiliary variables defined in Eq. (9) with the

same finite difference scheme outlined above to solve the Euler-Lagrange equations resulting

from fLdG.

IV. RESULTS

A. Uniform Configuration and Bulk Free Energy

We first check our numerical method and methodology with known results for the Maier-

Saupe free energy. As mentioned above, this model should be equivalent to the Maier-Saupe

model in the case of a uniform system, fe = 0. In this case, it has been shown that

minimizers of the bulk free energy, Eq. (14), will be uniaxial states [26]. Thus, because we

are considering a uniform system, the choice of director is arbitrary. We choose φ = 0 for

this analysis so the auxiliary variables defined by Eq. (9) give η = S, µ = P , and ν = 0.
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FIG. 2. Equilibrium value of the uniaxial order, S, versus the parameter α/(nkBT ). At high T ,

the system is in an isotropic phase, while at low T the system is in a uniaxial nematic phase. A

first order phase transition occurs at α/(nkBT ) ≈ 3.4049.

Further, since we know the system will be uniaxial we can take µ = P = 0. One can show

that this implies Λ2 = Λ3 = 0 from Eq. (12).

Because the system is uniform, S is constant, and hence ∇2S = 0. Defining SN as the

value of S in uniform equilibrium, we find, from Eq. (17):

Λ1 =
4

3

α

nkBT
SN (20)

which is a well known result for the Maier-Saupe model when Λ1 is regarded as an effective

interaction strength [1, 27, 29]. We then substitute Eq. (20) into Eq. (14) and numerically

minimize it to find the value of S in equilibrium for a uniform system. Fig. 2 shows SN

as a function of α/(nkBT ). At high temperatures, the equilibrium phase is isotropic with
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S = 0. At low temperatures a uniaxial nematic phase is stable with S = SN . A first order

phase transition occurs at α/(nkBT ) ≈ 3.4049 with SN = 0.4281. The diagram of Fig. 2

agrees with previous studies of the Maier-Saupe model which has been used successfully to

describe phase transitions in experiments [29].

We can further elucidate the nature of the molecular field theory by examining the bulk

free energy density, Eq. (14), restricted to a uniaxial configuration. For a uniform, uniaxial

system, the free energy density is

fb(S) = −2

3

α

nkBT
S2 + Λ1

(

S +
1

2

)

− lnZ[Λ1] + ln(4π) (21)

where Λ1 is calculated as a function of S through Eq. (12). This function is plotted in Fig.

3 for three different values of α/(nkBT ). As α/(nkBT ) increases we find that fb becomes

non-convex, leading to a coexistence region in the phase diagram, and a first order phase

transition. It is well known that these features are also present in the LdG free energy of

Eq. (18) [23]. The primary difference between LdG and the Maier-Saupe theory is that in

the latter fb diverges when S = −1/2 or S = 1, that is, when the eigenvalues leave the

physical range. The non-convexity obtained agrees with similar plots for the Maier-Saupe

free energy in Ref. [29].

The non-convexity and similarity of the bulk free energy to LdG suggest that there should

exist stable interfacial configurations at coexistence as well as stable solutions for topological

defects in the nematic phase. In the following three subsections we demonstrate just this

and compare to results given by LdG theory.

B. Planar Isotropic-Nematic Interface

We consider a one-dimensional configuration with a planar interface in which the order

parameter Q(r) = Q(x). We solve Eqs. (17) on a domain of size L = 100ξMS with Dirichlet

boundary conditions where S = SN at x = −50ξMS and S = 0 at x = 50ξMS. We set

α/(nkBT ) = 3.4049 and SN = 0.4281 so that the isotropic and nematic bulk phases coexist.

An important note is that since we are using the “one-constant approximation” for the

elastic free energy there are no anisotropic effects, such as anchoring, in our analysis. It is

known that anisotropy changes the width of an interface for different director orientations,

however, because we are only considering isotropic terms here the structure of the interfacial
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FIG. 3. Bulk free energy density as a function of the uniaxial order, S for three values of the

parameter α/(nkBT ). As α/(nkBT ) increases, the free energy becomes non-convex, leading to

coexistence between the isotropic and nematic phases.

profile should not change if the angle of the director in the nematic phase, φ, is changed

[22].

Fig. 4 shows the equilibrium uniaxial order parameter S for φ = 0. We find a smooth,

diffuse interface with P = 0, that is, no biaxiality. We also find that changing the angle of

the director does not change the solution, as expected. We can calculate the width of the

interface by finding the points where S = 0.1SN and S = 0.9SN and define them as x1 and

x2 respectively. Then we define the width as x1 − x2.

In order to compare with the LdG free energy, Eq. (18), we recall that the interfacial
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FIG. 4. S as a function of position for a one-dimensional interface. Dirichlet boundary conditions

maintain S = SN at the left boundary while S = 0 at the right boundary. L = 1 for this

configuration.

profile for this configuration is known exactly

SLdG(x) =
SN

2

(

1− tanh
( x

wLdG

)

)

(22)

with

wLdG =
6
√
6

B/C

√
L (23)

which sets the width of the interface. This implies that (x1 − x2) ∝
√
L. One can similiarly

show that the bulk energy contribution, i.e. the bulk contribution to the surface tension,

σ ∝
√
L.

With this in mind, we compare the scaling of the molecular field theory solutions that

we obtain with
√
L. To this end, we find the interface widths and bulk surface tensions for
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FIG. 5. (a) Interface width and (b) bulk surface tension versus
√
L. Dots represent the molecular

field theory (MFT) computations while the solid lines are derived from the analytical solution for

LdG, Eq. (22), with B/C = 9. Both the interface width and excess free energy (i.e. surface

tension) scale linearly with the parameter
√
L, the same scaling relationship as that of Landau-de

Gennes.

solutions to Eqs. (17) for a variety of values of L. The bulk surface tension is found by

numerically integrating the bulk free energy density, Eq. (14). Interface widths and bulk

surface tensions are plotted in Fig. 5 for both the molecular field theory and LdG. We find

both (x1−x2) ∝
√
L and σ ∝

√
L for the molecular field theory. Note that the LdG solution

allows additional tuning via the parameter B/C, which we have set to 9 in Fig. 5. In Fig.

5b the discrepency between the LdG solution and the molecular field theory computations

highlights that even if the widths of LdG interfaces are tuned to be similar to those of the

molecular field theory, the surface tensions cannot be, and vice versa.

We note that the similarity in bulk free energy landscape likely leads to the similarity in

solutions for LdG and the molecular field theory. Anisotropic effects have yet to be analyzed

for our model, for which it is known for LdG there is nonzero biaxiality at interfaces [22].

This will be the subject of a future study.
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FIG. 6. Plots of S(x, y) for (a) a tactoid with m = 1 director configuration at the outer boundary

and (b) tactoid with m = −1/2 director configuration at the outer boundary. The radius in (a) is

R/ξMS = 19.92±0.2 and the radius in (b) is R/ξMS = 4.59±0.2. The smaller size of the m = −1/2

tactoid is due to the director distortion energy’s m2 dependence. For both computations L = 1.

C. Tactoids

We consider a two-dimensional square domain of size L = 100ξMS. We set S = SN ,

P = 0, and φ = mθ at the outer boundary, where θ is the polar angle and m is the winding

number of φ. We set α/(nkBT ) = 3.4049 and L = 1. As initial conditions we set S = 0

within a disc centered at the origin of radius R = 15ξMS.

By “tactoid” we refer to a two-phase domain separated by an interface. In the isotropic

region S = P = 0. We consider distorted boundary conditions to ensure an interface

forms in the simulation. Because the director can vary as a function of position in two

dimensions, the boundary conditions imposed will change the size and shape of the object

under consideration. Since we are only considering isotropic gradients in the elastic free

energy, there is no anchoring term at the interface, i.e. there is not a difference in energy

based on the orientation of the molecules relative to the interface. Thus, we expect the

tactoids to be cylindrical. The topology of the boundary conditions does impact the size of

the tactoids, however. This is due to a balance between two energies: the surface tension,

which in two dimensions is proportional to R, the radius of the tactoid, and the elastic

energy in the nematic region from Oseen-Frank which is proportional to m2 ln(L/R). Due

to the symmetry of the molecules, half integer m is allowed and costs four times less director
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distortion energy than integer m. Hence, we expect that tactoids with integer boundary

conditions should be approximately four times larger than those with half integer boundary

conditions.

In Fig. 6, we show equilibrium configurations for boundary conditions with m = 1 and

m = −1/2. In both cases an isotropic region with S = P = 0 is present at the center of

the computational domain. As expected, both configurations are cylindrical in shape and

we find that R/ξMS = 19.92± 0.2 for the m = 1 configuration and R/ξMS = 4.59± 0.2 for

the m = −1/2 configuration. To find the radii we take a cut from the center of the tactoid

to the outer boundary and find the point where S = 0.5SN . It should be noted that LdG,

in the one-constant approximation in elastic energy, gives similar results in terms of the size

and shape of tactoids.

It is known for the LdG bulk free energy with anisotropic elastic free energies that the

shape of the tactoids also changes due to anchoring at the interface [21]. Anisotropic effects

on the shape of tactoids in the molecular field theory will be the subject of a future study.

D. Nematic Disclinations

We consider next the case of disclination lines in thin films. We consider a two-

dimensional square of size L = 10ξMS. For all calculations L = 1 and α/(nkBT ) > 3.4049, so

nematic ordering is energetically advantageous. At the outer boundary we fix the system to

be uniaxial (P = 0) and fix the director orientation, φ = (−1/2)θ. The initial configuration

is S(r) = SN

(

1− exp(r/2)
)

with P = 0 everywhere.

In Fig. 7 we show the director profile, and the radial profile of equilibrium S and P from

the center of a disclination to the boundary of the domain for the parameter α/(nkBT ) = 4.

For the director, φ = −(1/2)θ outside the core. Much like solutions for the LdG free energy,

we see a disclination core that is biaxial [20, 37]. The biaxiality of the core was explained

topologically by Lyuksyutov, assuming a LdG bulk free energy [38]. Using this free energy

for analysis, one can define a “biaxial length” scale for the disclinations, Rb ≈
√

K/(BS3),

where K is on the order of the Frank constants and B is the parameter associated with

the cubic term in the LdG bulk energy, Eq. (18). For distances from the core smaller than

Rb, the elastic energy becomes comparable to the cubic term in the LdG free energy and

the system can remove the elastic singularity by becoming biaxial, since a biaxial order
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FIG. 7. (a) Director profile and (b) radial plots of the uniaxial order S and the biaxial order P

for a nematic disclination. The spatial extent of biaxiality is on the order of the radius of the

disclination core. Here, α/(nkBT ) = 4 and L = 1.

parameter can remove the singularity. We note that at the core, S = P in both models.

Using the parametrization from Eq. (8), one can show that this is interpreted as a uniaxial

order parameter, but for a disc if S > 0 or a rod aligned with the z-axis if S < 0. For

both models, S > 0 at the core. Thus, we interpret the biaxial solution as a macroscopic

“transformation” of rods far away from the core to discs at the core. Microscopically, the

probability distribution describing individual molecules becomes more and more spread out

in the x-y plane in an attempt to alleviate the elastic energy singularity.

We emphasize that it is not obvious that the molecular field theory should give biaxial

core solutions for the disclinations since, by construction, the model is markedly different

from LdG. While LdG is an expansion of a macroscopic order parameter, the model here is

based on a microscopic description. Because of this, it is difficult to quantitatively compare

the solutions for the disclinations given by the two models. While we note that the spatial

extent of the biaxiality for the disclinations is on the order of the radius of the defects, there

is not a cubic term in the free energy to define a length such as Rb. Instead, this behavior

is induced by the single particle partition function which appears in Eq. (14) since the

Maier-Saupe energy is purely quadratic in Q.

Another aspect of the disclinations that we can compare, at least qualitatively, to the
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FIG. 8. Radius of disclinations plotted as a function of temperature for (a) the molecular field

theory of section II and (b) the Landau-de Gennes model. T ∗ is the temperature where the isotropic

phase loses its metastability, while the dotted line on the plots indicate where coexistence between

phases is for the respective model. For the molecular field theory we use L = 1, and for Landau-de

Gennes L = 1 and B/C = 4 for all simulations.

LdG model is the scaling of the radius of disclinations with temperature. To find the radius,

we take a cut from the center of the disclination to the boundary and find the point where

S − P = SN(1 − e−1). The results are plotted in Fig. 8. We show both the scaling for the

molecular field theory and for results given by LdG. It can be seen that the scaling is similar

for both models in a wide range of temperatures up to the coexistence temperature, where

the isotropic phase becomes energetically favorable.

We are currently investigating the effects of anisotropic elastic free energies on discli-

nations. It is known that the director structure becomes less symmetric away from the

disclination core if the Frank constants for bend and splay are not equal, and recent exper-

iments have found anisotropic core structures [14].
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V. CONCLUSION

In this work, we have presented a computational implementation of the model of reference

[26]. We show that the model can be interpreted as replacing direct interactions between

molecules via an effective interaction field Λ in the mean field approximation. Further, we

investigate the similarity between the free energy of this molecular field theory and the LdG

free energy and compare solutions given by both for the cases of interfaces, tactoids, and

topological defects. We find that all have qualitatively similar results which is an interesting

result given that the construction of the two models is very different.

This model allows for a more fundamental understanding of the underlying microscopic

and mesoscopic physics at play, and can serve as an alternative to the LdG free energy when

describing systems with inhomogeneous ordering. The extension of the Maier-Saupe model

to a field theory allows us to understand not just the phase transition but also inhomogeneous

configurations, and can possibly be used to describe experiments like those of Refs. [13, 14].

Moving forward, we are currently investigating the results of adding anisotropy to the

elastic free energy, which has been done to some extent for the LdG model [21]. Importantly,

however, one can consider in this framework the values of the elastic constants for chromonics

that have been determined experimentally [16], while avoiding boundedness issues in LdG

theory when bend and splay constants are different. Further, because of the microscopic

nature of the model, one can, in principle, use a more physically realistic Hamiltonian to

describe the molecular system, as opposed to the effective Maier-Saupe Hamiltonian that is

used here. One can also generalize the computations to more complex molecules, such as

plate-like molecules, by modifying Eq. (1).
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[4] C. Peng, Y. Guo, C. Conklin, J. Viñals, S. V. Shiyanovskii, Q.-H. Wei, and O. D. Lavrentovich,

Liquid crystals with patterned molecular orientation as an electrolytic active medium, Phys.

Rev. E 92, 052502 (2015).

[5] C. Peng, T. Turiv, Y. Guo, Q.-H. Wei, and O. D. Lavrentovich, Sorting and separation of

microparticles by surface properties using liquid crystal-enabled electro-osmosis, Liq. Cryst.

45, 1936 (2018).

[6] C. Mostajeran, Curvature generation in nematic surfaces, Phys. Rev. E 91, 062405 (2015).

[7] G. Babakhanova, T. Turiv, Y. Guo, M. Hendrikx, Q.-H. Wei, A. P. Schenning, D. J. Broer, and

O. D. Lavrentovich, Liquid crystal elastomer coatings with programmed response of surface

profile, Nat. Commun. 9, 456 (2018).

[8] M. M. Genkin, A. Sokolov, O. D. Lavrentovich, and I. S. Aranson, Topological defects in a

living nematic ensnare swimming bacteria, Phys. Rev. X 7, 011029 (2017).
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