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Abstract

In 2000, Gillespie rehabilitated the chemical Langevin equation (CLE) by describing two con-

ditions that must be satisfied for it yield a valid approximation of the chemical master equation

(CME). In this work, we construct an original path integral description of the CME, and show how

applying Gillespie’s two conditions to it directly leads to a path integral equivalent to the CLE.

We compare this approach to the path integral equivalent of a large system size derivation, and

show that they are qualitatively different. In particular, both approaches involve converting many

sums into many integrals, and the difference between the two methods is essentially the difference

between using the Euler-Maclaurin formula and using Riemann sums. Our results shed light on how

path integrals can be used to conceptualize coarse-graining biochemical systems, and are readily

generalizable.
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I. INTRODUCTION

Gillespie’s classic paper [1] on how to derive the chemical Langevin equation (CLE) from

the chemical master equation (CME) proceeds differently than by naively truncating the

Kramers-Moyal expansion of the CME [2–4] or by invoking the largeness of the system

volume Ω a la van Kampen [5, 6]; instead, he argues based on the existence of a time scale

with certain properties. In particular, his derivation completes avoids rewriting discrete

number variables n as concentration variables x := n/Ω.

By writing down two precise conditions that control the validity of the CLE (to be re-

viewed in Sec. II), he rehabilitated it as a well-founded approach to approximating stochastic

dynamics described by the CME (in the face of ostensible no-go results like the Pawula the-

orem [7]), and directly inspired the tau-leaping algorithm [8] and its many modifications

[9–14] for speeding up numerical simulations of biochemical reactions.

Path integrals offer a way to think about stochastic processes that is somewhat indepen-

dent from the usual differential equations perspective [15]. This means that—at least in

principle—there should be a way to translate Gillespie’s derivation into path integral lan-

guage. Because path integrals (along with associated technology like the renormalization

group [16–19]) are known to be useful for understanding coarse-grained descriptions of sys-

tems (e.g. effective field theories [19, 20]), such a translation should contribute meaningfully

to our understanding of how to intelligently coarse-grain biochemical systems.

In this paper, we show how Gillespie’s two conditions translate to a path integral-based

derivation of the chemical Langevin equation. Our approach here builds upon the path

integral descriptions of Langevin/Fokker-Planck equations described in [15]. We will proceed

with little mathematical rigor (as is typical in physics), but with enough clarity that our

arguments could in principle be made mathematically precise.

The paper is organized as follows. In Sec. II, we review Gillespie’s derivation of the CLE.

In Sec. III, we construct a path integral description of CME dynamics. In Sec. IV, we

apply Gillespie’s conditions to our path integral formulation to obtain the CLE, and also

discuss an alternative method based on a large system volume argument. Finally, we discuss

consequences of our work for understanding coarse-grained biochemical systems in Sec. V.

2



II. REVIEW OF GILLESPIE’S CHEMICAL LANGEVIN EQUATION DERIVA-

TION

In this section, we review Gillespie’s derivation [1] of the chemical Langevin equation

from the chemical master equation. We use the same notation Gillespie used in his paper,

although we will not require that the same physical assumptions (i.e. well-stirred, dilute

chemicals in a fixed volume and at constant temperature) hold, because the derivation does

not depend on them.

Consider a system with N species andM reactions. Denote the propensity function of the

jth reaction by aj , and the corresponding stoichiometry vector by νj . The chemical master

equation reads

∂P (n, t)

∂t
=

M
∑

j=1

aj(n− νj)P (n− νj , t)− aj(n)P (n, t) (1)

where P (n, t) is the probability that the state of the system is n = (n1, ..., nN ) ∈ N
N at time

t.

Gillespie’s derivation requires the existence of a time scale τ for which the following two

conditions hold:

i The propensity functions do not change their values appreciably,

i.e. aj(n(t)) ≈ aj(n(t
′)) for all j and all t′ ∈ [t, t+ τ ].

ii The average number of firings of each reaction over a time τ is much larger than 1.

Due to their connection with the tau-leaping algorithm [8–14] for approximately simulating

CME dynamics, Gillespie later called these the first leap condition and the second leap

condition [21]. They are in practice easily satisfied in the case of large molecule numbers,

and they are exactly satisfied in the thermodynamic limit [22], where the system volume Ω

is taken to infinity while keeping all concentrations fixed.

Consider ni(t), the number of molecules corresponding to species i at time t. It changes

3



in a small time ∆t according to

ni(t+∆t) = ni(t) +

M
∑

j=1

νjiKj(aj ,∆t) , (2)

where νji is the ith component of the stoichiometry vector νj (i.e. the change in number of

species i due to reaction j firing once), and Kj(aj,∆t) is a random variable that describes

the number of times reaction j fires in ∆t.

For an arbitrary CME and arbitrary length of time ∆t, Kj might be taken from a com-

plicated distribution. But if condition (i) holds in a length of time τ , each reaction fires

independently of each other reaction, because no reactions significantly change any propen-

sity functions. Because (by definition) the probability of reaction j firing in an infinitesimal

time dt is aj(n(t))dt, and because that probability will not significantly change during the

time length τ , the number of times reaction j fires in τ is well-approximated as a Poisson

random variable with mean aj(n(t))τ , which we will denote by Pj(aj(n(t))τ).

This means that when condition (i) holds we can write the time evolution of ni(t) over a

length of time τ as

ni(t+ τ) = ni(t) +

M
∑

j=1

νjiPj(aj(n(t))τ) . (3)

This equation is the basis for the tau-leaping approach first described by Gillespie in 2001

[8], and later modified and extended by himself and others [9–14].

If condition (ii) holds, the average number of times reaction j fires in τ (i.e. aj(n(t))τ)

is much larger than 1, so the Poisson random variables are well-approximated by normal

random variables:

Pj(aj(n(t))τ) ≈ Nj(aj(n(t))τ, aj(n(t))τ) , (4)

where Nj(aj(n(t))τ, aj(n(t))τ) is a normal random variable with mean and variance both

equal to aj(n(t))τ . If we also note that each normal random variable can be decomposed as

Nj(aj(n(t))τ, aj(n(t))τ) = aj(n(t))τ +
√

aj(n(t))τ Nj(0, 1) , (5)
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we can write the time evolution of ni(t) in a time τ as

ni(t+ τ) = ni(t) +

M
∑

j=1

νjiaj(n(t))τ +

M
∑

j=1

νji

√

aj(n(t))τ Nj(0, 1) . (6)

Because this equation has the form of an Euler-Maruyama time step, we can identify the

dynamics of the system on the time scale τ with the set of N stochastic differential equations

(SDEs)

ẋi =
M
∑

j=1

νjiaj(x) +
M
∑

j=1

νji

√

aj(x) Γj , (7)

where the Γj are M independent Gaussian white noise terms, and where we have relabeled

each ni as xi to emphasize that we are now working with continuous variables.

Our chemical Langevin equation corresponds to a chemical Fokker-Planck equation

∂P (x, t)

∂t
=

N
∑

i=1

−
∂

∂xi

[(

M
∑

j=1

νjiaj(x)

)

P (x, t)

]

+
1

2

N
∑

i=1

N
∑

i′=1

∂2

∂xi∂xi′

[(

M
∑

j=1

νjiνji′aj(x)

)

P (x, t)

]

(8)

which serves an approximation to the CME (Eq. 1). As Gillespie notes, this is exactly what

one would get from truncating the Kramers-Moyal expansion of the CME at second order,

so his derivation in some sense justifies the naive one.

The CLE (Eq. 7), and the associated chemical Fokker-Planck equation (Eq. 8) describing

how the system’s probability density will evolve in time, are not without problems. They

generically predict negative concentrations [23] (although the hope is that the system has a

negligibly small probability of occupying these states, and this is often borne out in practice),

can be inaccurate for systems far from equilibrium [24], may not always exhibit multistability

when the CME is multistable [25], and can give rise to nonphysical probability currents at

equilibrium [26].

Despite these shortcomings, utilizing the CLE can help speed up simulations of CME

dynamics when some species have large molecule numbers [27–30] or when there is a clear

separation of time scales [31–33]. Moreover, alternative schemes like the deterministic re-

action rate equations and the linear noise approximation [6] can profitably be viewed as
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approximations to the CLE [34], and moment-closure approximations have comparable ac-

curacy [35].

The CLE, and Langevin equations more generally, have become standard approaches to

modeling noisy gene regulation [36–40]. They have also been used to analyze noise-driven

oscillations [41], model intracellular calcium dynamics [42–44], study ion-channel gating [45],

and understand spiking neurons [46]. While only approximate, the CLE is unquestionably

useful.

III. PATH INTEGRAL FORMULATION OF CME DYNAMICS

Although path integrals [47] are most well-known in the context of quantum mechanics

and quantum field theory [19, 48–52], they have also proven useful for understanding classi-

cal stochastic phenomena like Brownian motion [53–55], conformational transitions [56–58],

quantitative finance [50, 59, 60], population dynamics [61–65], neuron firing [66–72], gene

regulation [36, 73–77], and chemical kinetics [78–82].

In this section, we will develop a straightforward path integral formulation of chemical

master equation dynamics. Our path integral is constructed to closely resemble the for-

malism we used to describe SDE/Fokker-Planck dynamics in [15]. To our knowledge, it

is original, although certain aspects also resemble the approach used by Lazarescu et al.

[83]. The approach presented in this section is somewhat distinct from the often used Doi-

Peliti approach [84–87], which involves integrating over so-called coherent states and yields

integrals instead of sums.

A. States and operators

Our main objective is to solve the CME, Eq. 1. Instead of solving it directly, we will

solve a related problem phrased in terms of states and operators in a certain Hilbert space;

this allows us to construct a path integral just as one does in quantum mechanics.

Consider an infinite-dimensional Hilbert space spanned by the |n〉 vectors (where n =
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(n1, ..., nN) ∈ N
N ), in which an arbitrary state |φ〉 is written

|φ〉 =
∞
∑

n1=0

· · ·
∞
∑

nN=0

c(n) |n〉 (9)

for some generally complex-valued coefficients c(n). To ease notation, we will write

∑

n

:=

∞
∑

n1=0

· · ·
∞
∑

nN=0

(10)

so that an arbitrary state reads

|φ〉 =
∑

n

c(n) |n〉 . (11)

Define an inner product in this space by

〈m|n〉 = δmn (12)

for all basis vectors |m〉 and |n〉, so that the inner product of two arbitrary states reads

〈φ2|φ1〉 =
∑

n

c∗2(n)c1(n) . (13)

Using the inner product defined by Eq. 12 and Eq. 13, we can show that there is a resolution

of the identity

1 =
∑

n

|n〉 〈n| (14)

since 〈n|φ〉 = c(n). Define the state operators n̂i by

n̂i |n〉 := ni |n〉 (15)

for all i = 1, ..., N . We will associate any function f(n) = f(n1, ..., nN ) with the operator
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f(n̂), whose action on a basis vector |n〉 is

f(n̂) |n〉 := f(n̂1, ..., n̂N) |n〉 (16)

where there is no operator ordering ambiguity because the n̂i all commute with one another.

Also define the propensity function operators âj via

âj |n〉 := aj(n) |n+ νj〉 (17)

for all j = 1, ...,M , where νj denotes the stoichiometry vector of the jth reaction.

B. Generating function and equation of motion

In the spirit of Peliti[86], define the generating function

|ψ(t)〉 :=
∑

n

P (n, t) |n〉 (18)

where, as in the previous section, P (n, t) is the probability that the state of the system is

n = (n1, ..., nN) at time t. Note that

∂ |ψ〉

∂t
=
∑

n

∂P (n, t)

∂t
|n〉

=
∑

n

[

M
∑

j=1

aj(n− νj)P (n− νj , t)− aj(n)P (n, t)

]

|n〉

=
∑

n

M
∑

j=1

aj(n)P (n, t) |n+ νj〉 −
∑

n

M
∑

j=1

aj(n)P (n, t) |n〉

(19)
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where we have reindexed the left sum in the last step. Now we have

∂ |ψ〉

∂t
=
∑

n

[

M
∑

j=1

aj(n) |n+ νj〉 − aj(n) |n〉

]

P (n, t)

=
∑

n

[

M
∑

j=1

âj |n〉 − aj(n)

]

P (n, t) |n〉

=

[

M
∑

j=1

âj − aj(n̂)

]

|ψ〉 .

(20)

If we define the operator

Ĥ :=
M
∑

j=1

âj − aj(n̂) , (21)

which we will call (in analogy with quantum mechanics) the Hamiltonian, then we can write

the equation describing the time evolution of the generating function as

∂ |ψ〉

∂t
= Ĥ |ψ〉 . (22)

It is this equation that we will solve instead of the CME; since 〈n|ψ(t)〉 = P (n, t), a solution

to the CME can be extracted out of a solution to this equation.

C. Deriving the CME path integral

The formal solution to Eq. 22 is

|ψ(tf )〉 = eĤ(tf−t0) |ψ(t0)〉 . (23)

At this point (following the usual procedure for deriving path integrals [15]), we write the

length of time (tf − t0) as T∆t for some large number of time steps T , split the propagator
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into many pieces, and insert many resolutions of the identity:

|ψ(tf )〉 = eĤ∆t · · · eĤ∆t |ψ(t0)〉

=
∑

n0

· · ·
∑

nT

|nT 〉 〈nT |e
Ĥ∆t|nT−1〉 · · · 〈n1|e

Ĥ∆t|n0〉 〈n0| |ψ(t0)〉 .
(24)

We are specifically interested in the transition probability P (nf , tf ;n0, t0). To obtain an

expression for it, note that if |ψ(t0)〉 = |n0〉, then P (nf , tf ;n0, t0) = 〈nf |ψ(tf〉. Hence, we

have

P (nf , tf ;n0, t0) =
∑

n1

· · ·
∑

nT−1

〈nT |e
Ĥ∆t|nT−1〉 · · · 〈n1|e

Ĥ∆t|n0〉 . (25)

where nT = nf . Now we just need to evaluate these matrix elements and put them together.

Choose ∆t sufficiently small so that

〈nk|e
Ĥ∆t|nk−1〉 ≈ 〈nk|1 + Ĥ∆t|nk−1〉

= δnk ,nk−1
+ 〈nk|Ĥ|nk−1〉∆t .

(26)

We will take ∆t → 0 at the end of the calculation, so this equality will hold exactly. Using

the specific form of Ĥ (Eq. 21), we have

〈nk|Ĥ|nk−1〉 = 〈nk|
M
∑

j=1

âj − aj(n̂)|nk−1〉

=

M
∑

j=1

〈nk|âj − aj(n̂)|nk−1〉

=
M
∑

j=1

aj(nk−1) [〈nk|nk−1 + νj〉 − 〈nk|nk−1〉]

=
M
∑

j=1

aj(nk−1)
[

δnk,nk−1+νj
− δnk ,nk−1

]

.

(27)

Recall that the usual integral representation of the Dirac delta function reads

δm,n =

∫

dp

(2π)N
e−ip·(m−n) , (28)
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where dp = dp1 · · · dpN and each pi is integrated over the whole real line. Using this repre-

sentation, 〈nk|Ĥ|nk−1〉 becomes

∫

dpk

(2π)N
e−ipk ·(nk−nk−1)

{

M
∑

j=1

[

eipk ·νj − 1
]

aj(nk−1)

}

(29)

where we have labeled the integration variable pk to anticipate there being one integral for

each matrix element in the final answer. Using Eq. 26, 〈nk|eĤ∆t|nk−1〉 is approximately

equal to
∫

dpk

(2π)N
e−ipk·(nk−nk−1)

{

1 + ∆t
M
∑

j=1

[

eipk·νj − 1
]

aj(nk−1)

}

. (30)

Noting that ∆t is small enough for the bracketed expression to be approximately equal to

the corresponding exponential, our final expression for 〈nk|eĤ∆t|nk−1〉 becomes

∫

dpk

(2π)N
e−ipk ·(nk−nk−1)+∆t

∑M
j=1[exp(ipk·νj)−1]aj(nk−1) . (31)

Using Eq. 25 and Eq. 31, we find that P (nf , tf ;n0, t0) can be written as the path integral

P = lim
T→∞

∑

n1

· · ·
∑

nT−1

∫

dp1

(2π)N
· · ·

∫

dpT

(2π)N
exp

{

T
∑

k=1

−ipk · (nk − nk−1) + ∆t
M
∑

j=1

[

eipk·νj − 1
]

aj(nk−1)

}

(32)

which resembles the MSRJD (Martin-Siggia-Rose-De Dominicis) path integral description

[88–92] of the Fokker-Planck equation. Again, while the Doi-Peliti path integral involves

integrating over coherent states, this path integral involves integrating over every possible

discrete path through N
N that goes from n0 to nf .

Although our primary interest in this paper is to use Eq. 32 to derive the CLE, this path

integral representation of the CME has utility in its own right. See Appendix A for how

it can be used to exactly solve for time-dependent transition probabilities associated with

simple chemical reaction systems.
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IV. PATH INTEGRAL DERIVATION OF THE CHEMICAL LANGEVIN EQUA-

TION

In this section, we reinterpret Gillespie’s derivation of the CLE in the context of stochastic

path integrals, and show explicitly how his two conditions translate in the path integral

context. Our central tool will be the Euler-Maclaurin formula [93, 94], which allows one to

approximate sums as integrals (plus correction terms). It says that

b
∑

n=a

f(n) ∼

∫ b

a

f(x) dx+
f(b) + f(a)

2
+

∞
∑

k=1

B2k

(2k)!

[

f (2k−1)(b)− f (2k−1)(a)
]

(33)

where B2k is the (2k)th Bernoulli number, and the “∼” symbol is to indicate that we are

to interpret the right-hand side as an asymptotic expansion (generically, the infinite sum

may not be convergent, but retaining a finite number of terms still usually provides a good

approximation to the left-hand side).

The Euler-Maclaurin formula is not an unfamiliar tool in chemical physics, given that it

is often used to approximate partition functions [95–97] to good accuracy in certain regimes

(e.g. the high temperature limit). It has also been used for other interesting purposes,

like computing Fermi-Dirac integrals [98], and proving the asymptotic equivalence of two

descriptions of Coulombic systems in certain potentials [99].

Roughly speaking, we will proceed as follows. Condition (i) will allow us to approximate

each sum in Eq. 32 as an integral, and to argue that the correction terms are small; mean-

while, condition (ii) will allow us to Taylor expand the exp(ipk · νj) terms in Eq. 32 to

second order in the momenta pk. The result of these two approximations will be a MSRJD

path integral, which we know from studies of stochastic path integrals [15] to be equivalent

to a system of Langevin equations. In particular, it will be equivalent to Eq. 7, the CLE.

A. Only some paths satisfy Gillespie’s conditions

Gillespie’s first condition (see Sec. II) says that, in a period of time τ , the propensity

functions do not change appreciably. Upon some reflection, we realize that this cannot be
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true for all possible trajectories the system might have, assuming the propensity functions

have some state-dependence (which, in general, they do). In principle, it is possible that the

number of molecules of some species jumps between 1 and 10100, wildly and irregularly, so

that there does not exist any time scale on which the propensity functions do not change

appreciably. Indeed, all sorts of crazy trajectories are possible in principle—but they are

overwhelmingly unlikely in practice.

While there certainly exist crazy and pathological paths for which it is hard or impossible

to find a time scale τ that satisfies Gillespie’s first condition, the requirement is not so

stringent for most of the trajectories the system might take. In other words, we will suppose

that the first condition is satisfied for the dominant paths rather than for all paths.

A similar argument applies to the second condition. This means that, in applying our

two conditions, we will no longer be summing over all possible paths (c.f. Eq. 32). Instead,

we will be summing over all possible paths that satisfy the two conditions, a collection which

we will assume includes the dominant or most likely paths.

If we are not summing over all possible paths, what does our region of integration look

like? To understand this, it is helpful to consider the simple case of a CME with one species

and one reaction. Label the number of that species by n, and the propensity function of the

single reaction by a.

Imagine starting the system in the state with n0 molecules and thinking about where it

will go (i.e. all possible states n1) in the next time length τ . For the dominant paths, we

assume that the difference |a(n1) − a(n0)| is small, so that the propensity function did not

change appreciably. But what do we mean by “appreciably”?

In a paper showing his two conditions hold in the thermodynamic limit [22], Gillespie

assumed that his first condition meant

|a(n1)− a(n0)|

a(n0)
≪ 1 (34)

i.e. that the change in the propensity function on the time scale τ is negligible compared

to the size of its original value. This matches the intuition we have about what constitutes

a negligible change in population size: for example, if the population size changed by 100
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molecules, but the total number of molecules is on the order of 105, we imagine that change

not to be noticeable.

Here, we can be a little bit more precise than Eq. 34. We generally assume that our

propensity functions are nicely behaved—in particular, that they are continuous, that they

are infinitely differentiable, and that we may freely Taylor expand them. That is, we assume

the aj are analytic functions throughout our domain. Because most propensity functions

of interest are polynomials (or at worst, rational functions like Hill functions), and because

expressions like the Kramers-Moyal expansion already assume the aj are smooth, these

assumptions do not turn out to be particularly strong.

Suppose a(n0) > 0, which is always true in the regime we care about, since we will usually

need n sufficiently large; generic monomolecular and bimolecular propensity functions have

zeros at n = 0 and n = 1. Because a is continuous, for any ǫ > 0 we can find a δ > 0 such

that

|a(n1)− a(n0)| < ǫa(n0) (35)

provided |n1− n0| < δ. In order for the correction terms that arise from applying the Euler-

Maclaurin formula (Eq. 33) to be negligible, we also want to bound the derivatives of a in

a similar fashion.

Analogous conditions apply in the general case, where the aj may be functions of more

than one variable. The moral of the story is that, because of the assumed smooth behavior of

the propensity functions, we can find a region where they (and their derivatives) do not vary

appreciably. In the simple one-dimensional case, this is an ‘interval’ [n0 − δ−0 , n0 + δ+0 ] ⊆ N

(where we let δ−0 6= δ+0 in general since we need n0 − δ−0 and n0 + δ+0 to both be natural

numbers); in general, this is the intersection of an open set with a lattice: U0(δ)∩N
N ⊆ N

N .

For convenience, we will use U0 to denote both the open set and its lattice intersection.

Hence, for a one-dimensional system, we restrict ourselves to paths

∞
∑

n1=0

· · ·
∞
∑

nN−1=0

→

n0+δ+0
∑

n1=n0−δ−0

· · ·

nN−2+δ+
N−2

∑

nN−1=nN−2−δ−
N−2

(36)
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where the δ+i and δ−i , as in the discussion above, are chosen so that the propensity functions

and their derivatives vary within acceptable bounds. For an arbitrary CME, we restrict

ourselves to paths
∑

n1

· · ·
∑

nT−1

→
∑

n1∈U0

· · ·
∑

nT−1∈UT−2

(37)

where the sets Ui ⊆ N
N are chosen similarly.

B. Coarse-graining time

There is another ‘philosophical’ point we need to address. Earlier, we imagined breaking

up the propagator into T time steps of length ∆t, and choosing T to be large enough (or

equivalently, ∆t to be small enough) that each piece of the propagator was well-approximated

by its first-order Taylor expansion (c.f. Eq. 26). However, Gillespie’s two conditions only

apply on the ‘coarser’ time scale τ . How do we go from time steps of size ∆t to time steps

of size τ in Eq. 32?

There are two straightforward ways we can imagine. The simpler way is to say that,

since we are in the business of making approximations anyway, we may as well make the

approximation that Eq. 32 is valid on the time scale τ , and that the terms we neglected

when Taylor expanding the propagator do not matter much in the regime where Gillespie’s

conditions apply.

But there is a more intellectually honest way to proceed. Suppose we originally broke the

propagator into S · T time steps, for some natural number S large enough for our derivation

to go through without issue. This means that the time step in our path integral has size

∆t := t/(S · T ). We want to rewrite our path integral in terms of a ‘macroscopic’ time scale

τ := t/T , which corresponds to breaking up the overall time t into T time steps of length τ .
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Schematically, this means we want to make the following identifications:

n0
∆t
−→ n1

∆t
−→ · · ·

∆t
−→ nS : n0

τ
−→ n1

nS
∆t
−→ nS+1

∆t
−→ · · ·

∆t
−→ n2S : n1

τ
−→ n2

...

nS·(T−1)
∆t
−→ nS·(T−1)+1

∆t
−→ · · ·

∆t
−→ nS·T : nT−1

τ
−→ nT

(38)

The argument of the exponential in Eq. 32 reads

S·T
∑

k=1

−ipk · (nk − nk−1) + ∆t
M
∑

j=1

[

eipk·νj − 1
]

aj(nk−1) . (39)

Consider the following small piece of this expression:

S·T
∑

k=1

[

eipk ·νj − 1
]

aj(nk−1) . (40)

Assuming (on the dominant paths) that the propensity function aj only changes appreciably

on the time scale τ = S∆t, we can make the approximation that

aj(n0) ≈ aj(n1) ≈ · · · ≈ aj(nS−1)

aj(nS) ≈ aj(nS+1) ≈ · · · ≈ aj(n2S−1)

...

aj(nS·(T−1)) ≈ aj(nS·(T−1)+1) ≈ · · · ≈ aj(nS·T−1)

(41)

and rewrite Eq. 40 in terms of aj(n0), aj(nS), aj(n2S), ..., aj(nS·T ) only. This means that the

only places the ‘intermediate’ time steps (e.g. n1, ...,nS−1, or nS+1, ...,n2S−1) will appear are

in the piece that reads
S·T
∑

k=1

−ipk · (nk − nk−1) . (42)
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Happily, this means that all of the intermediate time steps can be summed over. For example,

∑

n1

· · ·
∑

nS−1

exp

{

S
∑

k=1

−ipk · (nk − nk−1)

}

≈ δ(p1 − p2)δ(p2 − p3) · · · δ(pS−1 − pS) (43)

where the right-hand side is approximate because, due to our restriction of the sum domain

in the previous section, the sum representation of the Dirac delta function

1

(2π)N

∑

n

exp {−in · (p− p′)} = δ(p− p′) (44)

only approximately applies. After summing over all intermediate time steps and integrating

out extraneous pk using the delta functions that appear, Eq. 40 reads

T
∑

k=1

−ipk · (nk − nk−1) + S∆t
M
∑

j=1

[

eipk ·νj − 1
]

aj(nk−1)

=

T
∑

k=1

−ipk · (nk − nk−1) + τ

M
∑

j=1

[

eipk·νj − 1
]

aj(nk−1) .

(45)

Hence, using Gillespie’s first condition, we have successfully gone from a path integral with

time scale ∆t to a path integral with a ‘coarser’ time scale τ .

C. Applying condition 1

In this section, we will apply condition (i) in order to convert the sums in Eq. 32 to

integrals. After restricting our domain to the dominant paths (see Sec. IVA) and coarse-

graining time (see Sec. IVB), our current path integral description of the CME reads

P ≈
∑

n1∈U0

· · ·
∑

nT−1∈UT−2

∫

dp1

(2π)N
· · ·

∫

dpT

(2π)N
exp{−Sτ} (46)

where we recall that the sets U0, ..., UT−2 cover all trajectories on which Gillespie’s two

conditions apply, and where we have defined the function (which we can call the “action”,
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in analogy with quantum mechanics)

S :=

T
∑

k=1

ipk ·

(

nk − nk−1

τ

)

−
M
∑

j=1

[

eipk ·νj − 1
]

aj(nk−1) (47)

to ease notation. We will proceed using the Euler-Maclaurin formula (Eq. 33). As a starting

point, consider Eq. 46 in one-dimension:

P ≈

n0+δ+0
∑

n1=n0−δ−0

· · ·

nN−2+δ+
N−2

∑

nN−1=nN−2−δ−
N−2

∫

dp1
2π

· · ·

∫

dpT
2π

exp{−Sτ} (48)

where the δ−i and δ+i are as described in Sec. IVA. Using the Euler-Maclaurin formula, we

have

n0+δ+0
∑

n1=n0−δ−0

exp{−Sτ}

≈

∫ n0+δ+0

n0−δ−0

exp{−Sτ} dn1 +
e−S(n0+δ+0 )τ + e−S(n0−δ−0 )τ

2
+

∞
∑

k=1

B2k

(2k)!

d2k−1

dn2k−1
1

[

e−Sτ
]n0+δ+0

n0−δ−0
.

(49)

Now we need to argue that the correction terms can safely be neglected. Define δ := δ+0 +δ−0 .

Because the propensity functions don’t change vary much in the interval [n0 − δ−0 , n0 + δ+0 ]

(by Gillespie’s first condition), the integral term is roughly

exp {−S(n0)τ} δ . (50)

Meanwhile, the next term is roughly

exp {−S(n0)τ} (51)

which should be negligible compared to the first as long as δ ≫ 1. This should certainly

be true; if δ ∼ 1, our conditions are either too strict, or we are in a regime with too small
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molecule numbers.

Because the propensity functions aj do not change much (and because the aj are nicely

behaved, usually monotonic functions in the regime we care about), they are approximately

‘flat’. This means that their derivatives a
(2k−1)
j are small. For example,

d

dn1

[

e−Sτ
]

=

[

i(p2 − p1) + τ

M
∑

j=1

[

eipkνj − 1
]

a′j

]

e−Sτ (52)

so

d

dn1

[

e−Sτ
]n0+δ+0

n0−δ−0

=τ

M
∑

j=1

[

eipkνj − 1
]

[

a′j(n0 + δ+0 )e
−S(n0+δ+0 )τ − a′j(n0 − δ−0 )e

−S(n0−δ−0 )τ
]

≈τe−S(n0)τ
M
∑

j=1

[

eipkνj − 1
] [

a′j(n0 + δ+0 )− a′j(n0 − δ−0 )
]

≈0 .

(53)

In summary, we have

n0+δ+0
∑

n1=n0−δ−0

exp{−Sτ} ≈

∫ n0+δ+0

n0−δ−0

exp{−Sτ} dn1 (54)

which means we’ve successfully converted a sum into an integral. Apply this argument many

more times to obtain

n0+δ+0
∑

n1=n0−δ−0

· · ·

nT−2+δ+
T−2

∑

nT−1=nT−2−δ−
T−2

exp{−Sτ}

≈

∫ n0+δ+0

n0−δ−0

dn1 · · ·

∫ nT−2+δ+
T−2

nT−2−δ−
T−2

dnT−1 exp{−Sτ} .

(55)

A similar argument applies to the N species path integral (Eq. 46); the only difference is

that the Euler-Maclaurin formula must be applied N times for each time step, because we
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would like to convert N sums to an N -variable integral.

Alternatively, one can argue using the appropriate many sum generalization of the Euler-

Maclaurin formula (Eq. 33). There is some literature on generalizations of it to sums over

polytopes [100–102] (schematically, shapes in N -dimensional space whose vertices we can

imagine as living in Z
N ). The main challenge for this approach would be to show that

satisfying Gillespie’s first condition corresponds to satisfying the requirements associated

with the approximation being accurate (which are somewhat more technical than those for

the single sum Euler-Maclaurin formula).

The end result of all this is

P ≈

∫

U0

dx1 · · ·

∫

UT−2

dxT−1

∫

dp1

(2π)N
· · ·

∫

dpT

(2π)N
exp{−Sτ} . (56)

where we have relabeled each nk as xk to (as in Sec. II) emphasize that we are now working

with continuous variables. We remark that, if not for the bounds, we would have a Kramers-

Moyal path integral (see Sec. V of our earlier paper [15]).

D. Applying condition 2

Consider the terms in the action S (Eq. 47) that look like

[

eipk·νj − 1
]

aj(xk−1)τ . (57)

Condition (ii) tells us that, for the dominant paths, aj(xk−1)τ ≫ 1. In particular, we will

assume that it is so large that Taylor expanding the term it is multiplied by will have a

negligible effect on the overall value1, i.e.

[

eipk·νj − 1
]

aj(xk−1)τ

≈

[

ipk · νj −
1

2

N
∑

ℓ=1

N
∑

ℓ′=1

pℓkp
ℓ′

k νjℓνjℓ′

]

aj(xk−1)τ
(58)

1 See Appendix B for a somewhat more rigorous argument justifying this approximation.
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where pℓk is the ℓ-th component of the vector pk. Thus, we finally obtain

S ≈
T
∑

k=1

ipk ·

[

xk − xk−1

τ
−

M
∑

j=1

νjaj(xk−1)

]

+
1

2

N
∑

ℓ=1

N
∑

ℓ′=1

M
∑

j=1

pℓkp
ℓ′

k νjℓνjℓ′aj(xk−1) (59)

which looks just like the action for the MSRJD path integral (see Sec. V of [15]) correspond-

ing to the chemical Fokker-Planck equation (Eq. 8). Our final result for the whole path

integral reads

P ≈

∫

U0

dx1 · · ·

∫

UT−2

dxT−1

∫

dp1

(2π)N
· · ·

∫

dpT

(2π)N

exp

{

−
T
∑

k=1

[

ipk ·

(

xk − xk−1

τ
−

M
∑

j=1

νjaj(xk−1)

)

+
1

2

N
∑

ℓ=1

N
∑

ℓ′=1

M
∑

j=1

pℓkp
ℓ′

k νjℓνjℓ′aj(xk−1)

]

τ

}

(60)

which looks like the usual Fokker-Planck path integral but with restricted integration bounds.

The appearance of Eq. 60 can be compacted somewhat if we define the diffusion tensor

Dℓℓ′:

Dℓℓ′(x) :=
1

2

M
∑

j=1

νjℓνjℓ′aj(x) . (61)

At the CLE/Fokker-Planck level, the diffusion tensor captures all information about a sys-

tem’s noise. It must be positive semidefinite for the Fokker-Planck equation and its corre-

sponding path integral to make sense [103, 104].

Finish the derivation by enlarging our integration domain as much as possible (while

keeping the diffusion tensor positive semidefinite), assuming that permitting these additional

paths does not substantially contribute to transition probabilities, since they were small

enough to neglect in the first place. In general, we do not expect that the appropriate

domain for our new continuous variables will be [0,∞)N , despite the fact that our original

domain was NN . For example, the chemical Langevin equation [1] for the birth-death process

(with birth rate k, death rate γ, and steady state mean µ := k/γ) reads

ẋ = k − γx+
√

k + γx η(t) (62)
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and is naturally defined on [−µ,∞), because there is always some nonzero probability that

the noise term will push the system into negative concentrations while its magnitude is

greater than or equal to zero, i.e. when k + γx = γ(µ+ x) ≥ 0.

E. Comparison with the system volume approach

We have shown in the previous few sections how Gillespie’s derivation works in a path

integral context. Because Gillespie himself [1] compared his approach to ones which rely

upon the largeness of the system volume Ω, it is interesting to do that here also. Let us

translate the typical system volume approach into path integral language, and see how it

compares with the approach we described earlier.

Consider again a CME with N species and M reactions (Eq. 1), but this time with the

additional physical context that the chemicals interact inside a very large volume Ω. Suppose

we rewrite the CME in terms of concentration variables xi := ni/Ω for all i = 1, ..., N . The

change in variables will lead to the probability density function P (n, t) increasing by a factor

of ΩN :

P (n, t)dn = ΩNP (n, t)dx = P (x, t)dx

=⇒ P (x, t) = ΩNP (n, t) .
(63)

Gillespie used rigorous microphysical arguments [1, 105–107] to show that the volume-

dependence of the propensity functions for monomolecular, bimolecular, and trimolecular

reactions goes like

aj(n) = Ω ãj(x) (64)

where the adjusted propensity functions ãj are volume-independent. Using Eq. 63 and Eq.

64, our original CME path integral (Eq. 32) can be rewritten as

P = lim
T→∞

ΩN
∑

n1

· · ·
∑

nT−1

∫

dp1

(2π)N
· · ·

∫

dpT

(2π)N

exp

{

T
∑

k=1

−iΩ pk · (xk − xk−1) + Ω∆t

M
∑

j=1

[

eipk ·νj − 1
]

ãj(xk−1)

}

.

(65)
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Now add in T − 1 factors of ΩN/ΩN :

P = lim
T→∞

[

1

ΩN

∑

n1

]

· · ·





1

ΩN

∑

nT−1





∫
(

Ω

2π

)N

dp1 · · ·

∫
(

Ω

2π

)N

dpT

exp

{

T
∑

k=1

−iΩ pk · (xk − xk−1) + Ω∆t
M
∑

j=1

[

eipk ·νj − 1
]

ãj(xk−1)

}

.

(66)

Riemann sums will play the role that the Euler-Maclaurin formula did (i.e. converting sums

to integrals) in our earlier derivation. Recall that the (right endpoint) Riemann sum for a

function f on [0, b] reads [108]

∫ b

0

f(x)dx ≈
N
∑

i=0

f(i∆x)∆x (67)

where ∆x = b/N . If we take b → ∞ and N → ∞ in such a way that ∆x remains constant,

we can write
∫

∞

0

f(x)dx ≈
∞
∑

i=0

f(i∆x)∆x . (68)

The corresponding N -dimensional result is

∫

∞

0

dx1 · · ·

∫

∞

0

dxN f(x)

≈
∞
∑

i1=0

· · ·
∞
∑

iN=0

f(i1∆x, · · · , iN∆x)(∆x)
N .

(69)

Since the inverse system volume 1/Ω seems to play the role of ∆x in Eq. 66, we can use this

Riemann sum result to approximate each sum as

1

ΩN

∑

n

≈

∫

∞

0

dx1 · · ·

∫

∞

0

dxN (70)
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so that our path integral is now

P = lim
T→∞

∫

dx1 · · ·

∫

dxT−1

∫
(

Ω

2π

)N

dp1 · · ·

∫
(

Ω

2π

)N

dpT

exp

{

T
∑

k=1

−iΩ pk · (xk − xk−1) + Ω∆t
M
∑

j=1

[

eipk ·νj − 1
]

ãj(xk−1)

}

.

(71)

Now we can argue just as we did in Sec. IVD. Because we are taking Ω to be extraordinarily

large in the thermodynamic limit,

Ω
[

eipk ·νj − 1
]

ãj(xk−1)τ

≈Ω

[

ipk · νj −
1

2

N
∑

ℓ=1

N
∑

ℓ′=1

pℓkp
ℓ′

k νjℓνjℓ′

]

ãj(xk−1)τ
(72)

i.e. Ω is so large that above term does not change much in value when Taylor expanded to

second order in pk. Finally, we have

P = lim
T→∞

∫

dx1 · · ·

∫

dxT−1

∫
(

Ω

2π

)N

dp1 · · ·

∫
(

Ω

2π

)N

dpT

exp

{

−Ω
T
∑

k=1

[

ipk ·

(

xk − xk−1

∆t
−

M
∑

j=1

νj ãj(xk−1)

)

+
1

2

N
∑

ℓ=1

N
∑

ℓ′=1

M
∑

j=1

pℓkp
ℓ′

k νjℓνjℓ′ ãj(xk−1)

]

∆t

}

(73)

which is the same as the result from Sec. IVD (c.f. Eq. 59) but with additional factors of

Ω. It also exactly matches the system volume MSRJD path integral for the Fokker-Planck

equation (c.f. Eq. 94 in Sec. V of [15]). In other words, we have indeed derived a path

integral equivalent to a set of Langevin equations/a Fokker-Planck equation. Moreover, it

is equivalent to the same set of Langevin equations that Eq. 59 is (as is easily seen after

changing back from concentration variables to the original number variables)—although the

integration bounds on the path integral are different here.

Given that this approach was significantly simpler (in both a technical and conceptual

sense), why bother with Gillespie’s derivation? There are a few good reasons.
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• The approximations provided by Eq. 68 and Eq. 69 are more mathematically dubious

than the Euler-Maclaurin formula (Eq. 33), which is well-studied and has precisely

expressed error bounds.

• The thermodynamic limit may not apply to most biochemical systems of interest, given

that molecule numbers are often large but not overwhelmingly so, and that the system

volume (for example, of a cell) is not large enough to prevent crowding [109–112] and

boundary effects [113–115] from being important.

• The system volume approach only applies when our CME describes a well-stirred,

dilute mix of chemicals held at fixed temperature in a very large box—but the CLE is

known to be a useful approximate description of all sorts of other stochastic systems

(e.g. spiking neurons, fluctuating population dynamics models, stock options). In

these other situations, there is no clear notion of a control parameter analogous to Ω.

• The system volume approach misses the subtlety of the integration bounds associated

with the chemical Langevin/chemical Fokker-Planck equations; as we pointed out at

the end of the previous section, it is a nontrivial issue that the domain of the approx-

imating CLE will generally not be [0,∞)N .

V. DISCUSSION

We constructed an original path integral description of the CME, and applied Gille-

spie’s conditions (suitably interpreted) to it in order to derive a path integral known to be

equivalent to the CLE. In some sense, the difference between the system size approach and

Gillespie’s approach to deriving the CLE is the difference between approximating sums as

integrals via Riemann sums, and via the Euler-Maclaurin formula. As discussed at the end

of the previous section, while both approximation techniques can be valid in the appropri-

ate circumstances, the Euler-Maclaurin formula is more generally applicable and has better

characterized correction terms.

It is interesting to note that, although we began with an exact path integral that involved

taking the limit ∆t → 0 (Eq. 32), we coarse-grained time to end up with a path integral
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with fixed time step τ that does not get taken to zero (Eq. 60). This leads to another sense

in which the CLE is only an approximate description, since a true CLE/Fokker-Planck path

integral (see [15]) also involves taking the limit ∆t→ 0. However, the idea of a ‘macroscopic’

timescale was addressed by Gillespie himself in his original paper [1]. There, he offered an

analogy to current in an electric circuit: we can freely write and manipulate the derivative

I := dq/dt, and think about the limit dt→ 0, provided we understand that we are not taking

it to be so small that shot noise effects start to matter.

Because our argument applied to each reaction/propensity function separately, it can in

principle be used construct path integrals for hybrid systems. In other words, just as Harris

et al. [28–30] do, we can suppose that Gillespie’s two conditions apply only to a subset of all

reactions or species, and construct a path integral in which some species/reactions are treated

CLE-style, while others are treated CME-style. Indeed, there should be a path integral way

to view all of the hybrid constructions—based on molecule numbers or separations of time

scales—referenced in Sec. II. These path integrals could then be used to extract large

deviation results.

It is unclear if Gillespie’s conditions could be applied to the Doi-Peliti path integral [84–87]

in order to recover a CLE-equivalent path integral. Part of the difficulty is that the Doi-Peliti

construction involves integrating over coherent states, which contribute integrals over the

whole real line in the expression for the propagator [86]; it is not necessarily straightforward

to associate these with sums or integrals over state space.

Although we only used the path integral representation of the CME constructed in Sec.

III to derive the CLE, it can also be used as a tool in its own right for the same purposes

other path integral representations are often used for: namely, finding exact solutions [116–

118], constructing asymptotic or perturbative approximations to transition probabilities and

moments [119], computing least action paths associated with particular state transitions,

and enabling a variational method for numerically computing transition probabilities and

least action paths [70]. In cases where Gillespie’s first condition applies, and the domain of

the path integral can be restricted, the numerical evaluation of Eq. 32 becomes even easier.

Though our argument does not offer a constructive prescription for the restricted integration

domains U0, ..., UT−2, one can in principle bootstrap the path integral by running Gillespie
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algorithm simulations beforehand to estimate reasonable domains.

VI. CONCLUSION

The chemical Langevin equation is usually derived using Gillespie’s two conditions, or

large system volume arguments; as we described, both methods have clear path integral

analogues. Our results suggest that path integrals offer a useful and mathematically precise

way of thinking about the relationship between different levels of approximation (e.g. CME

and CLE), and about coarse-graining biochemical models more generally.
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Appendix A: Sample path integral calculations

One can get a feel for a given path integral by using it to exactly calculate transition

probabilities for simple systems. In this appendix, we use the path integral described by Eq.

32 to compute exact time-dependent transition probabilities for a (i) pure birth process, a

(ii) pure death process, and a (iii) chemical birth-death process. For more information on

the chemical birth-death process, and for analogous path integral calculations that are valid

in the limit where molecule numbers can be treated as continuous, see [116] and [117].

These systems can also be solved using the Doi-Peliti path integral, the most commonly

used path integral description of the CME—see Vastola [118] for a guide. It is interesting

to note that the transition probability derivations presented in this appendix are simpler in

some ways; for example, one does not need to introduce coherent states or special scalar

products, and transition probabilities can be computed without computing the generating

function first.

The following path integral calculations involve the evaluation of many contour integrals.

The resolution of identity introduced in Eq. 28, which leads to the ‘momentum’ integrals
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going from negative infinity to positive infinity, yields contour integrals with an infinite

number of poles. In order to make these calculations somewhat simpler, we instead use the

equally valid resolution of the identity given by

δ(n1 − n2) =

∫ π

−π

dp

2π
e−ip(n1−n2) (A1)

in one dimension, and

δ(n1 − n2) =

∫ π

−π

· · ·

∫ π

−π

dp1 · · · dpN
(2π)N

e−ip·(n1−n2) (A2)

in more than one dimension. This means that our CME path integral is still given by Eq.

32, but with the pk integrals all going from −π to π.

1. The pure birth process

The pure birth process models a species that is randomly created at some rate. It is

characterized by the chemical reaction

∅
k
−→ X (A3)

where k is the birth rate. This reaction corresponds to the CME

∂P (n, t)

∂t
= k [P (n− 1, t)− P (n, t)] (A4)

where P (n, t) is the probability that the system has n X molecules at time t (with n ∈

{0, 1, 2, ...}). For this system, our path integral for the transition probability P (nf , t;n0, 0)

(c.f. Eq. 32) reads

P = lim
T→∞

∑

n1

· · ·
∑

nT−1

∫

dp1
2π

· · ·

∫

dpT
2π

exp

{

T
∑

ℓ=1

−ipℓ(nℓ − nℓ−1) + k∆t
(

eipℓ − 1
)

}

(A5)
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where ∆t := t/T . First, since

− k∆t
T
∑

ℓ=1

= −kt , (A6)

the overall answer has a prefactor exp(−kt). Next, organizing terms by the nℓ, we have

ip1n0 − ipTnf + in1(p2 − p1) + in2(p3 − p2) + · · ·+ inT−1(pT − pT−1) . (A7)

Each sum over nℓ (for ℓ = 1, ..., T − 1) just corresponds to summing a geometric series:

∞
∑

nℓ=0

[

ei(pℓ+1−pℓ)
]nℓ

=
1

1− ei(pℓ+1−pℓ)
. (A8)

Now consider the integral over p1, which reads

∫ π

−π

dp1
2π

eip1n0+k∆teip1

1− ei(p2−p1)
. (A9)

Switching variables to z = eip1, we have the contour integral

∮

dz

2πi

zn0ek∆tz

z − eip2
, (A10)

whose integrand has a simple pole at eip2. Although Cauchy’s theorem does not technically

apply in this case, since the pole lies on the circular contour, we can imagine deforming the

contour or integrand slightly (e.g. by taking eip2 → (1 − ǫ)eip2) so that Cauchy’s theorem

does apply, allowing us to evaluate the integral in the usual way2. Doing so, we obtain

eip2n0+k∆teip2 , (A11)

which indicates that the overall effect of doing the contour integral was to implement the

constraint that p1 = p2. Similarly, the overall effect of doing the integral over pℓ (for

2 These arguments can be made more rigorous if one wishes. Because path integrals are somewhat math-

ematically dubious in the first place, regularization techniques like these are required for the integrals

involved to be well-defined. Ultimately, the proof is ‘in the pudding’: if we get the right answer, which

can easily be verified by substituting it directly into Eq. A4, these abuses can be excused.
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ℓ = 2, ..., T − 1), which schematically reads

∫ π

−π

dpℓ
2π

f(pℓ)

1− ei(pℓ+1−pℓ)
(A12)

for some function f(pℓ), is to implement the constraint that pℓ = pℓ+1. Hence, after doing

the integrals over p1, ..., pT−1, we have

∫ π

−π

dpT
2π

e−ipT (nf−n0)+kteipT . (A13)

Define ∆n := nf − n0 and change variables to z = eipT . Then we have

∮

dz

2πi

ektz

z∆n+1
. (A14)

For ∆n < 0, this integral has no poles, so P (nf , t;n0, 0) = 0 in that case. For ∆n ≥ 0, a

standard application of Cauchy’s integral formula yields that the result is

1

∆n!

d∆n

dz∆n

[

ektz
]

z=0
=

(kt)∆n

∆n!
. (A15)

Hence, including the prefactor e−kt, our result for the transition probability is

P (nf , t;n0, 0) =
(kt)∆ne−kt

∆n!
(A16)

i.e. a Poisson distribution.

2. The pure death process

The pure death process models a species that randomly degrades at some rate. It is

characterized by the chemical reaction

X
γ
−→ ∅ (A17)
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where γ is the death rate. This reaction corresponds to the CME

∂P (n, t)

∂t
= γ [(n+ 1)P (n+ 1, t)− nP (n, t)] (A18)

where P (n, t) is the probability that the system has n X molecules at time t (with n ∈

{0, 1, 2, ...}). This time, our path integral for the transition probability P (nf , t;n0, 0) reads

P = lim
T→∞

∑

n1

· · ·
∑

nT−1

∫

dp1
2π

· · ·

∫

dpT
2π

exp

{

T
∑

ℓ=1

−ipℓ(nℓ − nℓ−1) + γ∆t nℓ−1

(

e−ipℓ − 1
)

}

.

(A19)

The terms that involve nℓ (for some ℓ = 1, ..., T − 1) look like

inℓ

[

pℓ+1 − pℓ − iγ∆t
(

e−ipℓ+1 − 1
)]

, (A20)

so the sum over nℓ yields

∞
∑

nℓ=0

[

ei[pℓ+1−pℓ−iγ∆t(e−ipℓ+1−1)]
]nℓ

=
1

1− ei[pℓ+1−pℓ−iγ∆t(e−ipℓ+1−1)]
. (A21)

The integral over p1 reads

∫ π

−π

dp1
2π

eip1n0+γ∆tn0(e−ip1−1)

1− ei[p2−p1−iγ∆t(e−ip2−1)]
. (A22)

We can argue just as in the previous calculation to show that the net effect of doing this

integral is to implement the constraint

p1 = p2 − iγ∆t
(

e−ip2 − 1
)

. (A23)

Similarly, the effect of doing the integrals over p2, ..., pT−1 is to implement the constraints

pℓ = pℓ+1 − iγ∆t
(

e−ipℓ+1 − 1
)

(A24)
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for ℓ = 2, ..., T − 1. While this recurrence relation is probably not solvable in closed form,

we can do a trick to evaluate pℓ (for ℓ = 1, ..., T − 1) in terms of pT (the only momentum

variable not yet integrated over). Notice that Eq. A24 looks like a ‘backwards’ Euler time

step corresponding to the ordinary differential equation (ODE)

ṗ = −iγ
(

e−ip − 1
)

. (A25)

This approximation becomes exact in the ∆t→ 0 limit, which is the limit we are interested

in. Eq. A25 has the solution

eip(t) = 1− Ce−γt , (A26)

where C must be determined from the initial condition p(0) = pT (since the ODE runs

‘backwards’). Doing so, we have

eip0 = 1− (1− eipT )e−γt (A27)

in the small ∆t limit, where p0 is defined via

eip0 := eip1+γ∆t(e−ip1−1) . (A28)

The intuition is that p0 is what we reach after starting at pT and taking T time steps of size

∆t. Our last integral reads

∫ π

−π

dpT
2π

eip0n0e−ipTnT =

∫ π

−π

dpT
2π

[(

1− e−γt
)

+ e−γteipT
]n0

e−ipTnT . (A29)

Define q := 1− e−γt and change variables to z = eipT so that we have

∮

dz

2πi

[q + (1− q)z]n0

znT+1
=

n0
∑

j=0

(

n0

j

)

(1− q)jqn0−j

∮

dz

2πi

1

znT−j+1
. (A30)
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The contour integral is nonzero only for the term with j = nT . Then P (nf , t;n0, 0) = 0 for

nT > n0, and

P (nf , t;n0, 0) =

(

n0

nf

)

[

e−γt
]nf
[

1− e−γt
]n0−nf (A31)

otherwise, i.e. we have a binomial distribution.

3. The chemical birth-death process

The chemical birth-death process models a species that is randomly created and randomly

degrades. Its list of chemical reactions is

∅
k
−→ X

X
γ
−→ ∅

(A32)

where k is the birth rate and γ is the death rate. This reaction corresponds to the CME

∂P (n, t)

∂t
= k [P (n− 1, t)− P (n, t)] + γ [(n+ 1)P (n+ 1, t)− nP (n, t)] (A33)

where P (n, t) is the probability that the system has n X molecules at time t (with n ∈

{0, 1, 2, ...}). This path integral reads

lim
T→∞

∑

n1

· · ·
∑

nT−1

∫

dp1
2π

· · ·

∫

dpT
2π

exp

{

T
∑

ℓ=1

−ipℓ(nℓ − nℓ−1) + k∆t
(

eipℓ − 1
)

+ γ∆t nℓ−1

(

e−ipℓ − 1
)

}

.

(A34)

The terms that involve nℓ (for some ℓ = 1, ..., T − 1) look just the same as in the previous

subsection, so the sums over the nℓ evaluate to the same answer. The same ODE constraint

is also enforced by the integrals over the pℓ, leaving the only difference between this problem

and the previous one in the evaluation of the final integral. We have

∫ π

−π

dpT
2π

eip0n0e−ipTnT ek
∑T

ℓ=1(eipℓ−1)∆t

=

∫ π

−π

dpT
2π

[

q + (1− q)eipT
]n0 e−ipTnT ek

∑T
ℓ=1(eipℓ−1)∆t

(A35)
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where p0 is defined as in Eq. A28, and q := 1− e−γt as before. Observe that there is a term

in the integrand, due to the birth reaction, that was not present in Eq. A29. In order to

proceed, we must evaluate that term in the small ∆t limit. Note,

k

T
∑

ℓ=1

(

eipℓ − 1
)

∆t ≈ k

∫ t

0

dt
(

eip(t) − 1
)

= −
[

1− eipT
]

µq (A36)

where we have exploited the link between Riemann sums and integrals, used the expression

for p(t) from Eq. A26, and defined µ := k/γ. Now our integral reads

e−µq

∫ π

−π

dpT
2π

[

q + (1− q)eipT
]n0 e−ipTnT eµqe

ipT . (A37)

Changing variables to z = eipT yields

e−µq

∮

dz

2πi

[q + (1− q)z]n0 eµqz

znT+1
= e−µq

n0
∑

j=0

(

n0

j

)

qn0−j(1− q)j
∮

dz

2πi

eµqz

znT−j+1
(A38)

which can be evaluated via Cauchy’s integral formula to obtain the result

P (nf , t;n0, 0) =

min(n0,nf )
∑

j=0

(

n0

j

)

qn0−j(1− q)j ·
(µq)nf−je−µq

(nf − j)!
. (A39)

This agrees with the result obtained using the Doi-Peliti path integral (c.f. Eq. 77 of [118]),

although the calculation was arguably less complicated here.

Appendix B: An alternative argument for Taylor expanding the action

In section IVD, we argued that Gillespie’s second condition allows us to say that

[

eipk ·νj − 1
]

aj(xk−1)τ

≈

[

ipk · νj −
1

2

N
∑

ℓ=1

N
∑

ℓ′=1

pℓkp
ℓ′

k νjℓνjℓ′

]

aj(xk−1)τ .
(B1)
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In this appendix, we present a slightly more careful alternative argument for the validity

of this important approximation. Because the term we are approximating appears in the

argument of the path integral’s exponential (c.f. Eq. 32), we are really trying to say that

exp

{

M
∑

j=1

[

eipk·νj − 1
]

aj(nk−1)τ

}

≈ exp

{

ipk ·

(

M
∑

j=1

νjaj(nk−1)τ

)

−
1

2

M
∑

j=1

(pk · νj)
2aj(nk−1)τ

}

.

(B2)

Let us now show that this approximation holds. To ease notation, rewrite this as

exp

{

M
∑

j=1

[

eip·νj − 1
]

aj

}

≈ exp

{

ip ·

(

M
∑

j=1

νjaj

)

−
1

2

M
∑

j=1

(p · νj)
2aj

}

,

(B3)

where we have removed the superfluous index on p, and used the shorthand aj := aj(nk−1)τ .

Start by Taylor expanding the exponentials:

exp

{

M
∑

j=1

[

eip·νj − 1
]

aj

}

=e−(a1+···aM )ee
ip·ν1a1 · · · ee

ip·νM aM

=
∑

x1,...,xM

(a1)
x1

x1!
e−a1 · · ·

(aM)xM

xM !
e−aM eip·(ν1x1+···+νMxM )

(B4)

where the sum over each xj runs from zero to infinity. Notice that the factor corresponding

to the jth reaction looks like a Poisson distribution; since aj ≫ 1 (condition (ii)), it can be

approximated as Gaussian in the usual way:

(aj)
xj

xj !
e−aj ≈

1
√

2πaj
e
−

(xj−aj )
2

2aj . (B5)

35



Now the sum over each xj can be approximated as an integral using the Euler-Maclaurin

formula, and we can expand the domain of integration without significantly changing the

result since the Gaussian function is sharply peaked:

∞
∑

xj=0

1
√

2πaj
e
−

(xj−aj)
2

2aj
+ip·νjxj

≈

∫

∞

0

dxj
1

√

2πaj
e
−

(xj−aj)
2

2aj
+ip·νjxj

≈

∫

∞

−∞

dxj
1

√

2πaj
e
−

(xj−aj)
2

2aj
+ip·νjxj

=eip·νjaj−
(p·νj)

2

2
aj .

(B6)

Putting these factors together for each j yields Eq. B3, the desired approximation. While the

argument we just presented is somewhat more technical than the one in the main text, it also

mirrors Gillespie’s original derivation of the CLE more closely: we essentially approximated

many Poisson distributions as normal distributions, just as Gillespie did (c.f. Eq. 4).
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Phys. Rev. E 91, 042111 (2015).

[26] A. Ceccato and D. Frezzato, The Journal of Chemical Physics 148, 064114 (2018).

37

http://arxiv.org/abs/1909.12990
http://www.slac.stanford.edu/~mpeskin/QFT.html
http://www.cambridge.org/us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/quantum-field-theory-and-standard-model
http://dx.doi.org/10.1146/annurev.ns.43.120193.001233
http://dx.doi.org/ 10.1103/PhysRevE.91.042111


[27] S. Winkelmann and C. Schutte, The Journal of Chemical Physics 147, 114115 (2017).

[28] L. A. Harris and P. Clancy, The Journal of Chemical Physics 125, 144107 (2006).

[29] L. A. Harris, A. M. Piccirilli, E. R. Majusiak, and P. Clancy, Phys. Rev. E 79, 051906 (2009).

[30] K. A. Iyengar, L. A. Harris, and P. Clancy, The Journal of Chemical Physics 132, 094101

(2010).

[31] E. L. Haseltine and J. B. Rawlings, The Journal of Chemical Physics 117, 6959 (2002).

[32] H. Salis and Y. Kaznessis, The Journal of Chemical Physics 122, 054103 (2005).

[33] F. Wu, T. Tian, J. B. Rawlings, and G. Yin, The Journal of Chemical Physics 144, 174112

(2016).

[34] E. W. Wallace, D. T. Gillespie, K. R. Sanft, and L. R. Petzold, IET Syst Biol 6, 102 (2012).

[35] R. Grima, The Journal of Chemical Physics 136, 154105 (2012).

[36] J. Wang, K. Zhang, L. Xu, and E. Wang, Proceedings of the National Academy of Sciences

108, 8257 (2011).

[37] J. X. Zhou, M. D. S. Aliyu, E. Aurell, and S. Huang, Journal of the Royal Society, Interface

9, 3539 (2012).

[38] P. Zhou and T. Li, The Journal of Chemical Physics 144, 094109 (2016).

[39] M. L. Simpson, C. D. Cox, and G. S. Sayler, Journal of Theoretical Biology 229, 383 (2004).

[40] M. Hinczewski and D. Thirumalai, The Journal of Physical Chemistry B 120, 6166 (2016).

[41] T. Brett and T. Galla, The Journal of Chemical Physics 140, 124112 (2014).

[42] T. Choi, M. R. Maurya, D. M. Tartakovsky, and S. Subramaniam, The Journal of Chemical

Physics 133, 165101 (2010).

[43] S. Rudiger, Physics Reports 534, 39 (2014), stochastic models of intracellular calcium signals.

[44] H. Li, Z. Hou, and H. Xin, Phys. Rev. E 71, 061916 (2005).

[45] Y. Huang, S. Rudiger, and J. Shuai, Physical Biology 12, 061001 (2015).

[46] E. Wallace, M. Benayoun, W. van Drongelen, and J. D. Cowan, PLOS ONE 6, 1 (2011).

[47] R. P. Feynman, Reviews of Modern Physics 20, 367 (1948).

[48] R. Feynman, A. Hibbs, and D. Styer, Quantum Mechanics and Path Integrals , Dover Books

on Physics (Dover Publications, 2010).

[49] L. S. Schulman, Techniques and Applications of Path Integration (Dover Publications, 1981).

38

http://dx.doi.org/10.1103/PhysRevE.79.051906
http://dx.doi.org/10.1063/1.4943096
http://dx.doi.org/10.1103/RevModPhys.20.367
https://books.google.com/books?id=JkMuDAAAQBAJ


[50] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets ,

5th ed. (World Scientific, 2009).

[51] R. Shankar, Principles of Quantum Mechanics , 2nd ed. (Springer US, 2011).

[52] R. Shankar, Quantum Field Theory and Condensed Matter: An Introduction (Cambridge

University Press, 2017).

[53] A. Caldeira and A. Leggett, Physica A: Statistical Mechanics and its Applications 121, 587

(1983).

[54] A. W. C. Lau and T. C. Lubensky, Phys. Rev. E 76, 011123 (2007).

[55] K. Asheichyk, A. P. Solon, C. M. Rohwer, and M. Krger, The Journal of Chemical Physics

150, 144111 (2019).

[56] J. Wang, K. Zhang, H. Lu, and E. Wang, Biophysical Journal 89, 1612 (2005).

[57] J. Wang, K. Zhang, H. Lu, and E. Wang, Phys. Rev. Lett. 96, 168101 (2006).

[58] S. Orioli, S. a Beccara, and P. Faccioli, The Journal of Chemical Physics 147, 064108 (2017).

[59] V. Linetsky, Computational Economics 11, 129 (1997).

[60] L. Ingber, Physica A: Statistical Mechanics and its Applications 283, 529 (2000).

[61] T. Spanio, J. Hidalgo, and M. A. Muñoz, Phys. Rev. E 96, 042301 (2017).
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