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Abstract. The process of range expansion (colonization) is one of the basic types of biological
dynamics, whereby a species grows and spreads outwards, occupying new territories. Spatial mod-
eling of this process is naturally implemented as a stochastic cellular automaton, with individuals
occupying nodes on a rectangular grid, births and deaths occurring probabilistically, and individuals
only reproducing unto unoccupied neighboring spots. In this paper we derive several approxima-
tions that allow prediction of the expected range expansion dynamics, based on the reproduction
and death rates. We derive several approximations, where the cellular automaton is described by
a system of ODEs that preserves correlations amongst neighboring spots (up to a distance). This
methodology allows us to develop accurate approximations of the population size and the expected
spatial shape, at a fraction of the computational time required to simulate the original stochastic
system. In addition, we provide simple formulas for the steady-state population densities for von
Neumann and Moore neighborhoods. Finally, we derive concise approximations for the speed of
range expansion in terms of the reproduction and death rates, for both types of neighborhoods.
The methodology is generalizable to more complex scenarios, such as different interaction ranges
and multiple-species systems.

1 Introduction

Range expansion, or colonization, is the process in biology by which a species spreads to new areas.
Examples include: The growth of microorganisms to form 2D formations called biofilms [1]; the
spread of solid tumors in 2D and 3D [2] (including the formation of spheroids in vitro [3] and
the growth of cell cultures in 2D and 3D [4]); the growth of bacterial and viral/bacteriophage
plaques [5-7]; and even the growth of human settlements [8,9]. It is well known that spatial
population expansion is very different from the exponential growth experienced by well mixed
systems, and yet mathematical tools appropriate for the description of range expansion are not
fully developed.

Mathematical models of colonization processes vary in methodology and sophistication. One
popular approach are stochastic cellular automata. See [10], for example, for a review of their
use in tumor modeling, [11] for a review of applications to urban development, and also [2,12-14].
In these models, individuals are located on a fixed grid, and stochastic rules govern births and
deaths. This versatile approach has proven to be a valuable tool for computational studies of
range expansion and various related phenomena. It is conceptually simple, but also a significant
improvement compared to ordinary differential equations, because it is both stochastic and spatial.
This approach, however, can be computationally very costly, making it difficult to extract from



simulations statistics on the time-evolution of a system, especially when population sizes are large.
Furthermore, exact analytical descriptions of these models, such as those obtain via the Kolmogorov
or Master Equations [15] are usually intractable.

Some of the most common simplified descriptions of cellular automata (also known as agent-
based models) are derived from mean-field behavior. These include deterministic reaction-diffusion
equations, such as Fisher’s equation [16]. Mean-field approximations, however, neglect the im-
portant effects of spatial correlations. As a consequence most of these models provide inaccurate
descriptions of the average trajectories of stochastic agent-based models. The next level of com-
plexity is the so called pair approximation, see e.g. [17-24]. This methodology has been used in
an attempt to capture certain aspects of spatial dynamics by more tractable means. It can be
successful at predicting equilibrium properties of a system, but in general does not provide good
time-series agreement with the corresponding stochastic process [25].

In this paper we develop deterministic spatially explicit approximations for the expected trajec-
tories of a two-dimensional stochastic birth-death process implemented as an agent-based model.
The approximations provide an accurate description of the expected time-evolution of the system.
In particular, we focus on modeling population growth expanding radially from an origin o, and
compare our results with the traditional pair approximation and mean-field models.

We also derive simple approximate formulas for the steady-state population densities based
on the death rate, D, and reproduction rate, L, of individuals.While in a well-mixed non-spatial
setting (mass action), the equilibrium density, ppq, is given by

D
Pma =1 — T’ (1)
in spatially restricted populations this quantity is lower. We find that in the case of the von
Neumann neighborhood (4 neighbors), the density can be approximated by

o (3-42) (5 2) o

(where the subscript vV stands for “von Neumann”), in the case of the hexagonal (honeycomb)
lattice, where each node has six nearest neighbors, we have

pH = (5 - 6%) <5 - %>_1 3)

(where H stands for “hexagonal”), and in the case of the Moore neighborhood (8 neighbors), it is

approximately given by
D D\ !
oM = (7 - SI> <7 - f> (4)

(where the subscript M stands for “Moore”). The general formula that describes these spatial

approximations is
D D\ !

where n is the number of neighbors in the grid’s geometry. This formula holds also for a 3D square
lattice, both for the Moore and von Neumann neighborhoods. Note that in (5) the limit as n — oo
recovers the equilibrium density for mass action (1), where the number of neighbors is infinite.

Finally, we develop concise approximations for the expected speed of range expansion in an
infinite grid. We end by discussing extensions of the theory —including three-dimensional growth,
different grid geometries, and multiple species— and several important evolutionary and biological
applications.



2 Spatially explicit decoupling approximations
2.1 Preliminaries

We begin by considering a birth-death process on a 2D rectangular lattice. Let the value of the site
with coordinates (7, ) at time ¢ be x;;(¢t) = 0 if the site is empty, and x;;(¢) = 1 if it is occupied. We
consider the ¢; distance in the lattice, i.e., dist(z;;, 2;x) = |i—I|+|j — k|. Defining nearest neighbors
as sites that lie one unit of distance apart from each other, we introduce a notation for the four
nearest neighbors of a site z;;: We write xgl-) = Ti_1, :E-(-2) = Tit1,4, :E-(-3) =Ti;_1, ZE-(-4) = T 41
J ) iJ ) iJ ) iJ )
Note that a site and its four nearest neighbors make up a von Neumann neighborhood of radius
one. Finally, we assume that individuals reproduce stochastically onto each unoccupied nearest
neighboring site with a rate L/4, and die at a rate D.

Figure 1B plots the expected number of individuals as function of time. We implement the
process as a stochastic agent-based model on a finite grid with periodic boundary conditions using
the next reaction method [26] (thick solid line). Here, starting from an initial small cluster of cells
at the grid’s center, the expected number of individuals first increases and then plateaus as the
population colonizes the entire grid. Figure 1A depicts, as a heatmap, the spatial configuration of
the expected number of individuals at a time before the entire grid is colonized.

If we use angular brackets to denote the expected value, we find that the stochastic process
results in the following equation:

d%ﬁ = <§(1 —ay) Yl - D$ij> ’

s=1

If we neglect correlations in (6) and assume that for any pair of sites a and b, (ab) = (a)(b), we
arrive at the spatial mean-field model:

d(xij) _
dt
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Figure 1B demonstrates that the mean-field model is not a very accurate representation of the
average behavior of the stochastic process (compare dotted and thick solid lines).

To improve upon the mean-field approximation we note that (6) introduces terms of the form
(wij Tiq1,5) and (245 T 41), which require new equations to describe their rate of change. These
are:

4
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Equations (8) and (9) introduce terms of the form (bc) and (abc), where a, b, and c are sites in the
grid that satisfy dist(a,b) = dist(a,c) = 1, and dist(b,c) = 2. In principle, these new terms require
additional equations that involve higher order moments. At some point however, we need to cut
off the process of adding equations and instead use approximations to obtain a closed system.



2.2 Spatially explicit decoupling approximations and the pair approximation

Before proceeding, we need to establish notation and some fundamental relations. First, note that
for any triad of sites {a,b,c}, the following relation always holds: (bc) — (abc) = P(b =1, a =
0, ¢ =1). Let Pj;;, be defined by

Piji =Pz =1, 2; =0, zi11; = 1),
Pijo=P(xij_1=1, 2;; =0, ;41 = 1),
Pij3 =P(xi—1j =1, 25 =0, x5 j1 = 1), (10)
Pija = P(zij-1 =1, 2ij =0, zig1,; = 1),
Pijs = P(xit1 =1, 2y =0, 241 = 1),
Pije = P(zi—1j=1, 2;5 =0, ;41 =1)

If we call Usj = (x45), Yij1i = (xij xit1;) and Yijo = (245 @i j41), then the system (6)-(9) can be
rewritten succinctly as:

Uj =% (Uic1j — Yie141 + Uirrg — Yig1 + Uijo1 = Yijo12 + Ui — Yip2) — DUy,
Yij1 = % (Uij + U1, — 2Yij1 + Piji + Pija + Pyjs + Pry1ji + Pivjs + Pisje) — 2DYij,
Yijo =% (Ujj + Ui js1 — 2Yijo + Pija + Pijs + Pije + Pja12 + Pijr13 + Pijr1a) — 2DYijo.

(11)
The presence of the Pjj;, in (11) means that this system is not closed. To close it, let us consider
the following relations, where, as before dist(a, b) = dist(a, c¢) = 1, and dist(b,c) = 2

Pb=1,a=0,c=1) =Pb=1a=0,c=1)P(a=0,c=1)
~Pb=1la=0)Pla=0,c=1) (12)
= ((b) = (ab))/ (1 = (a))({c) = (ac)).

Intuitively, the approximation P(bla = 0,¢ = 1) &~ P(b = 1la = 0) assumes that the probability
that a site is equal to one is only weakly dependent on the probability that another site two units
of distance apart is also equal to one. Now, let ¢;; = 1/(1 — Uj;) if U;; < 1 and §;; = 0 otherwise.
If we define the B;;; by

Biji = (Uit — zyl)(Ui—l,j —Yic151)s

Bijo = (Uij-1 = Yij-1.2)(Uij+1 — Yij2),

Bijz = (Ui j—1 —Yij-12)(Ui—1j — Yi—1,51), (13)
Bijs = (Uij-1 = Yij-12)(Uit1,; — Yijn),

Bijs = (Uit1,; — Yij1) (Uij+1 — Yija),

Bije = (Ui—1,; — Yi—1,1) (Ui j+1 — Yije),

then using (12), we arrive at the approximations Pj, ~ 6;;B;j5. We call these approximations
spatially explicit decoupling approximation, or SEDA. Finally, substituting the Pj;;, in (11) yields



the following closed-form approximation for the system:

. L

Ui = 7 [Ui—1; — Yic1,j0 + Uit — Yiji + Ui jo1 = Yijo12 + Ui ji1 — Yijo] — DUy,

. L

Yip = 7 WUij +Uitrj = 2Yij1 + 6i(Biji + Bija + Bijs) + div1,j(Bit1jn + Bivrg3 + Bit,jo)]
_2D}/7,]17

. L

Yijp = 7 WUij + Uigs1 = 2Yi2 + 6ij(Bij2 + Bigs + Bijo) + ij1(Bij+r2 + Bijs1s + Biji1,)]

Sopvis (14

System (14) preserves information of neighbors up to one unit of distance apart in the ¢; metric,
for this reason we refer to this model as 1% order SEDA. Similarly, using the same type of approx-
imation, we can construct a model that preserves correlations of neighbors that lie up n units of
distance apart from each other; we refer to this model as n'* order SEDA. Note that throughout
this paper, when we make reference to a SEDA approximation without specifying the order, we are
referring to a 1%¢ order approximation. In Appendix A and B we give general rules for higher order
SEDA and present the formulae for 2"¢ order, which requires 24 differential equations per point
(instead of the just three required in (14)).

We can recover the traditional so called pair approzimations (PA) from the 1% order SEDA
equations (14). To do so, let us first define U as the total number of individuals, N as the number
of sites in the grid, and Y as the average correlation between any two nearest neighbors times N.
To derive the PA equations from (14) we need to: (i) set the d;; = 1, which in SEDA prevent
singularities at individual sites; (ii) assume spatial homogeneity, that is, U = NU;; and Y = NYj;;
for any (i, 7); and (iii) set Yjj2 = Y;j1. The PA equations for the birth-death process are:

U=L(U-Y)-DU

V=L -Y)+3LU-Y)/(N-U)-2DY (15)

We remark on two key differences between PA and SEDA: 1) PA models are non-spatial. They
track only the total number of individuals, but not the spatial location of each individual. 2) PA
models only consider correlations of pairs, while depending on the order, SEDA models can preserve
correlations for larger groups of neighbors (e.g., up to quintuplets in 2"? order equations).

Figure 1B plots the expected number of individuals as a function of time, calculated from
stochastic simulations, the mean-field model, 15 and 2"? order SEDA, and PA. It is clear from
this figure that 15¢ order SEDA is closer to the results from the stochastic process than the PA or
mean-field models. We also see that 2" order improves on the 15 order approximation, but the
agreement with the stochastic results is still far from optimal. In section 3, we will build on 1%
order SEDA to find more accurate deterministic representations of the expected behavior of the
stochastic process.

3 Radial decoupling, trigonometric approximations, and time-scaling
SEDA

In this section we provide methods to improve the SEDA description of range expansion, to reach
nearly-perfect approximations in a wide range of parameters. We first develop a new approximation,
which we call radial decoupling approximation. We then combine this radial approximation with
SEDA, to find a method that produces much better agreement with the stochastic process than



Pave  bave  Ooa € [Oabes bape + ) oa & [Oabe, Oape + ) Qjk;

Pj 7 Aij1t = Ui — Yij Aiji =Ui—1; = Yic11 Ceos €08(20;5) + micos
Pijo w2 Aija=Uj-1—Yij—12 Aijo = U; j+1 — Yijo —Ceos €0S(20;5) + Mecos
Pijs  3mn/4 Aijz=Uj—1—Yij—12 Aijz =Ui—1; —Yic1j1 Csin 5IN(260;5) + Mein
Pyjs  w/4  Ays=Uij1—-Yij 12 Aija = U1 — Yiji Csin SIN(20;5) + Msin
Pijs  3m/4  Aijs = Uip1,; — Yiji Aijs = Ui jy1 — Yijo Csin SIN(20;5) + Msin
Pjs w/4  Ajje=Ui—1; — Yi—141 Aije = Ui j11 — Yijo Csin SIN(20;5) + Main

Table 1: Columns 1 to 4: Radial decoupling approximation, A;;x, of P, based on the angle 6,, from v,
to 0a (see text). Columns 1 and 5: Trigonometric coefficients ;i for each P;ji. Note that 6,, = 0;; (same
angle different notation).

pure SEDA alone. We call this combined method trigonometric decoupling approximation. Finally,
we introduce an alternative, time-scaling approach that also improves SEDA results.

3.1 Radial decoupling approximations

In section 2.2, we used approximation (12) for quantity Py = P(b = 1,a = 0,c = 1), where a,b
and c are sites in the grid, that satisfy dist(a,b) = dist(a,c) = 1, and dist(b,c) = 2 (note that sub-
indexes in Py, are sites and not coordinates). Here, we develop a different approximation for this
quantity. We focus on modeling 2D growth expanding radially from an origin o, with coordinates
(i0s Jo)-

We begin by noting the following relations:

(16)
=Plc=1la=0,b=1)Pla=0,b=1). (17)
Numerical simulations show that, as time proceeds, soon after P, increases from its initial zero
value, P(b = 1la = 0,c = 1) or P(c = 1ja = 0,b = 1) remains relatively stable. Then, given
that P(a = 0,b =1) = (b) — (ab) and P(a = 0,c = 1) = (¢) — {(ac), the previous observation and
eqs. (16-17) suggest the approximations: Pgp. =~ n({c) — (ac)) or Py = n({(b) — (ab)), where 7 is
the stationary value for P(c = 1la = 0,b=1) and P(b = 1|a = 0,c = 1) (i.e. for time ¢ large). We
call these approximations radial decoupling approximations, or RDA.

We now describe a procedure to decide which of the two approximations (Pup. = n({c) — {(ac))
or Pape =~ n((b) — (ab))) to use, based on the geometry of the triad {a,b,c} and the the location of
a relative to the origin o. First, we can think of a (with coordinates (i,,j,)) as the center of the
triad. There is a unique line ¢ that goes through a and is perpendicular to the vector b?:, see Figure
2. This line divides the plane into two half-planes: Hj, which contains the site b, and H., which
contains the site c. Let v, be the vector that goes from a to the site with coordinates (iq,jq + 1).
We can then define 0, as the angle between v, and ¢ measured in a counterclockwise direction.
Given the geometry of the grid, 04, will take on one the values 7/4, 7/2, 37/4, or m (Figure 2).
If we measure angles based on the interval [0, 27), one of the half-planes discussed will be made
up of those sites e, where the angle from v, to dgé (measured counterclockwise) lies between 6y,
and 04 + m. To simplify the notation let us assume that this half-plane is H,. Now, let v, be the
vector from o to the site with coordinates (i, j, + 1). If the angle 6,, from v, to oa is such that



Oabe < Ooa < Oape+, use the approximation Py ~ n((b) — (ab)); otherwise, use Py = n((c) —(ac)).
To further simplify the notation, in the future we will also refer to 0,4 as 0;;.

The procedure/algorithm described in the previous paragraph is informed by simulation results.
The critical time to model Py, is during the transitional time period where this quantity changes
from a near zero state to its long term stationary value. During this transitional period, the triad
{a,b,c} is located near the edge of the radially expanding population. Simulation results indicate
that the best RDA is the one that explicitly tracks information from the site (either b or ¢) that is
most likely to lie outside the radially expanding population during this transitional time. Intuitively
this makes sense. Because the expected value of a site that lies outside the expanding population
is more likely to change during this time, than the expected value of a site that lies inside the
population mass, where it is more likely to be near its long term steady-state. The algorithm
described in the previous paragraph selects the best RDA according to this criteria.

Table 1 specifies how to choose the RDA for the P;j;, in (10). Following the definitions of the
A;ji in this table, the approximations can be written succinctly as Py, =~ nA;j,. A closed-form
approximation for system (11) then follows by substituting the P;;; by nA;j; in (11). We can
determine 7 by considering the equations of the new system at equilibrium. We do so by setting
the equations equal zero, dropping the subscripts, and solving for n. We find n =1 — %, which
suggests a valid approximation for D/L < 0.75. This equilibrium analysis, however, also reveals
that, unlike the stochastic process, a system based only on RDA does not have a unique non-trivial
steady state. Instead, we discover that combining RDA with SEDA restores a unique equilibrium
to the system and provides very accurate results. We discuss this combined approach next.

3.2 Trigonometric approximation

Before we proceed we can introduce a small correction by modifying the SEDA model so that
its steady-state density more closely matches that of the corresponding stochastic process. The
procedure consists of substituting the approximation Pjjp ~ 0;;Bijr by Pjjx ~ min (edijBijk, 1),
where € > 1. Using the notation of section 3.1 this implies that on average P(b = 1la = 0,¢ =
1) > P(b = 1|la = 0). This intuitively makes sense, because being at most two units of distance
apart from each other, the values of b and ¢ are correlated. To determine ¢, we can substitute the
steady-state densities of the stochastic process, Us; and Y;, with the modified approximations for
P;j, into (14), set these equations equal to zero, and solve for €; this yields:

€= <% - g) (1-U,)U; " (18)

Note that Ug and Ys are independent of grid size. Hence using (18), for any ratio D/L we can
compute the value of € from simulations in a small grid. After calculating several of these values,
we can find a formula for e using polynomial regression (See Figure A2 in the Appendix):

€ =1.85(D/L)* —0.46(D/L)* +0.045(D/L) + 1 (19)

We now introduce a method to combine SEDA and RDA for the probabilities Pj;,. One
approach is to weight the two types of approximations and add them up. More precisely, let
a;ji € [0,1], we consider approximations of the form:

Pz‘jk =~ Cijk = Qujk min(e 6ijBijk7 1) + (1 — aijk) (1 — %) Aijk (20)
—_—
SEDA RDA

Next, we need to determine appropriate values for the weights «;j;. We begin by exploring
the problem numerically, with a focus on modeling 2D growth expanding radially from an origin



o. For a given grid size and set of parameters, D and L, we can run multiple simulations past the
point where the system reaches its stationary distribution. From these simulations we can compute
the statistics (known as sample statistics) P;j(t), %—-Bijk(t), and A;;1(t). We can then define d;jj,
as the parameter a;j € [0,1] that minimizes ||P;;x(t) — (cjk min(emijk(t), 1)+ (1 — agje)(1 —

%)Aijk(t))\ e, - Intuitively, &1, provides the best approximation possible for P;j;, that uses equation
(20). Figure A4 shows that these “best fit” combined approximations (i.e., using the d;;i), provide
a significant improvement over the pure SEDA approximations. Figure 3A plots the coefficients
&;j1 vs. the angles 6;; (dots). The plot shows that the coefficients are approximately periodic with
the angles, which suggests that we could use a trigonometric formula for the «;;1. Indeed, the
black curve in this figure is the function cqos cos(26) + meos. To determine the parameters cqos and
Meos, We average the &;;j1 that have the same 6;;; for a given angle 6 let this average be a(6).
We then use a basic optimization procedure to find the parameters, c.os and meos that minimize
[|a1(0) — (Ceos €08(26) 4 mecos) ||¢, (Figure 3B). Similarly, Figure 3C plots the averages, a4(f) and
ag(6), computed from the coefficients d&;;4 and &;j6. In this case, the trigonometric formula for the
a;j4 and oyj6 has the form cgy, sin(26;5) + mgin (thick line). Note here that the fitting of a4 and as
would not benefit from a phase shift, because the error data do not exhibit the same symmetry as
the sine function does. Instead, the sine approximation mostly lies between a4 and ag. However,
since ay and ag appear in tandem in the ODEs, the net effect will produce an overall very good fit.
We find then that the formulae for the six coefficients a;;, (k =1,...,6), can be expressed in terms
of four parameters, Ccos, Mcos, Csin and Mmgin, as described by Table 1. We call the approximations
that use the ayj; in this table, trigonometric decoupling approximation, or TDA. Compared to
SEDA, TDA produce significantly smaller errors approximating the probabilities P;j;;, (Figure A5).

Finally, Figure 4 plots the expected number of individuals as a function of time. In each panel
stochastic simulations are compared to results from the mean-field model, SEDA, and TDA, for
different death rates and grid sizes. In this figure the trigonometric approximation improves with
grid size. This behavior is caused by the periodic boundary conditions used in the simulations,
which are not specifically accounted for in the formulae for the a;;,. Hence, as the grid size
increases and the contribution of the boundary effects to the overall population diminishes, the
trigonometric approximation improves. We see this in Figure 4, once grid size is sufficiently large,
the agreement between the TDA model and simulation results is excellent.

We calculated the coefficients ccos, Meos, Csin, Msin for different values of D/L and then fitted
the data with polynomial functions (Figure A3) using least-squares in grids of size 45 x 45; these
polynomial regressions yield the equations in (21), and their validity was verified for grids roughly
8, 500, and 5000 times larger (Figures 4 and 6). Together equations (13), (20-22), and Table 1
provide a full and explicit formula for the TDA model. This approximation is very successful for
D/L < 0.4, which roughly corresponds to steady-state densities > 50%.

Ceos = 0.39(D/L)? — 0.46(D/L) + 0.24,

Csin = —2.4(D/L)3 +2.1(D/L)? — 0.72(D/L) + 0.22,
Meos = —9.7(D/L)? +7.5(D/L)? — 2(D/L) + 0.59,
Msin = —8.6(D/L)? 4+ 5.3(D/L)? — 1.4(D/L) + 0.46

Ui-1j = Yicrjn + Uivrj = Yijn + Uijor = Yijo12 + Ui gy — Yij2) — DUij,
(Uij + Uis1,; — 2Yin + Cijn + Cija + Cijs + Ciyajn + Citjs + Ciga,je) — 2DYig,

(Uij + Ui j+1 — 2Yijo + Cijo + Cijs + Cije + Cijjy12 + Cijr13 + Cijp1,4) — 2DYijo
(22)
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3.3 Time-scaling SEDA

For each grid site (i,j) there is a transient time period where the values of the approximations
dijkBijr < Piji (compare blue and yellow lines in Figure A4 in the Appendix). During this time
period, the derivative of U;; calculated using SEDA is larger than the same derivative according to
the stochastic process. As a consequence, before reaching the steady state, system (14) overesti-
mates the total number of individuals as a function of time (Figures 1 and 4). Heuristically, these
observations suggest that by scaling time by a parameter op,, < 1 in (14), we can improve the
quality of the approximation. More precisely if S is the total number of individuals and (14) yields
the functional relation S = F'(t), then we can improve the approximation by setting S = F'(ap,.t),
where the value of ap,;, is determined through least-squares fitting in a small grid (Figure 5). We
can then find through polynomial regression a formula for oy, valid for D/L < 0.4:

apyr, = (1.72(D/L)?* +0.0795(D/L) + 1.3) " (23)

We tested equations (21) for the trigonometric parameters and (23) for the ap,;, in much larger
grids (Figure 6). As initial conditions we used random plaques grown stochastically from an initial
set of 13 occupied sites at the center of the grid (left image of each panel). Here the sizes of the initial
plaques are large enough so that with them as initial conditions the trajectories of the total number
of individuals as a function time behave almost deterministically; and hence, a single stochastic run
is sufficient to track the time evolution of the expected number of individuals. We find that (21)
and (23) produce very good approximations, in much larger grids with random plaques as initial
conditions.

Next, we discuss the numerical solution of the approximate systems. These systems of course
can be solved using higher order implicit methods, such as Runge-Kutta, which is the standard
method, and unless stated otherwise, is behind the figures in the paper. However, we are interested
in evaluating the performance and accuracy of forward Euler, as this method is the simplest to
implement and fastest to compute. We found that in forward Euler a step size of dt = 0.025L
provides good results for 0.25 < D/L < 0.4 and a step size of dt = 0.0125L is sufficient for all
D/L < 0.4. The approximate systems yield very large improvements in computational performance
compared to stochastic simulations for large grids. For example, for the simulations in Figure 6B,
with a grid size of ~ 107 sites, and a death-to-birth ratio D/L = 0.25, before reaching saturation
the trigonometric approximation was more than 100 times faster than a single stochastic run.

Finally, we note that applying the rescaling procedures described in this section to PA or
the spatial mean-field model does not produce satisfactorily results (section F in the Appendix).
Indeed, besides PA being non-spatial, the curve shapes of a rescaled PA and the stochastic results
are substantially different (Figure A8). Also, rescaling the spatial mean-field model easily results
in high relative errors and very inaccurate approximations to the stochastic process at early times
t (Figure A9).

4 Steady-state density

Here we focus on the steady-state behavior of the spatial birth death process, and derive several
approximations for the steady-state density. We note that up to this point we have only dealt with
von Neumann neighborhoods. In this and the next section we also consider Moore neighborhoods
in relation to both steady-state and range expansion results. For a derivation of the steady-state
formulas in 3D see Appendix G.



4.1 Steady-state density for the von Neumann neighborhood

As seen from the long term dynamics in Figure 1B, in a finite grid, the expected population size
eventually reaches a steady state. We can calculate the steady-state density predicted by the mean-
field approximation by dropping the subscripts in (7) and setting the right hand side of the equation
to zero. Solving this equation, we find that the steady-state density in the mean-field model is equal
to that of mass action (formula (1)). Here mass action refers to the well-mixed non-spatial version
of the birth death process, described by equation X=LX (1-X/K)— DX, where X is the total
number of individuals, K the system’s carrying capacity, and p,,, = X/K in steady state.

For the stochastic process what we call here the steady-state (or equilibrium) density refers to
the expected density of the quasi-stationary distribution calculated from simulations [27]. During
simulations, if early extinction is avoided, the expected number of individuals eventually plateaus
and then remains stable during the remainder of the simulated time. The steady-state density is
taken from this plateau value. The first thing we note is that the mean-field approximation provides
a poor representation of the stochastic equilibrium density (Figure 1C dotted line). Applying the
same procedure to (14), and noting that when the system is at equilibrium Yj;; = Yj;o (or solving
system (15) in steady state), we find the equilibrium density for the PA and 1% order SEDA models
to be given by formula (2). In Figure 1C we see that (2) provides very good agreement with the
steady-state densities from the stochastic process (for densities larger than 50%). Also, we again
notice that the 2" order improves slightly over the 1°¢ order approximation (especially at lower
densities).

Finally, we note that when the initial number of individuals, ng, is small, extinction events can
be caused by random fluctuations around small numbers. Indeed, the probability of early extinction
is at least (D/(D + L))". However, unless ng is quite small, there are parameter regions where
early extinction is very unlikely. In particular, during simulations for Figure 1C extinction never
occurred for all points that were tested with D/L < 0.62 (ng = 13). For D/L > 0.62 on the other
hand, population extinction always occurred, even when simulations started with a completely full
grid. (For more on extinction from low numbers see [28,29].)

4.2 Steady-state density for the Moore neighborhood

Moore neighborhoods can be defined in terms of the /o, distance, which states that dist(z;;, zx) =
max(|éi — [, |7 — k|). The Moore neighborhood of radius one of a site a, can then be described as a
and all sites that lie one unit of distance apart from a (8 neighbors in total). When dealing with
Moore neighborhoods, in addition to the variables Y;;1 = (x;jx; j+1) and Yijo = (52, j+1), it useful
to introduce the quantities Yjj3 = (2sj2i—1,j41) and Yij4 = (2ijxit1,j41). We can then use these
variables to approximate the steady-state density of the system. Following the general methodology
employed in the paper, we begin by writing ODEs for the rate of change of the variables U;; = (z45),
Yij1, Yij2, Yijs, and Yjj4. The resulting equations include objects of type P(b=1,a =0, ¢ = 1),
where b and ¢ are two distinct sites in the Moore neighborhood of radius one of a third site a. To
proceed in the same way as for the von Neumann model, we apply the approximation in Eq. (12)
to all triplets with dist(b,c) = 2. As a result, new variables must be added to the system. After
symmetrizing for the steady-state analysis, we obtain a system of five equations (instead of the two
for the von Neumann case (15)). We present and solve these equations numerically in Appendix E.

There is, however, a way to simplify the equations that allows for an analytical solution. Given
a triplet, {a,b,c}, that satisfies the conditions previously described, we can apply approximation
(12) regardless of the distance separating b and ¢. This approach leads directly to a closed system
of ODEs. As before, to perform the steady-state analysis, we drop the coordinate subscripts for all
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variables in the system, and find that the steady-state values for Y7, Y5, Y3 and Y, are all the same.
Simply calling this steady state Y leads to the equilibrium equations:!

0 = LU-Y)-DU (24)
0 = ILU-Y)?/(1-U)+iL{U-Y)-2DY

Solving this last system for U, we find the closed-form approximation for the Moore neighborhood
equilibrium density (4). This formula fits the numerically obtained data remarkably well (see Figure
AT), and is only slightly less accurate than the more cumbersome method of decoupling used in
Appendix E. This same simplifying approach can be used to find an approximation, pg, for the
steady-state density in a hexagonal (honeycomb) lattice, where each node has six nearest neighbors,
see formula (3). The order relation between the approximate densities, p,n < pg < pur, reflects
what occurs in stochastic simulations, where the steady-state density increases with the number of
neighbors.

Figure 7 plots the equilibrium density formulas for the mass-action, von Neumann, and Moore
models. As we noted, spatial restrictions reduce the equilibrium density. In this sense, the von Neu-
mann model imposes stronger spatial restrictions than the Moore model (4 vs. 8 nearest neighbors
per site). The corresponding equilibrium density is therefore lower in the von Neumann model. It
is important to note that formulas (2) and (4) capture this behavior, while the mean-field repre-
sentations do not. Indeed, although the mass-action model and the spatial mean-field models for
von Neumann (Eq. (7)) and Moore (not shown) have different propagation speeds, they all have
the same steady-state density.

5 Population expansion rate

In this section we are interested in approximating the expected growth rate of a 2D population
expanding radially from an origin o in an infinite grid. Under these conditions, when the population
is large enough, the region of the grid colonized by the population up to a time ¢ will roughly
resemble a disk (see, for example, initial conditions in Figure 6). It is possible to derive approximate
expressions for the expansion rate of these disks, as colonization proceeds.

Let A(t) be the area of the expanding region, and M (t) the total number of occupied sites. In
the region’s interior the density of occupied sites will be near equilibrium and thus we will have the
relation: M (t) =~ A(t)p, where p is the steady-state density of occupied sites. We can then define
the radius, R, and circumference, C, of the disk-like region in terms of M:

aM

A=7R?  C=2rR=2VmA=2 - (25)

In the colonized region’s interior, divisions exactly balance deaths; the number of individuals
only increases through the dynamics on its boundary or surface, where there is no such balance. For
this reason, we want to estimate the number of surface sites of a disk-like region. Let us begin by
considering a circle of radius r and center o with coordinates (i,, j,) in a rectangular grid. We define
the surface points of the circle as those with coordinates (i, j) such that (i) (i —i,)% + (j — jo)? < 72
and (ii) the point has at least one nearest neighbor, (i1, j1), that lies outside of the circle, i.e.:
(i1 — i0)? + (j1 — jo)? > r2. Such points are denoted as blue dots in Figure 8A, which illustrates
this for the von Neumann neighborhood. We find numerically that for large r the number of sites
in the circle’s surface ~ [ x 27r, where [ is constant that depends on the type of neighborhood

'Note that if we use this simplification for the von Neumann neighborhood, we recover 1st order SEDA.
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used. Hence by analogy, we estimate that the number of surface sites, S(t), of a stochastic disk-like

region is:
M
S%BxZmeﬂxm/% (26)

We are only interested in the dynamics at the surface, where the approximate number of in-
dividuals is Sp. The net growth rate of the system is L — D; however, at the surface only the
fraction of the growth rate directed towards the outside of the disk, v, counts towards expansion.
The other fraction of the surface growth, 1 — v, is directed towards the interior of the disk-like
region, where we assume that births and deaths are balanced. This fraction, v, is equal to the
average number of exterior and surface neighbors that an individual at the surface has, divided by
four. The approximate total growth rate is then equal to v(L — D)pS, where the inclusion of |/p
introduces a non-linear term. The equation for the total population can be written as:

dM
W:VpS(L—D):1/5X2\/7TpM(L—D):a\/M, (27)
where the expansion rate a is given by

a=2v8y7p (L D), (28)

and quantities v, p, and 8 depend on the type of neighborhood used. The expansion rate in (28) was
derived from first principles, where all components have a physical meaning. It is worth mentioning
however, that a simple linear regression of the data in Figure 8 would result in a tighter fit for a.

5.1 Expansion rate for the von Neumann neighborhood

Using the von Neumann model, we can numerically estimate the number of surface points in a
circle of a given radius, which leads to the value B,y = 0.9, see Figure 8A. The density formula is
given by equation (2).

The next step in our derivation is to find an estimate for v, 5. Let us begin again by considering
a circle. For each point in a circle’s surface, we want to determine how many of its four nearest
neighbors lie outside the circle, belong to its surface, or to the circle’s interior. In Figure 8A a
circle’s surface points are marked as blue dots; and for illustrations purposes, the neighbors of four
of these points (A, B, C, and D) are enclosed in red diamonds. For point A, two of its neighbors
belong to the surface and one neighbor lies outside the circle. For point B, two neighbors are in
the interior, and two lie outside the circle. For point C, one neighbor is in the surface and two
lie outside the circle. For point D, one neighbor is in the surface and one lies outside. Hence, for
points A and C, three out of their four neighbors are not in the interior. For points B and D, two
of their neighbors are not in the interior. Increasing the circle’s radius and calculating the average
fraction of neighbors that lie either outside the circle or in its surface, we find numerically that this
quantity, v,y =~ 0.65. Figure 8B plots the values of the growth rate parameter a obtained from
stochastic simulations (blue dots) compared with formula (28) (blue solid line).

5.2 Expansion rate for the Moore neighborhood

Using the method of Figure 8A adapted to the Moore neighborhood, we find numerically that
By =~ 1.27. The density formula is given by the solution of system (A8-A12), or more concisely
(with slightly larger error), by Eq. (4). Similarly, the average fraction of neighbors that are not
in the circle’s interior is given by vy ~ 0.70. Figure 8B compares the results from stochastic
simulations with formula (28), using 8y; and vy for 5 and v.
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In Figure 8B we also see that expansion happens faster under the Moore neighborhood. This
can be intuitively understood by noting that with a larger number of points that count as neighbors,
an individual has more choices for placing its offspring. In the case of a mass action (not shown)
expansion is fastest and exponential in time.

6 Discussion

In this paper we developed deterministic approximations for the expected trajectories of a two-
dimensional stochastic birth-death process. In particular, we focused on modeling 2D growth
expanding radially from an origin o, a problem known in the literature as range expansion. We
began by considering approximations based on the decoupling ideas of the pair approxzimation (PA);
we referred to these approximations as spatially explicit decoupling approximations, or SEDA. For
each SEDA we defined an order: A SEDA of n'" order preserves correlations between neighbors that
are n or less units of distance apart from each other. We found that 1% order SEDA approximates
the results from the stochastic process better than the mean-field or PA models; and 2" order
improves on the 1% order approximation. However, none of these models exhibit good time series
agreement with the stochastic process.

There are two important differences between PA and SEDA. 1) PA models are non-spatial.
They track only the total number of individuals, but not the spatial location of each individual.
SEDA is fully spatial. 2) PA models only consider correlations of pairs, while depending on the
order, SEDA models can preserve correlations for larger groups of neighbors (e.g., up to quintuplets
in 2"? order equations).

Next, we developed what we called radial decoupling approximations, or RDA. Here, an ap-
proximation involving a triad of sites depends on the location of the triad’s center relative to the
population origin. A system based only on RDA does not have a unique steady state; RDA how-
ever, will be very useful when combined with SEDA. This approach lead us to the trigonometric
decoupling approximations, or TDA. The name comes from the use of trigonometric functions in
the approximations. We find that the TDA provides very good agreement with the stochastic pro-
cess. We then revisited 1% order SEDA, and found that scaling time by a suitable parameter also
produces very good agreement with stochastic results.

The methods described above allow us to approximate the steady-state density of populations
(or the density in the core of expanding colonies). In particular, we provide three simple formulas
that approximate the equilibrium density: for the von Neumann and Moore neighborhoods on a
square lattice, and for a honeycomb neighborhood on a hexagonal lattice, see Egs. (2, 3, 4). For the
same death-to-birth ratio, the grid is more packed under the Moore neighborhood, because of the
availability of more neighbors per site. As a consequence, the equilibrium density corresponding
to the Moore neighborhood is higher and closer to that of mass action. A general formula that
provides an approximation for the steady-state density as a function of the number of neighbors is
given by equation (5). It describes the three cases in 2D that were mentioned above, and can also
be derived in 3D for the von Neumann and Moore neighborhoods. The validity of this formula for
other cases remains to be checked.

Finally, we turned our attention to the expected growth rate of an expanding population in an
infinite grid. By focusing on the dynamics at the population’s surface (or boundary), we found a
simple explicit formula, Eq. (27), that estimates the evolution of the total number of individuals
as a function of time. The growth law in (27) is the so called “surface growth” law [30], previously
described in modeling literature [31-35]. Equation (28) provides a method to approximate the
rate of surface growth from the “microscopic” rules and rates that govern the spatial birth-death
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process. This method involves knowledge of a population steady-state density, and the geometric
properties of disk-like objects on a square lattice, both of which depend on neighborhood type.

The methodology developed in the article can be adapted to include three-dimensional growth
and other grid metrics. In 3D there are four equations per site for all 15! order approximations using
the ¢ metric. SEDA and TDA approximations can also be developed for Moore neighborhoods
(based on the £, norm). Using Moore neighborhoods in 2D, for example, leads to 10 equations per
grid point for 1%¢ order SEDA. Another important extension of the methodology is the inclusion of
populations with more than one species. For example, in 2D with the ¢; metric, for a two species
birth-death process there are ten equations per point for 1% order approximations: two for the
expected value of singletons (one per species), four for correlations of pairs of the same species, and
four more for correlations of mixed pairs. For more complex models, such as those involving two
or more species, the process of generating equations can be automated using Mathematica, by first
working out a pattern and then implementing equation generation in a program, a methodology
similar to that used in [36].

Applying the methodology to more than one species can lead to important biological applica-
tions. For example, in the context of tumor growth, a two species birth-death model can be easily
adapted to account for feedback interactions between tumor stem cells and differentiated cells [37].
Similar adaptations can be used to model viral infection and the interplay between infected and
uninfected cells [38]. Another fundamental application is studying mutant dynamics in a spatial
setting, which is relevant to a host of phenomena: ranging from 2D bacterial evolution in biofilms,
to 3D evolutionary dynamics of cancer. In particular, the ideas used to estimate the population’s
expected growth rate (for one specie), could be applied to approximate the expected number of
mutants as a function of time. The extensions to the theory and approximations discussed here
can form the basis of these and other applications, and will be the focus of future work.
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Figure Legends

Figure 1: A) Spatial configuration of the expected population density at ¢t = 19.5, for the stochas-
tic (top) and 1%¢ order SEDA model (bottom). Color bar indicates density. B) Expected total
number of individuals as a function of time. Results from stochastic simulations (thick solid line)
compared with the output of the mean-field model, 1% and 2"® order SEDA, and pair approxi-
mation (PA, thin solid line). In panels A) and B), death rate D = 1; reproduction rate L = 4;
grid size 129 x 129. Initial conditions: 5 individuals at grid’s center. C) Steady-state density of
occupied sites as a function of the death-to-birth ratio D/L. Stochastic results based on 10% or
more independent simulations per point/curve. Initial conditions: 13 individuals at grid’s center.
Confidence interval error bars are smaller than thickness of symbols/curves (not shown).

Figure 2: Panels show all geometric configurations for sites a,b, and c¢ that satisfy dist(a,b) =
dist(a, ) = 1, and dist(b, ¢) = 2. Clock-wise from top-right the configurations describe the sites in
the probabilities Pj;, from k =1,...,6 (Eq. (10)). The angles and semi-planes (0gp., Hp and H.)
are used to determined which RDA approximation to use (n((b) — (ab)) or n({c) — (ac)), based on
the location of a relative to the population origin o. See text for discussion and Table 1.
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Figure 3: Weight coeflicients for the trigonometric approximation. A) Best fit coefficients d;;;
vs. the angles §;; for each site in the grid (scattered plot); trigonometric approximation (solid line).
B) «a1(0) is the average of all &1, for which 6;; = 6 (dotted line). C) a4(¢) and og(6) (dotted and
thin lines); trigonometric approximation (thick line). D = 0.1; L = 4; grid size 45 x 45. For the
behavior of the other weight coefficients (cvj;2, @ij3, a;j5) see Table 1.

Figure 4: Expected total number of individuals as a function of time. Stochastic simulation results
(blue) compared with the output of three deterministic models: mean field (red), SEDA (yellow),
and TDA (purple). For all plots the reproduction rate L = 4. The death rates are: (A) D = 0.1;
(B) D = 1; and (C) D = 1.5. Grid sizes indicated in bottom-right corner of each panel (N = 452
or N = 129%). Stochastic results based on at least 10* independent simulations per curve (error
bars smaller than thickness of curves, not shown).

Figure 5: Time-scaled SEDA. A) Solid lines show the trajectories of the expected number of in-
dividuals as a function of time calculated from 5000 independent simulations per curve (error bars
too small to plot). Dashed lines show time-scaled SEDA. B) Inverse of time scaling parameter,
ag/lL, as a function of D/L. Curve plots the polynomial regression in Eq. 23 (adjusted coefficient
of determination R? > 0.99). In all simulations L = 4 and grid size is 45 x 45.

Figure 6: Expected number of individuals as a function of time in large grids. The initial con-
ditions (random plaques) are shown on the left side of each panel (occupied sites are depicted in
white, empty sites in black). A) Death rate D = 0.1, grid size 1000 x 1000, 18000 occupied sites at
t =0 (1.8% of grid size). B) Death rate D = 1, grid size 3163 x 3163, 25000 occupied sites at t = 0
(0.25% of grid size). In both panels the reproduction rate L = 4.

Figure 7: The equilibrium density in mass-action (mean-field), von Neumann, and Moore models,
as functions of the death-to-divisions ration. The lines correspond to formulas (1, 2, 4).

Figure 8: A) Surface points of a circular domain on a square grid. Calculations are demonstrated
for the von Neumann model. For point A, two of its neighbors belong to the surface and one
neighbor lies outside the circle. For point B, two neighbors are in the interim, and two lie outside
the circle. For point C, one of the neighbors is part of the surface set and two lie outside the circle.
For point D, one neighbor is part of the surface set and one lies outside the surface. B) Growth rate
parameter a as a function of D/L (Eq. 27) for L = 4, for von Neumann and Moore neighborhood
models. Calculated from stochastic simulations (dots) and formulas (solid lines).
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