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Abstract

In the last decades, the frequency of pandemics has been increased due to the growth of ur-

banization and mobility among countries. Since a disease spreading in one country could become

a pandemic with a potential worldwide humanitarian and economic impact, it is important to

develop models to estimate the probability of a worldwide pandemic. In this paper, we propose

a model of disease spreading in a structural modular complex network (having communities) and

study how the number of bridge nodes n that connect communities affects the disease spread-

ing. We find that our model can be described at a global scale as an infectious transmission

process between communities with global infectious and recovery time distributions that depend

on the internal structure of each community and n. We find that near the critical point as n

increases, the disease reaches most of the communities, but each community has only a small

fraction of recovered nodes. In addition, we obtain that in the limit n → ∞, the probability of

a pandemic increases abruptly at the critical point. This scenario could make the decision on

whether to launch a pandemic alert or not more difficult. Finally, we show that link percolation

theory can be used at a global scale to estimate the probability of a pandemic since the global

transmissibility between communities has a weak dependence on the global recovery time.
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I. INTRODUCTION

Community or modular structure is a ubiquitous property in real complex networks

that can be found in systems such as brain networks, social networks, and technological

networks [1–3]. A community is a sub-graph with more internal than external connections,

and as the number of internal links increases compared to the external ones, the network

has a higher level of community structure or modularity [1, 4]. Several theoretical studies

have focused on studying models of networks with sub-graphs whose nodes are densely

connected in order to understand the effect of the community structure on processes

that develop on top of complex networks [5–8]. Disease spreading is one of the most

studied dynamic processes since many diseases that emerge could become an epidemic,

i.e., could affect a large number of people, or even could spread across the world and

become a pandemic. Nowadays, due to the enhanced human migration from rural to

urban regions [9, 10], many people live in agglomerated cities throughout the planet

where the number of internal contacts is much higher than the number of contacts among

people from different cities. When a disease spreads between different cities or regions,

it is essential for national and international health authorities to activate mitigation or

immunization strategies, when a disease is a small outbreak, an epidemic, or even a

pandemic. Therefore, developing models is crucial to predict the epidemic and pandemic

potential of a disease spreading and for developing mitigation strategies.

The susceptible-infected-recovered (SIR) model is widely used to study diseases that

confer permanent immunity [11]. In this model, the nodes can be in one of the following

states: 1) susceptible, i.e., a node that is healthy but not immunized to the disease, 2)

infected, and thus can transmit the disease to its susceptible neighbors, and 3) recov-

ered, which is a node that cannot transmit the disease because it acquired permanent

immunity. For a discrete-time evolution, the dynamic rules of the SIR model are: an

infected individual tries to infect a susceptible neighbor with probability β per unit time

step and recovers after a fixed recovery time, tr, that could be the same for all nodes

or follow a probability distribution P (tr) [12, 13]. A relevant parameter of this model

is the transmissibility T , which is the effective transmission or infection probability and

depends on β and tr [14]. At the initial state of the dynamic process, all the nodes are

susceptible except for one infected node called the index case, from where the disease
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might spread throughout the network. During the early stages of the dynamic process,

there are only a few infected nodes, and hence the process is in a stochastic regime in

which the disease could be halted due to fluctuations or noise [15]. The disease reaches

the final state when it stops spreading, and there are only susceptible and/or recovered

nodes. In homogeneous networks with no community structure in the thermodynamic

limit, the disease becomes an epidemic if a finite fraction of nodes is recovered, and it

is an outbreak otherwise. In the SIR model, there exists a critical value Tc below which

the probability Π of an epidemic is null, while for T > Tc, Π > 0. However, note that

not necessarily Π = 1 for T > Tc, so the disease could end up in an outbreak due to

the fluctuations in the early dynamic, as mentioned above. Lagorio et al. [16] showed

that there exists a cutoff sc of the size of the number of recovered nodes above which the

disease is in an epidemic state while below sc it is an outbreak. Newman obtained that

at the final state, the transmissibility T governs the fraction of recovered nodes which is

identical to the relative size of the giant component (GC) for a link percolation process

(with a probability of link occupation p = T ) [14, 17, 18]. In turn, the SIR model exhibits

a second-order transition at a critical threshold Tc which value coincides with the critical

probability of link occupation in a link percolation process. The outcome of a disease

does not depend only on the SIR parameters, β and tr, but also on the network structure.

Newman [14] showed that for a random homogeneous network (without communities) and

having degree distribution P (k) (where k is the connectivity or the number of neighbors

of a node), the critical transmissibility Tc depends on the first moment 〈k〉, and second

moment 〈k2〉 of the degree distribution. This is analogous to the percolation threshold

found by Cohen et al. [19]. Kenah and Robins [20] generalized the results in Ref. [14] and

found that the SIR maps with a semi-directed link percolation process and their theory

predicts the probability Π of an epidemic in the thermodynamic limit. Importantly, for a

constant (homogeneous) recovery time, they proved that at the final state, the value of Π

is equal to the relative size of the giant component of link percolation, P∞. However, for

the case of non-constant (non-homogeneous) recovery time and an infection time which

follows an exponential distribution, Π < P∞ for T > Tc. This implies that the probability

of an epidemic in the SIR model does not map to link percolation, i.e., this percolation

process cannot predict the probability of an epidemic.

Several approaches have been developed to study the effects of the community structure
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on the disease spreading. Salathé et al. [21] found that in networks with a strong com-

munity structure, there exists a trapping effect because the disease is more likely to stay

inside the community than to reach other communities. Besides, they obtained that such

structure delays the epidemic spreading across the network. Hindes et al. [22] presented

the time evolution equations in the thermodynamic limit for a network of sub-networks

or communities in which at a global scale each community is represented by a “supern-

ode,” and all supernodes are arranged in a 1-dimensional lattice, i.e., each supernode has

only two supernode neighbors. They showed that if the disease starts in one of these

communities, the intra-degree distribution affects the propagation front at a global scale.

Vazquez [23] developed a model of communities composed by a finite number of nodes

and solved it analytically. The author obtained that the disease spreading is characterized

by oscillations at the early stages of the dynamic, and there exists a critical basic repro-

ductive number (i.e., the number of secondary cases from an index case) above which the

disease reaches a macroscopic number of communities. Colizza and Vespignani [24, 25],

and Barthelemy et al. [26] studied metapopulation systems or networks composed by sub-

populations with homogeneous mixing and homogeneous/heterogeneous degree between

sub-populations over which individuals diffuse. For this model, they obtained determinis-

tic reaction-diffusion equations that describe the disease spreading and found that there

is a global invasion threshold, above which a pandemic emerges. They showed that this

threshold depends on the degree heterogeneity and the number of individuals or agents

moving among sub-populations. Recently, Sah et al. [27] studied on several realistic so-

cial networks of animals how the community structure affects the disease spreading. The

database included a wide range of structures ranging from quite homogeneous networks

with a weak structure of communities to networks with highly segregated or fragmented

communities such as raccoons, field voles, and northern elephant seals. The authors found,

based on simulations, that the community structure does not affect the probability of epi-

demics or the fraction of infected nodes unless the global network has a very strong or

extreme community structure. Finally, Nadini et al. [28] studied temporal networks with

communities in which the number of nodes (size) in each community follows a power-law

distribution. They found that in the limit of highly segregated communities, the final

fraction of recovered nodes in the SIR model is reduced. Besides, in this limit, they ob-

tained that when the community size is heterogeneous, the fraction of recovered nodes is
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higher than the case of a constant community size.

While many of the studies mentioned above analyzed the effect of communities on the

disease spreading at a local and global scale, they are based only on simulations, or they

do not consider the internal structure of the communities or sub-populations (such as in

the case of metapopulation networks). A theoretical model that predicts the probability

of a pandemic is still lacking in structured communities, that is, communities with an

internal static structure.

In this paper, we develop a model and study it theoretically to understand the disease

spreading at a global scale for the case of a static network with a strong community

structure and find under which conditions a pandemic occurs. Additionally, we study

how this structure shapes the evolution of the number of “infected” communities. Finally,

in contrast to isolated networks [20], our work finds that link percolation predicts the

probability of a pandemic due to the weak dependence of the global transmissibility

(between communities) on their global recovery time.

II. MODEL

In this section, we explain the structure of the synthetic network with communities

and the disease spreading process. In this work, we only consider static networks. Note

that we describe our model at two scales: 1) a meta-level or global scale in which the

communities are treated as supernodes and all the links between any two communities are

represented by a single superlink, and 2) a microscopic or local scale in which the process

is described at the level of the nodes and links in each community.

We consider a network of communities with a random structure in which the nodes of

each community have internal connectivity or degree k that follows a distribution denoted

as P (k). The number of communities is Ng, and the number of nodes in each community

is Ni with i = 1, . . . , Ng. For simplicity, we assume that all the communities have the

same internal degree distribution and the same number of nodes Ni = N that could be

either finite or infinite. The bridge nodes in one community are the nodes with external

links, i.e., that are connected to other communities [29]. In our model, each bridge node

always has only one link which connects to another community.

When n = 1, a community connects to another community only through one bridge
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node (see Fig. 1, second column). For n > 1, there are n bridge nodes of Ci that connect

to n bridge nodes of Cj (see Fig. 1, third and fourth column), where Ci and Cj denote

the communities i and j, respectively. At a global scale, all these links between Ci and

Cj are represented by a superlink, and we denote P (kg) as the fraction of communities or

supernodes with kg superlinks. Since a community with kg < ∞ superlinks has nkg < ∞

external links, in the limit N → ∞ the number of external links for each community is

insignificantly smaller compared to the number of its internal links. We refer to this struc-

ture or topology as an extreme or strong community structure because the number n of

links between two communities is finite and insignificant compared to the number of links

inside each community which is infinite in the thermodynamic limit. By increasing n we

will show how a higher number of links among communities induces a pandemic. To study

the disease spreading at a global scale from simulations, we consider that a community

has an epidemic or a supernode is “infected” if its number of infected nodes/individuals

is above a cutoff sc, and susceptible if it is below sc. Note that the value of sc depends

on the local degree distribution P (k) of each community and its number of nodes (in

Appendix A, we explain how to estimate sc). The cutoff sc allows distinguishing a macro-

scopic epidemic from a small outbreak. After a community or supernode is infected, it

will go to the “recovered” state when all the infected individuals within the community

go to the recovered state.
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FIG. 1: Schematic illustration of four communities (C1, C2, C3, and C4, represented by

circles) in which each row corresponds to a different global structure. The first column

shows the global structure in which connections between communities are superlinks, and

successive columns show different numbers of bridge nodes n (stars) for the same global

structure: n = 1 (second column), n = 2 (third column), n = 3 (fourth column). In all

configurations for the first row: C2 and C3 have two superlinks (kg = 2), while C1 and

C4 have only one (kg = 1), while for the second row: C1 has kg = 1, and C2, C3, and C4

have kg = 2.

Using this network as a substrate, we study a discrete-time SIR process. We define

“microscopic transmissibility” T as the effective probability of infection between an in-

fected node and its susceptible neighbor. At the microscopic level for the discrete-time

dynamic, we consider that a node infects a susceptible neighbor with probability β per

unit time step, and it recovers after tr time steps. The microscopic transmissibility for

this model is given by,

T = 1− (1− β)tr . (1)

Here, we will show the case of tr = 1, in which case T = β, but qualitatively similar

results are obtained for tr = 5.
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For the stochastic simulations in finite networks, at time t = 0, all the nodes of the

whole network are susceptible except for one infected node/individual in a community

chosen at random. In our dynamic model, we compute the temporal evolution of the

fraction of infected supernodes and the fraction of recovered supernodes at the final state

for a given value of T , which we denote as Ig and Rg, respectively. In finite networks,

we consider that globally, the disease turns into a pandemic if the number of infected

supernodes at the final state exceeds a threshold sc. Note that at a global scale, the value

of sc depends on the global degree distribution P (kg) of supernodes. In this paper, since

the local and global degree follow the same or similar degree distribution (for instance, a

power-law distribution with similar exponent values at a local and global scale), we use

the same value of sc to distinguish outbreaks, epidemics, and pandemics (in Appendix A,

we explain the method to estimate sc based on simulations). On the other hand, in

the thermodynamic limit (N → ∞ and Ng → ∞), a community/supernode has an

epidemic if the fraction of recovered individuals is not zero, while a pandemic takes place

if the fraction of recovered communities/supernodes is finite. Fig. 2 shows a schematic

illustration of the disease spreading at microscopic and global scales. We define the

“global transmissibility,” T g, as the effective probability of infection between an infected

supernode and its susceptible supernode neighbor.

In the following sections, we present a mathematical approach to compute the global

transmissibility and the relevant magnitudes that characterize the disease spreading at a

global scale based on simulations and theory.
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FIG. 2: Schematic illustration of the SIR model at the final state in a network with

communities and n = 1. On the left, each large circle represents a community, stars denote

bridge nodes, and small circles are the internal nodes or individuals of each community.

The pink nodes correspond to recovered individuals, while the black ones are susceptible.

On the right, we show the network of communities at a global scale where each circle is

a supernode or community. The red supernodes are the communities where the epidemic

developed, and are white otherwise, i.e., the disease did not reach the community or only

developed as an outbreak. The area enclosed with a dotted line corresponds to the figure

on the left.

III. MICROSCOPIC AND MACROSCOPIC DYNAMIC

In this section, we study how the strong community structure affects the epidemic

spreading dynamic at a microscopic and macroscopic scale. We denote an Erdős Rényi

network of Erdős Rényi communities as ER-ER, that is, P (k) and P (kg) follow a Poisson

distribution, where k and kg are the numbers of internal connectivities of a node and

the number of superlinks of a supernode, respectively. Similarly, we denote a scale-free

network of scale-free communities as SF-SF, where the degree distributions decay as a

power-law with exponent λ. It is important to note that the fraction of bridge nodes in

any community is zero in the thermodynamic limit because they have nkg < ∞ bridge
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nodes. The internal structure in each community is random, and at a global scale, the

communities or supernodes are also randomly connected through the superlinks.

In the following, we show that the dynamic global spreading can be described by a SIR

model in an aggregated network in which the supernodes do not have an internal structure,

but they preserve the same degree distribution of superlinks P (kg) as in the model where

supernodes are communities with internal structure. Analogously to the microscopic

scale where the transmissibility is the probability that an infected node transmits the

disease to its susceptible neighbor (given by Eq. (1)), in the aggregated network, we will

obtain the global transmissibility T g between an infected and susceptible supernodes.

This magnitude will be computed from the probability of recovery time P (τR) and the

distribution of infection time P (τI |τR). Here, τR is the time between two events in each

community:

1. the moment at which the number of infected nodes in the community is above sc

2. the moment when no more infected nodes exist in the community after the first

event took place.

The first event represents the fact that health authorities declare an epidemic only after

having a certain number of infected individuals, and the second event represents the

moment at which the authorities declare that the community is free of the epidemic.

Similarly, τI is the period in which a community A infects a community B (see

schematic illustration in Fig. 3 of τI and τR). Using the above definitions of τI and

τR, we define T g
τR

as the effective global transmissibility, which is the conditional proba-

bility that a supernode with recovery time τR infects its susceptible supernode neighbors

and is given by:

T g
τR

=

τR
∑

τI=0

P (τI |τR), (2)

where P (τI |τR) is the probability that a community A infects another B after τI time

steps given that A recovers after τR time steps. We also define the total effective global

transmissibility T g as

T g =

∞
∑

τR=0

T g
τR
P (τR), (3)
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where P (τR) is the probability that a community recovers after τR time steps since it was

infected.

From our simulations on communities that are not aggregated (they have internal

structure), we obtain that the distribution of τR is broad, as shown in Fig. 4a. Therefore,

although at a microscopic level, the recovery time of individuals or nodes is unique (tr is the

same for all nodes), the random internal structure of a community induces a distribution

of recovery time at a global level. In Fig. 4b, we show P (τI |τR) for different values of τR

in which we observe that increasing τR shifts slightly the probability P (τI |τR) to the right

(larger τI values).

Due to our definitions of infected and recovered communities at a global scale that are

based on the cutoff sc, we observe in Fig. 4b that for different values of recovery time

τR, there is a range of values of τI in which τI > τR. This behavior implies that after

a community A is declared free of the epidemic, A might infect a community B which

seems to violate the causality of the spreading process because an already recovered

community/supernode cannot infect another community/supernode. However, this case

can occur since, at a microscopic scale before A recovers, its bridge nodes could transmit

the disease to community B. However, since the number of infected nodes in B is still

below sc when A recovers, at a global scale B is susceptible, which explains the problem

with causality. Nonetheless, because an increasing number of bridge nodes does not change

P (τR), but moves to the left the distribution P (τI |τR) (see Fig. 4d), the probability of

τI > τR decreases, thus the effect of lack of causality can be disregarded. On the other

hand, this shift also implies that τI could be negative, but the probability of such an event

is very low (P (τI < 0) . 10−4) for n ≤ 20.
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FIG. 3: Schematic illustration of the definition of τR (panel a) and τI when a community

A infects B (panel b). The figures illustrate the time evolution of the number of infected

nodes I ×N in community A (dark blue) and community B (light blue). The horizontal

dotted line corresponds to the threshold sc above which a community is regarded as

infected. In panel (a), the time τR (red dashed interval) corresponds to the time interval

between the moment at which community A becomes infected, and the moment it recovers.

In panel (b), the time τI (red dashed interval) corresponds to the time interval between

the times in which the two communities A and B get infected.

12



10 15 20 25
 τ

R 

0

0.1

0.2

0.3

0.4

P
(τ

R
)

(a)

0 5 10 15 20 25
τ

I

0

0.05

0.1

P
(τ

I|τ R
)

τ
R
=15

τ
R
=16

τ
R
=17

(b)

10 15 20 25 30
τ

R

0

0.2

0.4

0.6

0.8

1

T
τ Rg

(c)

0 5 10 15 20 25
τ

I

0

0.1

0.2

0.3

P
(τ

I|τ R
=

1
5
)

n=1
n=3
n=20

(d)

FIG. 4: Normalized time distribution of τR and τI for different values of n for two con-

nected ER communities with 〈k〉 = 3. Panel (a): distribution of τR. Panel (b): the

conditional distribution P (τI |τR) for n = 1 and τR = 15 (black), τR = 16 (red), τR = 17

(light blue). Panel (c): T g
τR

as a function of τR for n = 1 (black), n = 3 (red), and

n = 20 (light blue). Panel (d): the conditional distribution P (τI |τR) for τR = 15 and

n = 1 (black), n = 3 (red), n = 20 (light blue). The results were obtained with over 106

realizations for T = 0.70, N = 104, and sc = 100.

Using the recovery and infection time distribution shown in Fig. 4a-b, we simulate a

SIR model in a network with a degree distribution given by P (kg). We set P (τI |τR) = 0

for τI > τR and for τI < 0 to impose the causality.

In summary, to study the dynamic spreading for the aggregated network, we follow

the next four steps:

1. For a network with n bridge nodes, with Ng communities that follow a global

degree distribution P (kg), and N nodes in each community that follows a local

degree distribution P (k), we built a network with Ng supernodes with the same
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degree distribution P (kg).

2. Given: i) the values of the probability of infection β and the recovery time tr, ii)

two communities with size N and local degree distribution P (k), and iii) these two

communities have n bridge nodes, we run the SIR model and compute the time

distributions P (τI |τR) and P (τR).

3. We run the SIR model in the aggregated network, using the distributions P (τI |τR)

and P (τR) as the infection time distribution between an infected and susceptible

supernode, and the recovery time distribution of a supernode, respectively.

4. We compute the fraction of infected supernodes Ig and compare to the fraction of

infected communities in the microscopic network using the same values of β and tr

in step 2.

From Figs. 5a-b, we observe that Ig obtained from the SIR in the aggregated network

is in very good agreement with the results obtained from the SIR model on the network

with communities, in particular, when the number of bridge nodes n increases. Similar

results are also obtained for other values of T (see Appendix C), indicating that our model

can be well described at a global scale as an SIR model. We also obtain that the area of Ig

as a function of t is the same for different values of n (see insets in Fig. 5). In Appendix B,

we show additional results on the effect of n on the average time 〈t〉 at which the fraction

of infected communities is maximum.

In the following section and Appendix D3, we show that the probability of a pandemic

at the final state is well predicted by link percolation, although the distribution of recovery

times is non-homogeneous (which is in contrast with the results of Ref. [20]).
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FIG. 5: Time evolution of the fraction of infected communities for different values of n:

1 (black), 3 (red), 20 (light blue). For each value of n, we show the average value of Ig

obtained from 100 realizations of the aggregated network (symbols) and the network with

communities (line). Panel (a) corresponds to T = 0.70 for an ER network composed of ER

communities with 〈kg〉 = 〈k〉 = 3. Note that for n = 1, the disease reaches a macroscopic

fraction of communities only for T & 0.6 (see Fig. 7). Panel (b) corresponds to T = 0.60

for SF networks at a global scale with λ = 3 and 2 ≤ kg ≤ 200, with SF communities in

which λ = 2.5 and 2 ≤ k ≤ 200. For the simulations, we use N = 104, Ng = 5× 103, and

sc = 100. We set the time t = 0 as the moment at which IgNg = sc [30, 31]. The insets

show Ig〈t〉 as a function of t/〈t〉 for different values of n, where 〈t〉 is the time at which

the fraction of infected communities is maximum. These results were obtained from the

aggregated network.

IV. FINAL STATE: GENERAL FORMALISM AND SIMULATIONS

A. Theory and critical point for a pandemic

Here we present the equations that describe the disease at the final state using perco-

lation theory and the generating function formalism [32].

Assuming that n = 1, if community A develops an epidemic, the effective or global

probability of transmitting the epidemic to community B depends on the following events:

• a bridge node in a community A (that connects to community B) belongs to the

GC of recovered nodes which size is above sc. This event occurs with probability R.
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• an infected bridge node transmits the disease to the bridge node in community B

with probability T (see Eq. (1)).

• the disease in community B becomes an epidemic (i.e., R > 0 in community B)

with probability Π.

At a global scale, the effective or global probability of infection from one community

to another is TR Π. Similarly, for the case of n > 1 bridges, the effective probability of

transmission is

1− (1− TR Π)n ≡ T g. (4)

which is the probability that at least one bridge node in community A transmits the

disease to a bridge node in community B from which an epidemic develops. Note that

R and Π are magnitudes relative to one community which depend on the microscopic

transmissibility T , and they are evaluated based on Ref. [20] (see a brief explanation in

Appendix D). For the case of a fixed or homogeneous recovery time, Π = R [20] which

are obtained solving the following equations:

f∞ = 1−G1(1− Tf∞), (5)

R = 1−G0(1− Tf∞), (6)

where f∞ is the probability that a link leads to a macroscopic recovered cluster of nodes

in a branching process, and G0(x) and G1(x) are the generating functions of the degree

distribution and the excess degree distribution of a node, respectively [14, 33].

Using the effective global transmissibility T g, we compute the fraction of recovered

communities or supernodes Rg at the final state. This magnitude is obtained from two

generating functions that describe the network structure at a global scale, and are given

by

Gg
0(x) =

∞
∑

kg=0

P (kg)xkg , (7)

Gg
1(x) =

∞
∑

kg=0

kgP (kg)

〈kg〉
xkg−1. (8)

With these generating functions Gg
0(x) and Gg

1(x), considering the aggregated system

as a single network in which nodes do not have any internal structure, the equations of
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the SIR model at the final state are given by

f g
∞ = 1−Gg

1(1− T gf g
∞), (9)

Rg = 1−Gg
0(1− T gf g

∞), (10)

where T g is the effective transmissibility between communities (see Eq. (4)), Rg is the

fraction of recovered communities, and f g
∞ is the probability that a superlink leads to a

macroscopic recovered cluster of supernodes in a branching process [14, 33]. Note that

Eqs. (9) and (10) are the same as the SIR model in a network without communities [14, 33]

for a transmissibility T g. However, we are interested in understanding how the microscopic

transmissibility T affects the order parameter Rg for a pandemic (replacing Eq. (4) in

Eqs. (9)-(10)) [37].

Applying the technique used in Refs. [14, 33] to find the critical point, and using that

R = Π for a homogeneous recovery distribution, we obtain from Eq. (9) and Eqs. (5)-(6)

that for ER-ER networks, the critical microscopic transmissibility of a pandemic Tc,pand

(above which f g
∞ > 0, that is, Rg > 0) satisfies the following equation

1−

(

∆

Tc,pand

)1/2

= e−〈k〉(Tc,pand∆)1/2 , (11)

where ∆ ≡ 1−(1−1/〈kg〉)1/n, 〈kg〉 is the mean number of the superlinks of each supernode,

and 〈k〉 is the mean connectivity inside each community. Note that Tc,pand depends on

the number of bridge nodes n, similar to the metapopulation networks [24–26] where the

global invasion threshold depends on the number of individuals or agents moving among

sub-populations.
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FIG. 6: Panel (a): Heat-map of the critical microscopic transmissibility for a pandemic,

Tc,pand, in the plane 〈kg〉 and 〈k〉 for an ER network of ER communities and n = 1.

The black region indicates that there is no pandemic phase in the network for any value

of the microscopic transmissibility. Panel (b): Critical microscopic transmissibility for

a pandemic Tc,pand as a function of the global mean degree 〈kg〉 for ER network of ER

communities with 〈k〉 = 3 and different values of n: 1 (black), 3 (red), and 20 (light

blue). For each value of n, the system is in a pandemic phase above the curves, while

below it is free of a pandemic. The vertical dotted line indicates the limit 〈kg〉 = 1 and the

horizontal dotted line corresponds to Tc,pand = Tc = 1/〈k〉. The inset shows Tc,pand−1/〈k〉

as a function of 〈kg〉 in log-log scale for the curves shown in the main plot. The curves

and the surface are obtained from Eq. (11). Note that the slope=-1/2 is predicted in

Eq. (12).

From Eq. (11), we obtain that Tc,pand → 1 as 〈k〉 and 〈kg〉 decrease because in this

limit a pandemic only develops at the highest probability of transmission to overcome

the sparseness at a local and global scale [34] (see Fig. 6a). On the other hand, as 〈kg〉

increases for a fixed value of 〈k〉, Tc,pand converges as a power-law to the critical value of

an isolated community Tc = 1/〈k〉 (see inset of Fig. 6b). Expanding Eq. (11) for 〈kg〉 ≫ 1,

we obtain that Tc,pand behaves as

Tc,pand ≈
1

〈k〉
+

1

2

(

1

n〈kg〉〈k〉

)1/2

. (12)

From Eq. (12) we can see that Tc,pand decreases with the number of bridge nodes as a

power-law, and for n → ∞, Tc,pand → Tc = 1/〈k〉. Note that after an epidemic develops
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in one community, the probability that the disease reaches one bridge node increases

with n. In turn, the probability that at least one of the infected bridge node induces an

epidemic in a susceptible community also increases with n. As a consequence, for large

n, the disease cannot be confined in one community, and the fluctuations of the early

dynamic that extinguish the disease in a community cannot “halt” the disease spreading

at a global scale. Therefore, in the limit n → ∞ at the final state, Tc = Tc,pand, and there

is no distinction between the outcome of an epidemic and pandemic since one implies the

other (see Eq. (12)).

B. Size and probability of a pandemic

Besides the computation of the critical transmissibility for a pandemic, it is also of

interest to study the size of the pandemic in terms of the number of recovered individuals

and communities with epidemics.

In Fig. 7, we show the fraction of recovered individuals Rtot in the whole system and

the fraction of communities that developed an epidemic at the final state Rg (where Rtot ≡

RgR) obtained from Eqs. (9)-(10) and simulations. For ER-ER and SF-SF networks with

n = 1, there is little difference between Rtot and Rg because the degree distributions at

a local (P (k)) and global (P (kg)) scales are similar, and T g 6≈ 1 for n = 1 (see Eq. (4)).

However, as the number of bridge nodes increases, the curves Rtot and Rg differ from each

other, particularly close to the critical point.

It is interesting to note that the fraction of recovered individuals Rtot converges to

a function that vanishes continuously at Tc,pand, in contrast to the fraction of recovered

communities Rg that converges to a discontinuous step function for n → ∞:

Rg(T, n = ∞) =







c if T > Tc,pand = Tc,

0 if T ≤ Tc,pand = Tc,
(13)

where c > 0 and constant. This is because for any value of the microscopic transmissibility

T > Tc when n → ∞, the global transmissibility tends to T g → 1 (see Eq. (4)). In

consequence, if the epidemic begins in a community/supernode that belongs to the GC

of supernodes, the disease will reach all the supernodes that belong to this cluster for any

value of T > Tc. The value of Rg(T, n = ∞) is a constant and corresponds to the fraction

of supernodes that belong to the GC at a global scale. On the other hand, for T < Tc
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the disease never becomes an epidemic in a community and hence it cannot becomes a

pandemic which implies that Rg(T, n = ∞) = 0.

For the case n = 1, the size of a pandemic is comparable (or correlated) to the size of

an epidemic in each community. In such a scenario, if the authorities decide to apply a

strong mitigation strategy to prevent the disease spreading when the fraction of infected

communities is large, this also corresponds to a significant fraction of infected individu-

als in each community. However, if the number of bridge nodes n increases, any strong

response measure to halt an extended global disease could be considered “disproportion-

ate” if the size of the epidemic in each community is small, especially near the critical

point. The increasing distance between the curves Rtot and Rg as n increases, establishes

a problematic scenario to any strategy that is based only on the number of infected com-

munities because if it is declared that a disease has reached a pandemic status, it may be

thought as alarmist since Rtot ≪ Rg. Therefore, this result suggests that the size of the

epidemic in each community could also be used to decide the required aggressiveness of

the mitigation strategy since this would allow identifying pandemics that do not affect a

substantial fraction of the population near Tc = Tc,pand.
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FIG. 7: Fraction of recovered individuals Rtot (�, dashed line) and communities that

developed an epidemic Rg (©, solid line) as a function of the microscopic transmissibility.

Our results were obtained from the simulations (symbols) and Eqs. (9)-(10) (lines) for

n = 1 (black), n = 20 (red), and n = 104 (light blue - only theory). The pink dotted

line corresponds to the limit n = ∞ (see Eq. (13)). Panel (a) corresponds to an ER

network of ER communities with 〈kg〉 = 〈k〉 = 3. Panel (b) corresponds to SF networks

at a global scale with λ = 3 and 2 ≤ kg ≤ 200, with SF communities in which λ = 2.5

and 2 ≤ k ≤ 200. The simulations were performed over 100 network realizations with

N = 104, Ng = 5× 103, and (a) sc = 600 and (b) sc = 100.
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FIG. 8: Probability of a pandemic given that there is one community with an epidemic as

a function of T for n = 1 (black), n = 3 (red), n = 20 (light blue). Panel (a): the results

correspond to an ER network of ER communities with 〈kg〉 = 〈k〉 = 3, and different values

of n. Panel (b) corresponds to SF networks at a global scale with λ = 3 and 2 ≤ kg ≤ 200,

with SF communities in which λ = 2.5 and 2 ≤ k ≤ 200. The simulations were performed

over 103 network realizations with N = 104, Ng = 5 × 103, and (a) sc = 600 and (b)

sc = 100. The lines correspond to the theory obtained from the Eqs. (9)-(10), and the

symbols to the simulations.

Another significant concern for health authorities is the probability of a false-positive

pandemic alert because a false alarm would also induce mistrust, panic, and fear in the

population. In Fig. 8a-b, we show the probability Πg that the disease develops into a

pandemic, given that there is at least one community with an epidemic. Remarkably,

we observe that this probability is very close to the fraction of recovered communities

at the final state, i.e., Rg ≈ Πg, despite that the time recovery distribution P (τR) is

non-homogeneous (see Fig. 4a). This relation holds because the transmissibility T g
τR

has a

weak dependence on τR (see Fig. 4c). In fact, in Appendix D3, we show based on a simple

model that the SIR model with non-homogeneous recovery time and constant T g
τR

maps

into link percolation, i.e., R = Π. Therefore our results in Fig. 4c and Appendix D3

suggest that Rg ≈ Πg in a network with communities, and hence the probability of a

pandemic converges to the step function given in Eq. (13). Thus, after a community

develops an epidemic, not only a large number of communities would develop epidemics

(close to 100%) if no intervention from any authority is implemented, but also, it is very

likely to declare a pandemic. Besides, this implies that in a more interconnected world
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and near the critical point, it is very likely that health authorities will face a scenario in

which the disease reaches many regions (communities) with a small fraction of infected

individuals.

V. SUMMARY AND CONCLUSIONS

In summary, we have studied the effect of extreme modularity in structural modular

networks on disease spreading at a global scale. We found that the epidemic spreading

through the network at a global scale can be described as an SIR model with renormalized

infection and recovery distributions. On the other hand, as n increases, the probability

and size of a pandemic increase and tend to a discontinuous function of the transmissibility

after the disease has reached the status of the epidemic in one community. Besides, if

the transmissibility T is close to the critical value of an epidemic, our results indicate

that the fraction of recovered communities is significantly higher than the fraction of

recovered individuals. This situation can lead to a scenario in which a pandemic alarm

could be considered as an excessive alarm causing fear in the global population. Finally,

our simulations show that link percolation is a good approximation to describe the final

state of the disease spreading at a global scale in random networks, although the recovery

time distribution of a community is non-homogeneous.

An important simplification of our work is that all communities have the same degree

distribution and the same number of nodes N and bridge nodes n. Our future studies

will consider a distribution on these magnitudes among the communities to explore how

they affect the size and probability of a pandemic.
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Appendix A: Threshold sc

In the simulations of the SIR model, fluctuations due to stochasticity could lead that

the number of infected nodes vanishes fast after the disease spreading started and the

number of recovered nodes is very small compared to the size of the system, even for

high values of transmissibility close to T = 1. Lagorio et al. [16] proposed a method to

distinguish an outbreak from an epidemic, computing the distribution of final sizes P (s)

of the disease from the simulations of the SIR model. For T > Tc, P (s) has a bimodal

behavior, as shown in Fig. 9. The left side of the distribution corresponds to outbreaks,

while the peak on the right corresponds to epidemics. Between these two regions, there is

a gap in which the probability P (s) is null. Therefore, any value of the threshold sc that

belongs to this region can be used to distinguish epidemics and outbreaks. In Figs. 9a-b,

we observe that as the transmissibility T approaches Tc from above, that gap mentioned

above shrinks, and the distribution corresponding to outbreaks becomes broader, and

hence the minimum possible value of sc increases.

From the distributions P (s) in Figs. 9a-b, we estimate the values of sc that we use in

this research. In the main text, Sec. III we choose sc = 100 for ER networks with 〈k〉 = 3

and T = 0.7, and sc = 100 for SF networks at T = 0.60, since this threshold distinguish

outbreaks and epidemics. On the other hand, to explore the size and probability of a

pandemic for different values of T , we set:

• sc = 600 for ER networks with 〈k〉 = 3 which is a sufficient threshold to distinguish

epidemic for T > 0.4. Note that Tc = 1/3.

• sc = 100 for SF networks, which is a sufficient threshold to distinguish an epidemic

for T > 0.2.
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FIG. 9: Distribution of the number of recovered nodes at the final state, P (s) for different

values of T for networks without community structure. Panel (a) corresponds to an ER

network with 〈k〉 = 3. Panel (b) corresponds to a SF network with λ = 2.5, kmin = 2,

and kmax = 200. The simulations results were averaged over 106 network realizations with

N = 104.

Appendix B: Results for different values of T and n

In Fig. 10 we show the time 〈t〉 at which Ig is maximum as a function of n for different

topologies and values of the transmissibility. We observe that for large values of n, 〈t〉

behaves as a logarithm function. Besides, we obtain that the area of Ig as a function of t

converges to the same value as n increases (see insets in Fig. 10).
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FIG. 10: The time 〈t〉 at which the fraction of infected communities is maximum, as a

function of n in linear-log scale. Panel (a) and (c) corresponds to T = 0.50 and T = 0.70,

respectively, for an ER network of ER communities with 〈kg〉 = 〈k〉 = 3. Panel (b) and

(d) corresponds to T = 0.40 and T = 0.60, respectively, for SF networks at a global scale

with λ = 3 and 2 ≤ kg ≤ 200, with SF communities in which λ = 2.5 and 2 ≤ k ≤ 200.

The dashed line corresponds to a logarithmic fit 〈t〉 = A + B ln(n), where: A = 92.8

and B = −10.4 (panel a), A = 26.4 and B = −2.16 (panel b), A = 52.2 and B = −5.7

(panel c), and A = 21.7 and B = −1.6 (panel d). For the simulations, we use N = 104,

Ng = 5 × 103, and sc = 100. We set the time t = 0 as the moment at which IgNg = sc.

The insets show Ig〈t〉 as a function of t/〈t〉 for different values of n.

Appendix C: Macroscopic dynamic: additional results

In Figs. 11a-b, similar to Figs. 5a-b, we show the time evolution of Ig obtained from the

aggregated network and from the microscopic model for other values of transmissibility

T . In all cases, we observe an agreement between the results for the aggregated network
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and the microscopic model.
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FIG. 11: Time evolution of the fraction of infected communities for different values of n:

1 (black), 3 (red), 20 (light blue). Other parameters are the same as in Figs. 5a-b. For

each value of n, we show the average value of Ig obtained from 100 realizations of the

aggregated network (symbols) and the network with communities (line). Note that for

panel (a) and (c), we do not show Ig for n = 1 because, in that case, the transmissibility

is close or below Tc,pand (see Figs. 7a-b).

Appendix D: Percolation in semi-directed networks and the SIR model

In this appendix, we review Refs. [20, 35] in the first two sections, which showed

the mapping between SIR and a percolation process in a semi-directed network. In the

third section, we develop a simple model which shows that the SIR model with non-

homogeneous recovery time maps into link percolation if T g
τR

is constant.
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1. Method

The key idea to study the final state of the SIR model using percolation theory is to

consider that there is a mapping between the set of realizations of the stochastic SIR

simulations and a percolation process in a semi-directed network. To see this mapping,

let us consider that during the stochastic simulation of the SIR model, node i is infected

at time t. Immediately after that, the algorithm of the simulation generates a random

recovery time τR obtained from a probability distribution P (τR). Hence, node i will

recover at time t + τR. Similarly as in the Gillespie algorithm, for each neighbor of i, a

random time τI is generated following a distribution P (τI |τR) in which node i transmits

the disease (since the moment that i was infected).

Alternatively, instead of this procedure generating random numbers “on the fly,” i.e.,

during the simulation of the dynamic process, the random numbers τR and τI can be

obtained before starting the dynamic. More specifically, a recovery time τR is generated

from a distribution P (τR) for each node before an index case appears in the network.

Note that the generation of τR does not guarantee that a node i will be infected, but in

case node i gets infected during the dynamic process (that we explained below), it would

recover after a period τR. After we obtain the value of τR for a node i, we generate the

times the disease will take to reach each neighbor j of i, including the possibility that

τI = ∞, in which case, node i will never infect node j. Each link from i with τI < ∞ is

represented by an occupied arrow from i to the other node connected through this link.

Analogously to the case of the recovery time, an arrow from i to j does not mean that i

will effectively infect j, but in case i gets infected at time t during the dynamic, then j

would be infected at time t+ τI (if another node does not infect j before this time).

The process described above does not develop the dynamic but only generates all

random numbers τR and τI before starting the dynamic. In the case where two nodes point

to each other, their link is occupied and undirected, and if there is no arrow between these

nodes, their link is unoccupied. As a result of this procedure, we obtain a semi-directed

network.

After assigning all the times τR and τI , a random node is chosen as the index case, and

then, the dynamic of the disease spreading consists in following the arrows that emerge

from the index case, as described in Refs. [20, 35]. If another node is chosen as the index
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case, the branch of infection would be different, so the semi-directed network contains

many realizations of the SIR model. Although this process is an alternative approach to

“on the fly” algorithm, it also allows interpreting many realizations of the SIR model as a

semi-directed network. We will see below that this interpretation is useful for calculating

the probability of an epidemic Π and the fraction of recovered nodes R at the final state.

2. Relationship between the in-component and out-component with R and Π

In this section, we introduce several definitions of semi-directed networks and then

their relation to the fraction of recovered nodes and the probability of an epidemic.

In any semi-directed network, each node i has three types of degree or connections:

• indegree: the number of incoming links to i,

• outdegree: the number of outgoing links from i,

• undirected degree: the number of undirected links of i.

The generating function of the probability pabc that a node has indegree “a,” outdegree

“b,” and undirected degree “c” is given by

G0(x, y, u) =

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

pabcx
aybuc, (D1)

The mean indegree 〈kin〉, outdegree 〈kout〉, and undirected degree 〈ku〉 are

〈kin〉 =
∂G0

∂x
(1, 1, 1) =

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

a pabc, (D2)

〈kout〉 =
∂G0

∂y
(1, 1, 1) =

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

b pabc, (D3)

〈ku〉 =
∂G0

∂u
(1, 1, 1) =

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

c pabc. (D4)

Since the total number of incoming connections is the same as the total number of outgoing

connections, then 〈kin〉 = 〈kout〉 ≡ 〈kd〉.

In a branching process, if we choose a node through: a directed link following its

direction (forward), a directed link going in the opposite direction (reverse or backward),
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or through a link without direction (undirected), the generating functions that the reached

node has indegree “a”, outdegree “b”, and undirected degree “c” are given by

Gf (x, y, u) =
1

〈kd〉

∂G0

∂x
(x, y, u), (D5)

Gr(x, y, u) =
1

〈kd〉

∂G0

∂y
(x, y, u), (D6)

Gu(x, y, u) =
1

〈ku〉

∂G0

∂u
(x, y, u), (D7)

respectively.

Following the definitions of Ref. [32], in semi-directed networks, there exist for each

node i an:

• in-component that is the set of nodes from which i can be reached by following

the arrows. We define this component as macroscopic in-component (Min) if the

number of nodes of this set is macroscopic. Otherwise, it belongs to a finite in-

component.

• out-component that is the set of nodes that can be reached from i following the

arrows. We define this component as macroscopic out-component (Mout) if the

number of nodes of this set is macroscopic. Otherwise, it belongs to a finite out-

component.

For a randomly chosen node, the generating functions of the finite sizes of its in-

component and out-component are denoted by H in(z) and Hout(z), respectively. These

generating functions can be obtained using a backward and forward branching, that is,

following the arrows in the opposite and along to their directions, respectively. Note that

in this branching process, it is assumed that the network is in the thermodynamic limit

(N → ∞) and the structure is random. For a backward branching process, the generating

functions of the size of an in-component corresponding to a randomly chosen node through

a link, are

• H in
r (z) if the node is reached when going in the opposite direction of an arrow (see

Fig. 12a)

• H in
u (z) if the node is reached through an undirected link.

30



Note that we do not consider H in
f (z), i.e., when a node is reached following the direction

of an arrow because, in this case, the branching process would not correspond to an in-

component. Analogously, for a forward branching process, the generating functions of the

size of an out-component corresponding to a randomly chosen node through a link, are

• Hout
f (z) if the node is reached going in the same direction of an arrow (see Fig. 12b)

• Hout
u (z) if the node is reached through an undirected link.

(a) (b)

FIG. 12: Schematic figure of the backward (panel a) and forward branching (panel b).

The direction of the branching process goes from bottom to top. Solid lines without

any arrow represent undirected links, and arrows represent links with a direction. The

blue area depicts the set of links used in the backward branching (panel a) and forward

branching (panel b). For a backward (forward) branching, a node is reached through one

of its outgoing (incoming) links with probability koutP (kout)/〈kout〉 (kinP (kin)/〈kin〉) and

the in-component (out-component) continue to grow through its incoming (outgoing) and

undirected links.

For the case of a semi-directed network constructed by the procedure explained in the

previous section, if the index case has a finite out-component, the disease can only reach

a finite number of nodes following the arrows. Therefore, the probability that an index

case does not trigger an epidemic, 1 − Π, is equal to the probability that it belongs to

a finite out-component Hout(1). Otherwise, if the index case belongs to the Mout, this

realization of the SIR model corresponds to an epidemic. Besides, Ref. [20] also showed

that using the same semi-directed network, the fraction of recovered nodes R is equal to
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the probability that a node belongs to an Min (R = 1 − H in(1)). To see this, let us

assume that there is an infinitesimal but not null fraction ǫ of infected nodes during the

dynamic spreading in the semi-directed network, in which case there is an epidemic (i.e.,

R ≥ ǫ > 0) [38]. In the case for any susceptible node i that has an Min, at least one

of the nodes in its Min will be infected in the thermodynamic limit (with probability

1). Consequently, the disease will reach node i following the arrows of the semi-directed

network. However, if a susceptible node i has a finite in-component in which all of its

nodes are susceptible, then i will never be reached by the disease. In turn, the probability

that at least one of the nodes of this finite in-component is infected, vanishes as ǫ → 0,

and hence the disease can only reach the nodes within a Min. Therefore, when there is an

epidemic, the fraction of nodes within a Min is equal to the fraction of recovered nodes

R at the final state.

In the following, we present the explicit relation between the generating functions of

the degree of a semi-directed network and the SIR model described in Sec. D1.

For a node i with a recovery time τR (with probability P (τR)), the probability that

each connection is:

• occupied and outgoing is TτR(1−T ), i.e., node i points its neighbor, but its neighbor

does not point to i,

• occupied and incoming is (1 − TτR)T , i.e., i does not point to its neighbor, but its

neighbor points i,

• occupied and undirected is TτRT ,

• unoccupied is (1− TτR)(1− T ).

where TτR =
∑τR

τI=0 P (τI |τR) is the transmissibility given that node i has recovery time

τR, and T =
∑∞

τR=0 TτRP (τR) is the total transmissibility.

Since the generating function of the total degree of a node is G0(z) =
∑

P (k)zk, then

the generating function of the probability pabc that a node has indegree “a”, outdegree “b”,

and undirected degree “c” (see Eq. (D1)) can be rewritten as

G0(x, y, u) =
∞
∑

k=0

P (k)
∞
∑

τR=0

P (τR)×

[(1− TτR)(1− T ) + (1− TτR)Tx+ TτR(1− T )y + TτRTu]
k. (D8)
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Following Ref. [20], the generating function Hout(z) is obtained from the following

equations

Hout
f (z) = zGf (1, H

out
f (z), Hout

u (z)), (D9)

Hout
u (z) = zGu(1, H

out
f (z), Hout

u (z)), (D10)

Hout(z) = zG0(1, H
out
f (z), Hout

u (z)). (D11)

For the case of homogeneous recovery time (τR is constant), these equations are reduced

to those proposed by Newman [14] using an analogy between the SIR model and link

percolation:

f∞ = 1−G1(1− Tf∞), (D12)

R = 1−G0(1− Tf∞). (D13)

where f∞ is the probability that a link leads to a macroscopic recovered cluster of nodes

in a branching process [14, 33].

On the other hand, the generating function H in(z) is obtained from the following

equations

H in
r (z) = zGr(H

in
r (z), 1, H in

u (z)), (D14)

H in
u (z) = zGu(H

in
r (z), 1, H in

u (z)), (D15)

H in(z) = zG0(H
in
r (z), 1, H in

u (z)). (D16)

Ref. [20] showed that Π = 1 − Hout(1) ≤ R = 1 − H in(1), and hence the SIR does not

map with link percolation because this percolation process implies that Π = R. However,

it was shown in Ref. [20] that for the case in which the recovery time is constant, forward

and backward branching are equivalent and consequently R = Π.

3. Non-homogeneous recovery time with homogeneous transmissibility

In Ref. [20], the authors presented the main ideas and equations to solve the SIR

model with any recovery time τR distribution and an infection time τI that follows an

exponential distribution. They showed that for any recovery time distribution, Π ≤ R,

and the equality holds when τR is constant. Here we develop a toy-model in which
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the equality is valid for heterogeneous recovery time τR distribution but with constant

transmissibility TτR . This case is relevant in our study because we obtain that for a

network with communities, there is not a strong dependence between the transmissibility

TτR and τR (see Fig. 4c).

To study the effect on the final state of a heterogeneous τR distribution with TτR

constant, we propose the following recovery time distribution

P (τR) = 0.5δτR,2 + 0.5δτR,10 (D17)

where δ is the Kronecker delta, and the infection time distribution P (τI |τR) is given by

Table I where σ ∈ [0, 1].

τI = ∞ τI = 1 τI = 2 τI = 10

τR = 2 1-σ 0.5σ 0.5σ 0

τR = 10 1-σ 0.5σ 0 0.5σ

TABLE I: Distribution P (τI |τR) for TτR constant

For this case, T = TτR = σ. For the purpose of comparison, we also study a similar

distribution P (τI |τR) in which TτR is not constant (see Table II).

τI = ∞ τI = 1 τI = 2 τI = 10

τR = 2 1-σ10 0.5σ10 0.5σ10 0

τR = 10 1-σ 0.5σ 0 0.5σ

TABLE II: Distribution P (τI |τR) for non-homogeneous TτR

Using the same recovery time distribution P (τR) as in the previous case, the transmis-

sibilities are: TτR=2 = σ10, TτR=10 = σ, and T = 0.5σ + 0.5σ10.
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FIG. 13: Mapping between link percolation and the SIR model with heterogeneous recov-

ery distribution for ER networks with 〈k〉 = 3. The panels show R (black) and Π (red) as

a function of the total transmissibility T for a heterogeneous recovery distribution given

by Table (I) (panel a) and Table (II) (panel b). The lines correspond to the theoreti-

cal solutions of Eqs. (D2)-(D16), and the symbols to simulations. The simulations were

performed over 104 network realizations with N = 104 and sc = 600. The disagreement

between the theoretical curves and the simulations around the critical point is due to finite

size effects and the value of sc which cannot distinguish an epidemic from an outbreak

near T = Tc (see Appendix A).

In Fig. 13a-b, we show R and Π obtained from the theory (Eqs. (D1)-(D16)) and

simulations for the recovery and infection time distributions in Eqs. (D17) and Table (II).

Our results confirm that for a constant TτR , the probability of an epidemic is equal to

the fraction of recovered nodes (Fig. 13a) even if P (τR) is heterogeneous, while for non-

constant TτR , Π < R (Fig. 13b). Thus, it is expected that for a weak dependency between

TτR and τR, link percolation is a good approximation of the SIR model, as shown in Fig. 8.
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