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The capacity to identify realizable many-body configurations associated with targeted functional
forms for the pair correlation function g2(r) or its corresponding structure factor S(k) is of great
fundamental and practical importance. While there are obvious necessary conditions that a pre-
scribed structure factor at number density ρ must satisfy to be configurationally realizable, sufficient
conditions are generally not known due to the infinite degeneracy of configurations with different
higher-order correlation functions. A major aim of this paper is to expand our theoretical knowl-
edge of the class of pair correlation functions or structure factors that are realizable by classical
disordered ensembles of particle configurations, including exotic hyperuniform varieties. We first
introduce a theoretical formalism that provides a means to draw classical particle configurations
from canonical ensembles with certain pairwise-additive potentials that could correspond to tar-
geted analytical functional forms for the structure factor. This formulation enables us to devise
an improved algorithm to construct systematically canonical-ensemble particle configurations with
such targeted pair statistics, whenever realizable. As a proof-of-concept, we test the algorithm by
targeting several different structure factors across dimensions that are known to be realizable and
one hyperuniform target that is known to be nontrivially unrealizable. Our algorithm succeeds for
all realizable targets and appropriately fails for the unrealizable target, demonstrating the accuracy
and power of the method to numerically investigate the realizability problem. Subsequently, we
also target several families of structure-factor functions that meet the known necessary realizabil-
ity conditions but were heretofore not known to be realizable by disordered hyperuniform point
configurations, including d-dimensional Gaussian structure factors, d-dimensional generalizations of
the 2D one-component plasma (OCP), the d-dimensional Fourier duals of the previous OCP cases.
Moreover, we also explore unusual nonhyperuniform targets, including “hyposurficial” and “anti-
hyperuniform” examples. In all of these instances, the targeted structure factors were achieved
with high accuracy, suggesting that they are indeed realizable by equilibrium configurations with
pairwise interactions at positive temperatures. Remarkably, we also show that the structure factor
of nonequilibrium “perfect glass” specified by two-, three-, and four-body interactions, can also
be realized by equilibrium pair interactions at positive temperatures. Our findings lead us to the
conjecture that any realizable structure factor corresponding to either a translationally invariant
equilibrium or nonequilibrium system can be attained by an equilibrium ensemble involving only
effective pair interactions. Our investigation not only broadens our knowledge of analytical func-
tional forms for g2(r) and S(k) associated with disordered point configurations across dimensions
but also deepens our understanding of many-body physics. Moreover, our work can be applied to
the design of materials with desirable physical properties that can be tuned by their pair statistics.

I. INTRODUCTION

An outstanding problem in condensed matter physics,
statistical physics and materials science is the capacity to
construct, at will, many-particle configurations with pre-
scribed correlation functions. Solutions to this general
problem are of great importance both fundamentally and
practically. Advances in this direction will shed light on the
unsolved theoretical “realizability” problem, as described
below. Practical implications of progress on this problem
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include the design of material microstructures with novel
physical properties.

A classical many-particle system in d-dimensional Eu-
clidean space R

d is completely specified by the n-particle
probability density function ρn(r1, . . . , rn) for all n ≥ 1,
where r1, . . . , rn are the particle position vectors. In
the field of statistical mechanics, the one-particle function
ρ1(r1) and the two-particle function ρ2(r1, r2) are the most
important ones. These functions play crucial roles in deter-
mining equilibrium and nonequilibrium properties of sys-
tems and can be ascertained experimentally from scattering
data [1]. In the case of statistically homogeneous systems,
which is the focus of this work, ρ1(r1) = ρ, where ρ is



the number density, and the two-particle function depends
only on the pair displacement vector r = r2 − r1 so that
ρ2(r1, r2) = ρ2g2(r), where g2(r) is the pair correlation
function. Of course, these two functions alone cannot com-
pletely specify the ensemble of configurations, i.e., there is
generally a high degeneracy of configurations with the same
ρ and g2(r) but different higher-order statistics (g3, g4, . . .)
[2, 3].
This degeneracy issue naturally leads to the following

version of the realizability problem: Given a prescribed
g2(r) with a fixed positive number density ρ, are there
ensemble configurations of particles that realize such pre-
scribed statistics? This realizability problem has a rich and
long history [2, 4–15], but it is still a wide open area for re-
search. There are obvious necessary conditions for a given
pair correlation function to be realizable; for example, g2(r)
must be nonnegative function i.e.,

g2(r) ≥ 0 for all r. (1)

Moreover, the corresponding ensemble-averaged structure
factor

S(k) = 1 + ρh̃(k) ≥ 0, (2)

must be nonnegative for all wave vectors k, where h̃(k)
is the Fourier transform of the total correlation function
h(r) ≡ g2(r) − 1. Another simple realizability condition is
that the number variance σ2(R) associated with a randomly
placed spherical window of radius R, which is entirely de-
termined by ρ and g2(r) [or S(k)] [17], must satisfy the
following lower bound [4]:

σ2(R) ≥ θ(1− θ), (3)

where θ be the fractional part of ρv1(R) and

v1(R) =
πd/2Rd

Γ(1 + d/2)
(4)

is the volume of a d-dimensional sphere of radius R. The
Yamada condition (3) is relevant only in very low dimen-
sions, often only for d = 1 [2]. Indeed, generally speaking,
it is known that the lower the space dimension, the more
difficult it is to satisfy realizability conditions [2], a point
elaborated in Sec. V.
Conditions for realizability have also been found for spe-

cial types of many-particle systems [10]. Moreover, nec-
essary and sufficient conditions for the particular class of
point configurations with “hard” cores have been identi-
fied [15, 16], but these conditions are difficult to check in
practice. Thus, knowledge of necessary conditions beyond
inequalities (1), (2), and (3) that can be applied to deter-
mine the realizability of general pair correlation functions
are, for the most part, lacking.
This places great importance on the need to formulate

algorithms to construct particle configurations that realize
targeted hypothetical functional forms of the pair statis-
tics with a certain density. Successful numerical techniques
could provide theoretical guidance on attainable pair cor-
relations. Algorithms have been devised in “direct space”

to generate particle realizations that correspond to hypo-
thetical pair correlation functions [8, 9], but only up to
intermediate values of the pair distance |r|. This prevents
one from accurately constructing the large-scale structural
characteristics of the systems.
Therefore, such direct-space methods are not suitable to

explore the realizability of hypothetical functional forms of
pair correlation functions that could correspond to disor-
dered hyperuniform point configurations with high fidelity.
Disordered hyperuniform many-particle systems are exotic
amorphous states of matter that are like crystals in the
manner in which their large-scale density fluctuations are
anomalously suppressed and yet behave like typical liquids
or glasses in that they are statistically isotropic without
any Bragg peaks. More precisely, hyperuniform point con-
figurations possess a structure factor S(k) that goes to zero
as the wavenumber |k| vanishes [17, 18], i.e.,

lim
|k|→0

S(k) = 0. (5)

For a large class of ordered and disordered systems, the
number variance σ2(R) has the following large-R asymp-
totic behavior [17, 18]:

σ2(R) = 2dφ

[

A

(

R

D

)d

+B

(

R

D

)d−1

+ ℓ

(

R

D

)d−1
]

(6)

where φ = ρv1(D/2) is a dimensionless density, D is a
characteristic length, A and B are “volume” and “surface-

area” coefficients, respectively, while ℓ (R/D)
d−1

represents

terms of lower order than (R/D)
d−1

. The coefficients A and
B can be expressed as:

A = lim
|k|→0

S(k) = 1 + d2dφ
〈

xd−1
〉

(7)

and

B = − d22d−1Γ
(

d
2

)

Γ
(

d+1

2

)

Γ
(

1

2

)φ
〈

xd
〉

(8)

where Γ(x) is the gamma function, x = r/D, and < xd >=
∫∞

0
xdh(x)dx is the d-th moment of h(x) In a perfectly hy-

peruniform system [17], the non-negative volume coefficient
vanishes, i.e., A = 0. On the other hand, when A > 0 and
B = 0, the system is hyposurficial ; examples include ho-
mogeneous Poisson point patterns and hypothetical hard-
sphere systems [17]. Finally, in anti-hyperuniform systems

lim
|k|→0

S(k) = +∞ (9)

and A becomes unbounded [18]. Anti-hyperuniform sys-
tems include fractals as well as systems at thermal critical
points.
When the structure factor goes to zero in the limit |k| →

0 with the power-law form

S(k) ∼ |k|α, (10)
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where α > 0, hyperuniform systems can be categorized into
three different classes according to the large-R asymptotic
scaling of the number variance [18]:

σ2(R) ∼







Rd−1, α > 1 (CLASS I)
Rd−1 lnR, α = 1 (CLASS II)
Rd−α, 0 < α < 1 (CLASS III)

(11)

Class I is the strongest form of hyperuniformity in the sense
that it is the scaling that provides the greatest suppression
of large-scale density fluctuations.
Disordered hyperuniform systems have attracted great

attention because of their deep connections to problems
that arise in physics, materials science, mathematics and
biology [18–24] as well as for their emerging technological
importance, including disordered cellular solids that have
complete isotropic photonic band gaps [25, 26], surface-
enhanced Raman spectroscopy [27], transparent materials
[28], terahertz quantum cascade lasers [29], and certain
Smith-Purcell radiation patterns [30]. While a variety of
equilibrium and nonequilibrium hyperuniform systems have
been generated via computer simulations [18], current nu-
merical techniques (with the exception of the “collective-
coordinate” approach [31, 32]) cannot guarantee perfect
hyperuniformity [18].
Remarkably, very little is known about analytical forms

of two-body and higher-order correlation functions that are
exactly realizable by disordered hyperuniform systems. An
exception to this dearth of knowledge is the special class
of determinantal point processes [10, 33–37], examples of
which are considered in Sec. III. Furthermore, no one
to date has shown the rigorous existence of hyposurficial
point configurations, even if they have been shown to arise
in computer simulation study of phase transitions involving
amorphous ices [38].
The purpose of the present investigation is to expand

our theoretical knowledge of the class of pair correlation
functions or, equivalently, structure-factor functions that
are realizable by disordered hyperuniform ensembles of sta-
tistically homogeneous classical particle configurations at
some number density ρ, including d-dimensional Gaussian
structure factors, d-dimensional generalizations of the 2D
one-component plasma (OCP), the d-dimensional Fourier
duals of the previous OCP cases. We also demonstrate
the realizability of unusual nonhyperuniform point configu-
rations, including “hyposurficial” and “anti-hyperuniform”
examples. Our findings lead us to the conjecture that any
realizable structure factor corresponding to either an equi-
librium or nonequilibrium homogeneous system can be at-
tained by an equilibrium ensemble involving only effective
pair interactions in the thermodynamic limit.
We begin by introducing a theoretical formalism that

provides a means to draw equilibrium particle configu-
rations from canonical ensembles with certain pairwise-
additive potentials that could correspond to targeted ana-
lytical functional forms for the structure factor (Sec. II B).
Using this theoretical foundation, we then devise a new
algorithm to construct systematically canonical-ensemble
particle configurations with such targeted pair statistics

whenever realizable (Sec. II C). We demonstrate the effi-
cacy of our targeting method in two ways. First, as a proof-
of-concept, we test it to target several different structure
factor functions across dimensions that are known to be
realizable by determinantal hyperuniform point processes
(Sec. III). We verify that all of these considered targets
are indeed realizable. As another proof-of-concept, we also
show that this methodology indeed fails on a nontrivial tar-
get that is known to be unrealizable, even though the target
meets all explicitly known necessary realizability conditions
(Sec. IV). Taken together, these benchmark tests demon-
strate the accuracy and power of the method to numeri-
cally investigate the realizability problem. Finally, we ap-
ply the methodology to target several families of structure-
factor functions that meet the known necessary realizability
conditions but were heretofore not known to be realizable
by disordered hyperuniform and nonhyperuniform (hypo-
surficial and anti-hyperuniform) systems (Sec. V-VI). In
all of these instances, we are able to achieve the targeted
structure factor with high accuracy, suggesting that these
targets are indeed truly realizable by disordered hyperuni-
form many-particle systems in equilibrium with effective
pairwise interactions at positive temperatures. Our results
leads to a conjecture that any realizable structure factor
can be attained by an equilibrium ensemble involving only
effective pair interactions, which is presented in Sec. VII.
We further demonstrate the validity of this conjecture by
showing that a previously numerically found structure fac-
tor of a nonequilibrium state of a two-, three-, and four-
body interaction can also be realized by equilibrium pair
interactions. Concluding remarks and discussion of our re-
sults are presented in Sec. VIII.

II. THEORETICAL ANALYSIS AND NOVEL
ALGORITHM

A. Motivation

At first glance, the aforementioned Fourier-based
collective-coordinate optimization procedure may seem to
be ideally suited to construct possibly realizable hyperuni-
form configurations, since it enables one to obtain con-
figurations with desired structure factors for wave vectors
around the origin with very high accuracy [31, 32, 39, 40].
One begins with a single classical configuration of N par-
ticles with positions rN ≡ r1, . . . , rN in a fundamental cell
under periodic boundary conditions. Here, the structure
factor of a single configuration, S(k), is constrained to be
equal to a target function S0(k) for k in a certain finite set
K. These constraints are enforced by minimizing a ficti-
tious potential energy Φ(rN ), defined to be the square of
the difference between S(k) and S0(k):

Φ(rN ) =
∑

k∈K

[S(k) − S0(k)]
2, (12)
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where, for a single configuration, the structure factor at a
non-zero k vector is given by

S(k) = 1

N
|ρ̃(k)|2 (k 6= 0), (13)

and

ρ̃(k) =

N
∑

j=1

exp(−ik · rj) (14)

is the complex collective density variable. Throughout the
paper, we will use S to denote single-configuration struc-
ture factors and S to denote ensemble-averaged structure
factors. It was shown that the potential energy given by
(12) is equivalent to a certain combination of a long-ranged
two-, three-, and four-body interactions [31]. Therefore,
constraining S(k) to a target function S0(k) using this
method is equivalent to finding a single ground-state config-
uration with these interactions. One calculates S(k) from
(13) rather than (2) not only because it applies only for a
single finite-size configuration (not an ensemble), but (13)
allows K to include k vectors very close to the origin.
However, this standard collective-coordinate method

cannot be used for the realizability problem. It suffers
from numerical difficulty if the cardinality of K is too large,
meaning that only a portion of wave vectors can be tar-
geted. Indeed, if the number of independent constraints
is larger than the total number of degrees of freedom dN ,
then the system “runs out of degrees of freedom” and the
potential energy surface often becomes so complicated that
one cannot find an Φ = 0 state, even if the target S0(k)
is known to be realizable [32]. This method also enforces
S(k) = S0(k) for k ∈ K for a single configuration, while in
many cases we only expect the ensemble average S(k) to
be equal to S0(k). These drawbacks will be overcome by
our new algorithm, as detailed in Sec. II C.

B. Theoretical formalism

The discussion above suggests that targeting an
ensemble-averaged structure factor, which would enable the
toleration of fluctuations in individual configurations, may
be a possible way to bypass the limitations of the standard
collective-coordinate procedure for the realizability prob-
lem. We now show on theoretical grounds how this is in-
deed the case. Specifically, we demonstrate that targeting
ensemble-averaged structure factors results in an enormous
increase in the number of degrees of freedom, which in turn
enables one to extend the range of constrained wave vectors
over an infinite set, in principle. Moreover, we show that
the configurations are sampled from a canonical ensemble
with a certain pair potential.
Let us begin by imagining imposing constraints such that

the average structure factor for a finite number of configu-
rations Nc is equal to a target functional form for k ∈ K,
i.e.,

〈S(k)〉 = S0(k), for any k ∈ K, (15)

where 〈S(k)〉 is the average structure factor of these Nc

configurations. We will assume the Nc → +∞ limit in this
theoretical subsection, so that

〈S(k)〉 = S(k), (16)

where S(k) is the ensemble-averaged structure factor de-
fined in (2). In this thermodynamic limit (Nc → +∞),
there is an infinite number of degrees of freedom, which en-
ables one to extend the range of constrained wave vectors
over all space.
A critical question is what is the behavior of each in-

dividual configuration when such constraints are imposed?
Although it appears that these configurations interact with
each other in some complex manner, we now demonstrate
that these configurations follow the canonical-ensemble dis-
tribution of a pairwise additive potential energy. To begin
with, let us consider constraining the target structure fac-
tor at a single point, k = q:

S0(q) =
S1(q) + S2(q) + · · ·+ SNc

(q)

Nc
, (17)

where Si(q) (i > 0) is the structure factor of the ith config-
uration at wave vector k = q. In Eq. (17), we are treating
S1(q), S2(q), · · · ,SNc

(q) as Nc random variables and con-
strain their arithmetic mean to be equal to S0(q). As we
will show later, Si(q) (i > 0) is exponentially distributed,
which implies that Si(q) is not self-averaging [41, 42].
The key idea is that because we allow an arbitrary large

number of configurations Nc and constrain their arithmetic
mean structure factor [right-hand side of Eq. (17)], we can
focus on one configuration, which we call the “reference sys-
tem,” with fictitious energy ER = S(q) and treat the rest
of the Nc−1 configurations as a heat bath with temperature

kBT =
S0(q)

1− S0(q)
, (18)

Relation (18) for the temperature is derived immediately
below. Under these conditions, the reference system obeys
the distribution function of a canonical ensemble in the
limit Nc → ∞. Figure 1 schematically describes this sce-
nario.
The probability density function (PDF) of the total en-

ergy of any system in the canonical ensemble is given by

P (E) =
g(E) exp(−E/kBT )

Z
, (19)

where Z is the partition function, g(E) is energy degen-
eracy or density of states, and T is the temperature. To
determine the temperature of the heat bath explicitly in
terms of S0(q), we make the simple observation that in
the high-temperature or ideal-gas limit, the PDF (19) is
proportional to the density of states

g(E) ∝ lim
T→∞

P (E). (20)

Thus, to determine the heat bath’s density of states and
corresponding temperature for general correlated systems,
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FIG. 1. When a large number of systems can exchange heat
with each other but not with the environment, one can focus
on one system (central one indicated with a white background)
and treat the rest as a heat bath (systems having yellow back-
ground). The central system with fixed N , V and T follows
the distribution function of a classical canonical ensemble with
a temperature T determined by the total energy of the systems
and degeneracy of the heat bath. For the problem at hand, we
show that the temperature is determined by the target structure
S0(k), as specified by the relation kBT = S0(q)/[1− S0(q)].

we only need to know the distribution of its total energy,
EH , assuming the heat bath consists of Nc−1 uncorrelated
(infinite-temperature) systems.
Let us first focus on one system comprising the heat bath,

and denote its energy by E1. For an ideal gas, each par-
ticle’s location is random and independent. Thus, for any
particle j, exp(−iq · rj) is a unit vector of a random ori-
entation in the complex plane. Therefore, the collective
density variable (14) is the sum of N random unit vectors
in the complex plane. From the theory of random walks,
we know that for largeN , ρ̃(q) in the complex plane follows
a Gaussian distribution, and the PDF of |ρ̃(q)| is given by

Puncorr(|ρ̃(q)|) =
2|ρ̃(q)|

N
exp(−|ρ̃(q)|2/N). (21)

Therefore, the PDF of the energy E1 = S(q) = |ρ̃(q)|2/N
is given by

Puncorr(E1) = Puncorr(|ρ̃(q)|)
[

dS(q)
d|ρ̃(q)|

]−1

= exp(−E1).

(22)

Thus, the energy (i.e., the single-configuration structure
factor) is exponentially distributed. This combined with

(20) implies that the density of states of a single configu-
ration is also an exponential function of the energy

g(E1) ∝ exp(−E1). (23)

For two uncorrelated configurations, the probability dis-
tribution of their total energy E12 = E1 + E2 is

Puncorr(E12) =

∫ E12

0

Puncorr(E1)Puncorr(E2)dE1 (24)

=

∫ E12

0

exp(−E1) exp [−(E12 − E1)] dE1

(25)

= E12 exp(−E12). (26)

The distribution for the total energy of three configurations
is then

Puncorr(E123 = E12 + E3)

=

∫ E123

0

Puncorr(E3)Puncorr(E12)dE3

=
E2

123

2
exp(−E123).

(27)

Similarly, one can find that the distribution of the total
energy of Nc − 1 configuration is

Puncorr(E = E1+E2+ · · ·+ENc−1) =
ENc−1

(Nc − 1)!
exp(−E).

(28)
As we detailed before, the density of states of the heat
bath, made from Nc − 1 systems, is proportional to the
probability distribution function of the total energy of Nc−
1 uncorrelated systems:

g(E) ∝ Puncorr(E) =
ENc−1

(Nc − 1)!
exp(−E). (29)

The temperature of the heat bath is therefore

kBT =

[

∂ ln g(E)

∂E

]−1

=

[

Nc − 1

E
− 1

]−1

, (30)

where E = EH is the energy of the heat bath. On average,
each configuration has an energy of S0(q). Therefore, in
the Nc → ∞ limit, EH = (Nc − 1)S0(q) and the heat-bath
temperature is explicitly given by

kBT =
S0(q)

1− S0(q)
, (31)

which is what we set out to prove.
In theNc → ∞ limit, the heat bath is infinitely large, and

we can determine the probability density function of the
energy of the reference system, ER, which is not included
in the heat bath, using the canonical distribution function,
i.e.,

P (ER) =
g(ER) exp(−ER/kBT )

Z
(32)

∝ exp(−ER) exp(−ER/kBT ), (33)
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After normalization, one finds

P (ER) =
exp(−ER) exp(−ER/kBT )

S0(q)
=

exp[−ER/S0(q)]

S0(q)
.

(34)
Since we previously defined ER = S(q),

P [S(q)] = exp[−S(q)/S0(q)]

S0(q)
. (35)

By symmetry, this distribution is applicable not only to the
reference system, but also to the other Nc − 1 systems as
well. This means that for any particular configuration, its
structure factor at a constrained k vector is exponentially
distributed. We will numerically verify this conclusion in
the Appendix. As in the ideal-gas case, the exponential dis-
tribution of S(q) implies that ρ̃(q) is Gaussian distributed.
As we previously showed, if one constrains the ensemble-

averaged structure factor S(q) to be equal to S0(q), the
resulting configurations follow canonical-ensemble distribu-
tion of a system with energy defined as E = S(q) at tem-
perature kBT = S0(q)/(1−S0(q)). Equivalently, one could
also define a rescaled energy as

E = ṽ(q)S(q), (36)

where

ṽ(q) = 1/S0(q)− 1 (37)

and set kBT = ṽ(q)S0(q)/(1 − S0(q)) = 1. As detailed in
our earlier papers [43–45], such a definition of E is equiv-
alent to a pairwise additive potential. For example, in the
thermodynamic limit, the total energy of such a system of
particles with pairwise interactions is given by

E =
ρ

2

∫

Rd

v(r)g2(r)dr, (38)

which can be represented in Fourier space using Parseval’s
theorem [45]:

E =
ρ

2
ṽ(k = 0)− 1

2
v(r = 0) +

ρ

2(2π)d

∫

Rd

ṽ(k)S(k)dk.

(39)
The derivation of (36) and (37) applies to the cases where

one constrains S(k) at a single k vector. Can one gener-
alize it to constraining S(k) at multiple k vectors? If one
constrains S(k) at up to d different orthogonal wave vectors
(inner product being zero), formulas (36) and (37) would
still apply exactly. This is because such constraints af-
fect particle positions in different, independent directions,
and can thus be treated separately. If the d wave vectors
are linearly independent but not orthogonal, one could still
apply a linear transformation to reduce the problem to the
orthogonal case.
To treat cases where the number of k vectors is larger

than d, we recall that in Gibbs formalism, the inverse tem-
perature is a Lagrange multiplier of energy. For multiple
constrained wave vectors, k1, k2, · · · ,kNk

, we can use a
separate Lagrange multiplier for each constraint. Consider

maximizing the Gibbs entropy of the reference configura-
tion

S = −kB

∫

P (rN ) lnP (rN )drN , (40)

where P (rN ) is the probability density function of the ref-
erence configuration, subject to constraints

Ck =

∫

P (rN )S(k)drN − S0(k) = 0 (41)

for constrained k, and

D =

∫

P (rN )drN − 1 = 0, (42)

If these constraints are satisfiable, we can find P (rN ) by
constructing the Lagrangian function

L = S −
∑

k

λkCk − λDD, (43)

where λk and λD are Lagrange multipliers. Setting
δL/δP (rN) = 0, we find

P (rN ) =
1

Z
exp

[

−
∑

k

λkS(k)
]

, (44)

where Z =
∫

exp [−∑

k
λkS(kj)] dr

N is the partition func-
tion of the reference system. We see that if we define the
fictitious energy as

E =
∑

k

λkS(k), (45)

which is still a pair potential [43–45], then P (rN ) follows
the equilibrium distribution at kBT = 1. However, we
could not find an explicit expression for λk. Theoretically,
λk is completely determined by the target structure factor.
However, the dependency is nontrivial due to the correla-
tion between S(k) at different k vectors. We proved that
S(k) is exponentially distributed in the single-constraint
or independent-constraint cases. While we cannot prove
that when multiple non-independent wave vectors are con-
strained, we do provide numerical evidence for such behav-
ior in Appendix A.
To summarize, we have proved that if one constrains the

ensemble-averaged structure factor at one or multiple k vec-
tors, and if the constraints are satisfiable, then the resulting
configurations are drawn from the canonical ensemble with
a pairwise additive interaction (36) or (45). Thus, when we
constrain S(k) for all k vectors to be equal to a structure
factor realized by some n-body interactions, our method
finds an effective pair interaction that mimics the config-
urations produced by such n-body interactions. For the
single-constraint case, we showed that the structure fac-
tor for a single configuration at the constrained k vector
is exponentially distributed. For the multiple-constraint
case, we will also show strong numerical evidence in Ap-
pendix A that the exponential distribution still holds. If

6



the structure factor at the constrained k vectors are inde-
pendent from one another, then the interaction is given by
Eqs. (36)-(37), and the temperature is kBT = 1. However,
if the structure factor at these k vectors are correlated,
then (37) is inexact. We numerically test and verify these
conclusions in Appendix A for specific examples.

C. Ensemble-Average Algorithm

Based on this theoretical formalism, we can now straight-
forwardly devise a new algorithm to construct a canonical
ensemble of a finite but large number of configurations, Nc,
targeting a particular functional form for the structure fac-
tor. Specifically, we minimize the squared difference for Nc

configurations but simultaneously, i.e.,

minimize Φ(rN ) =
∑

k∈K

[〈S(k)〉 − S0(k)]
2, (46)

where N = NNc. Thus, compared to the standard
collective-coordinate procedure [31, 32, 39, 40], which has
available dN number of degrees of freedom, the canonical-
ensemble-average generalization, enables us to substan-
tially increase the number of degrees of freedom to dNNc.
Thus, in practice, the range of wave vectors over which
we can constrain the structure factor to have a prescribed
functional form can be made to be larger and larger by
increasing the number of configurations.
Our algorithm involves minimizing a target function that

is a sum over all k vectors within a wavenumberK from the
origin. The number of such k vectors scales as KdV . For
each such k vector, we need to calculate Nc structure factor
values, each involves a summation over N particles. Thus,
the computational cost scales as KdV NNc = Kdρ−1N2Nc.
As N grows, the computational cost grows quadratically
and can become very large. However, the calculations for
different k vectors can be carried out in parallel, and we
can thus employ multiple GPUs to overcome the high com-
putational cost. GPUs generally perform single-precision
calculations faster than double-precision calculations, but
we discovered that double precision is necessary for large
system sizes (N > 1000).
For cases in which N > 2000, we found that the num-

ber of iterations needed to minimize the target function
becomes computationally costly. By inspecting the inter-
mediate configurations during minimization, we discovered
that S(k) near the origin (k = 0) converges to S0(k) at
much slower rate than that of S(k) at other wave vectors.
It is reasonable to assume that this slow-up is the result of
changing S(k) at k ≈ 0 requires long-range particle migra-
tion. To improve the convergence speed for small k when
N > 2000, we introduce a weight of w(k) = 1/k in the pre-
vious objective function and then carry out the following
minimization:

minimize Φ(rN ) =
∑

k∈K

w(k)[〈S(k)〉 − S0(k)]
2, (47)

As a proof of concept of these modifications, we were able
to generate Nc = 100 configurations, each consisting of

N = 20000 particles, targeting the 1D fermionic target
structure factor (49), after five days of computation using
four NVIDIA Tesla P100 GPUs, as reported in Sec. III A.
Minimizing the objective function usually requires ∼ 104

iterations in 1D but only 102 − 103 iterations in 2D and
3D. Thus, we can generate higher-dimensional configura-
tions with N = 20000 particles much faster (about 30 times
faster with our hardware).
In subsequent sections, we present results using Nc =

100, which is large but still computationally manageable.
Unless otherwise stated, each configuration consists of N =
400 particles in a linear (1D), square(2D), or cubic (3D)
simulation boxes with periodic boundary conditions. As
we will show in Fig. 3, N = 400 is large enough to produce
pair statistics indistinguishable from N = 20000 ones. The
pair statistics are averaged over 5000 configurations to re-
duce statistical fluctuations. Since the weight w(k) = 1/k
is necessary only for large configurations, we omit it for
simplicity. The set K contain half of all k vectors such that
0 < |k| < K, where K is a constant cutoff. We can omit
one half of the k vectors within the range due to the in-
version symmetry of the structure factor: S(−k) = S(k).
Unless otherwise stated, we use K = 30 in 1D and K = 15
in 2D and 3D. We use the low-storage BFGS algorithm
[46–48] to minimize Φ, starting from random initial con-
figurations. After the minimization, Φ is on the order of
10−4 − 10−6. Considering that Φ is a sum over contribu-
tions from Nk = 103 − 104 wave vectors, the difference be-
tween S(k) and S0(k) at a particular wave vector is about
√

Φ/Nk = 10−3.5 − 10−5. The efficiency and accuracy of
this algorithm is verified by applying to a variety of target
structure factors described in Secs. III and V. We present
justifications of this algorithm and parameter choices in
Appendix A.

III. PROOF OF CONCEPT: TARGETING
KNOWN REALIZABLE S(k)

As a proof-of-concept, we test our ensemble-average al-
gorithm here by targeting several different structure factor
functions across dimensions that are known to be exactly
realizable. All of these examples are special cases of deter-
minantal point processes, which are those whose n-point
correlation functions are completely characterized by the
determinant of some function [10, 33–36].

A. Dyson’s One-Dimensional Log Coulomb Gases

Circular ensembles in the theory of random matrices
[34] are measures on spaces of unitary matrices introduced
by Dyson as modifications of Gaussian matrix ensembles.
These different ensembles are equivalent to one another
when the matrix size tends to infinity. Dyson showed that
the distribution of eigenvalues can be mapped to a systems
of particles on a circle interacting with a two-dimensional
Coulomb potential (logarithmic function) at positive tem-
peratures. These systems in turn can be mapped to loga-
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FIG. 2. (a): The structure factor obtained by sampling ensem-
bles of 1D configurations in which the target function S0(k) is
taken to be Eq. (48) at ρ = 1. (b): The corresponding pair cor-
relation function sampled from simulations and the analytical
formula (51). Here it turns out that our usual reciprocal-space
cutoff of K = 30 is not large enough, and so we use K = 50
instead.

rithmically interacting particles in R with an appropriately
confining potential.

The structure factors that correspond to those of the
circular orthogonal ensemble (COE), circular unitary en-
semble (CUE), and circular symplectic ensemble (CSE),
respectively [34, 35, 49, 50] at unit density (ρ = 1) in the
thermodynamic limit are:

S(k) =



















k

π
− k

2π
ln(k/π + 1), 0 ≤ k ≤ 2π

2− k

2π
ln

(

k/π + 1

k/π − 1

)

, k > 2π,

(48)

S(k) =











k

2π
, 0 ≤ k ≤ 2π

1, k > 2π,

(49)
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FIG. 3. (a): The structure factor obtained by sampling ensem-
bles of 1D configurations in which the target function S0(k) is
taken to be Eq. (49) at ρ = 1. We use two different system
sizes, and show here that their pair statistics are indistinguish-
able. For N = 20000, we generate 100 configurations instead of
the usual 5000 configurations. (b): The corresponding pair cor-
relation function sampled from simulations and the analytical
formula (52).

and

S(k) =











k

4π
− k

8π
ln
∣

∣

∣
1− k/(2π)

∣

∣

∣
, 0 ≤ k ≤ 4π

1, k > 4π.

(50)

These ensembles correspond to the following values of the
inverse temperature β = (kBT )

−1: β = 1 (COE), β = 2
(CUE), and β = 4 (CSE). In all cases, we see that the
structure factor S(k) tends to zero linearly in k in the limit
k → 0 and hence, according to (10) and (11), are hyperuni-
form of class II [18]. The case β = 2 has been generalized
to higher dimensions (detailed below) and found to pos-
sess identical distribution with a spin-polarized fermionic
system [35].

The corresponding pair correlations of the COE, CUE
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FIG. 4. (a): The structure factor obtained by sampling ensem-
bles of 1D configurations in which the target function S0(k) is
taken to be Eq. (50) at ρ = 1. (b): The corresponding pair cor-
relation function sampled from simulations and the analytical
formula (53).

and CSE are respectively

g2(r) =1− sin2(πr)

(πr)2

+

(

πr cos(πr) − sin(πr)
)(

2 Si(πr) − π
)

2(πr)2
,

(51)

g2(r) = 1− sin2(πr)

(πr)2
, (52)

and

g2(r) =1− sin2(2πr)

(2πr)2

+

(

2πr cos(2πr) − sin(2πr)
)

Si(2πr)

4(πr)2
,

(53)

We now apply our algorithm by targeting these three
structure factors for systems with N = 400. The target

analytical forms for the structure factor for β = 1, β = 2,
and β = 4 and the corresponding simulation data are plot-
ted in Figs. 2, 3, and 4, respectively. We include in
these figures the corresponding pair correlation functions,
both the analytical forms and the simulation data, as ob-
tained by sampling the generated configurations. From all
of these figures, we see that our targeting algorithm enables
us to realize these ensembles with high accuracy, validating
its utility and applicability. For the β = 2 case, we also
carried out the simulation results for a much larger system
with N = 20, 000. We see from Fig. 3 that the results for
N = 400 are indistinguishable from those for N = 20000.
By a theorem of Henderson [51], a pair potential that

gives rise to a given pair correlation function is unique up
to a constant shift, although this cannot apply at T = 0
[52–54]. The fact that our methodology yields ensembles
of configurations with targeted pair statistics (whenever re-
alizable) that are determined by effective pair potentials
means that those interactions in the case of Dyson’s one-
dimensional COE, CUE and CSE must exactly be given by
the two-dimensional Coulombic potential.

B. One-dimensional Lorentzian target

Costin and Lebowitz [10] showed that there exists a one-
dimensional determinantal point process at unit density in
which the total correlation function is the following simple
exponential function:

h(r) = − exp(−λr), (54)

where λ ≥ 2. This corresponds to a structure factor with a
Lorentzian form:

S(k) =
λ(λ− 2) + k2

k2 + λ2
. (55)

This result implies that the system is hyperuniform at
the “borderline” case of λ = 2, since the structure fac-
tor S(k) = k2/(4 + k2) tends to zero quadratically in k in
the limit k → 0 and hence, according to (10) and (11), are
hyperuniform of class I [18]. We have targeted the λ = 2
target, and successfully realize it. The results for the pair
correlation function and the structure factor are presented
in Fig. 5.

C. Fermi-sphere targets in higher dimensions

The 1D CUE point process with a structure factor given
by Eq. (49) has been generalized to so-called “Fermi-
sphere” point processes in d-dimensional Euclidean space
R

d [35]. Specifically, such disordered hyperuniform point
processes correspond to the spatial distribution of spin-
polarized free fermions in R

d, which are special cases of
determinantal processes. In particular, the structure factor
in R at unit density is given by

S(k) = 1− α(k, κ), (56)
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FIG. 5. (a): The structure factor obtained by sampling ensem-
bles of 1D configurations in which the target function S0(k) is
taken to be Eq. (55) with λ = 2 at ρ = 1. (b): The correspond-
ing pair correlation function sampled from simulations and the
analytical formula as obtained from (54) [g2(r) = 1−exp(−2r)].
Here it turns out that our usual reciprocal-space cutoff of
K = 30 is not large enough, and so we use K = 50 instead.

where α(k, κ) is the volume common to two spherical win-
dows of radius κ whose centers are separated by a distance
k divided by v1(κ), the volume of a spherical window of
radius κ = 2

√
π[Γ(1+d/2)]1/d, which is known analytically

in any dimension [2]. This result implies that the structure
factor S(k) tends to zero linearly in k in the limit k → 0 and
hence are hyperuniform of class II [18]. The corresponding
pair correlation function of such a point process is given by

g2(r) = 1− 2dΓ(1 + d/2)2
J2
d/2(κr)

(κr)d
, (57)

where Jν(x) is the Bessel function of the first kind of order
ν.
We have applied our algorithm to target the structure

factor (56) in two and three dimensions using K = 15. The
results are presented in Figs. 6 and 7 along with the corre-
sponding pair correlation functions sampled from the gener-
ated configurations as well as the analytical forms obtained
from (57). Consistent with the known realizability of these
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FIG. 6. (a): The structure factor obtained by sampling ensem-
bles of 2D configurations in which the target function S0(k) is
taken to be Eq. (56) at ρ = 1. (b): The corresponding pair cor-
relation function sampled from simulations and the analytical
formula (57).

targets, we see excellent agreement between the targeted
structure factors and those obtained from our ensemble-
average formulation. A two-dimensional configuration is
shown in Fig. 8.
Unlike the one-dimensional COE, CUE, and CSE deter-

minantal point configurations, the interaction potential for
general determinantal point processes must contain at least
up to three-body potentials; see the Appendix of Ref. 35.
Thus, for the 2D and 3D fermi-sphere targets as well as
the 1D Lorentzian target (Sec. III B), we show for the first
time that there exists effective pair interactions that mimic
the higher-order n-body interactions corresponding to these
determinantal point processes.

D. Gaussian target in two dimensions

An example of a 2D determinantal point process that ex-
hibits hyperuniform behavior is generated by the Ginibre
ensemble [55], which is a special case of the two-dimensional
one-component plasma [55]. A one-component plasma
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FIG. 7. (a): The structure factor obtained by sampling ensem-
bles of 3D configurations in which the target function S0(k) is
taken to be Eq. (56) at ρ = 1. (b): The corresponding pair cor-
relation function sampled from simulations and the analytical
formula (57).

(OCP) is an equilibrium system of identical point parti-
cles of charge e interacting via the log Coulomb potential
and immersed in a rigid, uniform background of opposite
charge to ensure overall charge neutrality. For β = 2, the
total correlation function for the OCP (Ginibre ensemble)
in the thermodynamic limit was found exactly by Jancovici
[55]:

h(r) = − exp
(

−ρπr2
)

. (58)

The corresponding structure factor is given by

S(k) = 1− exp

(

− k2

4πρ

)

. (59)

This result implies that the structure factor S(k) tends to
zero quadratically in k in the limit k → 0 and hence are
hyperuniform of class II [18].
Using our method, we targeted the OCP structure fac-

tor (59) using K = 15. As shown in Fig. 9, it is seen that
the algorithm is able to realize this target with very high
accuracy. The corresponding pair correlation function ob-
tained by sampling the resulting configurations agrees very

FIG. 8. A two-dimensional, 400-particle “fermi-sphere” configu-
ration drawn from ensembles in which the target function S0(k)
is taken to be Eq. (56) at ρ = 1.

well with the exact g2(r) obtained from (58), as shown in
Fig. 9. One configuration is shown in Fig. 10. It it note-
worthy that we had previously employed a completely dif-
ferent algorithm to generate these configurations as well as
other determinantal point processes [49], but the maximum
attainable system sizes were substantially much smaller
(N ≈ 100) in that study.

IV. ANOTHER PROOF OF CONCEPT:
TARGETING A KNOWN UNREALIZABLE S(k)

A severe test of our algorithm and another proof of con-
cept would be its application to hypothetical functional
forms for pair statistics that meet the explicitly known
necessary realizability conditions (1)-(3), i.e., nonnegativ-
ity conditions on g2(r) and S(k) as well as the Yamada
condition, but are known not be realizable. Such exam-
ples are rare. One particular two-dimensional example was
identified by Torquato and Stillinger [2] in which the point
configuration would putatively correspond to a packing of
identical hard circular disks of unit diameter with a pair
correlation function given by

g2(r) = Θ(r − σ) +
Z

2πρ
δ(r − 1), (60)

where Θ(x) is the unit step function, δ(r) is a radial Dirac
delta function, σ = 1.2946 and Z = 4.0148. The corre-
sponding structure is given by

S(k) = 1− 8φσ2

(kσ)
J1(kσ) + ZJ0(k), (61)
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FIG. 9. (a): The structure factor obtained by sampling ensem-
bles of 2D configurations in which the target function S0(k) is
taken to be Eq. (59) at ρ = 1. (b): The corresponding pair cor-
relation function sampled from simulations and the analytical
formula (58).

where φ = 0.74803 is the packing fraction. It turns out
that both g2(r) and S(k) are nonnegative functions and
the Yamada condition is satisfied. However, Torquato and
Stillinger [2] observed that the test function (60) cannot
correspond to a packing because it violates local geometric
constraints specified by a distance σ and average contact
number (per particle) Z. Specifically, for Z = 4.0148, there
must be particles that are in contact with at least five oth-
ers. But no arrangement of the five exists that is consistent
with the assumed pair correlation function (step plus delta
function with a gap from 1 to 1.2946).

We use our standard procedure described in Sec. II C to
target the structure factor (61), but we change three pa-
rameters. We take Nc = 1000 (rather than Nc = 100)
to ensure that any failure is not due to lacking degrees of
freedom and use N = 100 (rather than N = 400) to com-
pensate for the increase in simulation time caused by the
previous change. Finally, we experimented with several val-
ues of K values (shown in Fig. 11), instead of the standard
usage of K = 15 in 2D.

We present results for three different reciprocal-space

FIG. 10. A two-dimensional, 400-particle OCP configuration
drawn from ensembles in which the target function S0(k) is
taken to be Eq. (59) at ρ = 1.

cutoff values: K = 10, 15, 20. For K = 10, the structure
factor can match the target inside the constrained region.
Importantly, for the two larger K values, the optimizer
finds local minima, and the final structure factors (at the
end of the minimization) does not match the target, even
inside the constrained region. Therefore, we conclude that
the structure factor (61) is not realizable, which speaks to
the power of our algorithm.

V. TARGETING HYPERUNIFORM STRUCTURE
FACTORS WITH UNKNOWN REALIZABILITY

In this section, we apply our ensemble-average algorithm
to target several different hyperuniform functional forms for
structures factors across dimensions that satisfy the explic-
itly known necessary conditions (1)-(3), but are not known
to be realizable. We show that all of these d-dimensional
targets are indeed realizable.

Before presenting these results, it is instructive to com-
ment on the effect of space dimensionality on realizing a
prescribed structure factor. It is generally known that the
lower the space dimension, the more difficult it is to satisfy
realizability conditions [2]. This is consistent with decorre-

lation principle [2], which states that unconstrained corre-
lations in disordered many-particle systems vanish asymp-
totically in high dimensions and that the n-particle cor-
relation function gn for any n ≥ 3 can be inferred entirely
from a knowledge of ρ and g2. This in turn implies that the
nonnegativity of g2(r) and S(k) are sufficient conditions for
realizability. It was also shown that the decorrelation prin-
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FIG. 11. (a): The structure factor obtained by sampling ensem-
bles of 1D configurations in which the target function S0(k) is
taken to be Eq. (61) at ρ = 1. (b): The corresponding pair cor-
relation function sampled from simulations and the analytical
formula (60).

ciple applies more generally to lattices in high dimensions
[58].

A. Gaussian Structure Factor Across Dimensions

To begin, we ask whether a total correlation function
with the following Gaussian form is realizable as a hyper-
uniform system across dimensions:

h(r) = − exp
(

−(r/a)2
)

, (62)

where a is a positive constant. The corresponding structure
is given by

S(k) = 1− ρadπd/2 exp

(

− k2

4πρ

)

, (63)

which implies that S(k) tends to zero quadratically as k →
0 for all d. The hyperuniformity condition requires the
unique density to be given by ρ = (a

√
π)−d. Note that the
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FIG. 12. (a): The structure factor obtained by sampling ensem-
bles of 1D configurations in which the target function S0(k) is
taken to be Eq. (63) with a = 1/

√
π at ρ = 1. (b): The cor-

responding pair correlation function sampled from simulations
and the analytical formula (62).

case d = 2 is exactly the same as the two-dimensional OCP
system in which h(r) and S(k) are given by (58) and (59),
respectively.

We target such structure factors in one and three di-
mensions and find that they are realizable as hyperuniform
systems at unit density. For d = 1, we find excellent agree-
ment between the simulated and target structure factors
are obtained, as shown in Fig. 12. This strongly sug-
gests that such systems are realizable in one dimension,
the most difficult dimensionality case. Indeed, we also find
the same excellent agreement between the simulated and
target structure factors in three dimensions, as illustrated
in Fig. 13. We conclude that such targets are realizable as
disordered hyperuniform systems of class I [18] in any space
dimension whenever ρ = (a

√
π)−d. A 3D configuration is

shown in Fig. 14.
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FIG. 13. (a): The structure factor obtained by sampling ensem-
bles of 3D configurations in which the target function S0(k) is
taken to be Eq. (63) with a = 1/

√
π at ρ = 1. (b): The cor-

responding pair correlation function sampled from simulations
and the analytical formula (62). Here it turns out that our usual
reciprocal-space cutoff of K = 15 is not large enough, and so we
use K = 25 instead.

B. d-dimensional generalization of the OCP pair
correlation function

Consider the following d-dimensional generalization of
the total correlation function of the OCP:

h(r) = − exp[−ρv1(r)], (64)

where v1(r) is the volume of a sphere of radius r [cf. (4)].
It is noteworthy that such a total correlation function auto-
matically satisfies the hyperuniformity requirement for any
positive density and any d, since h̃(k = 0) =

∫

R
h(r)dr =

−1/ρ [cf. (2) and (5)]. Note that when d = 1, this is iden-
tical to the realizable total correlation function (54) with
λ = 2ρ. Moreover, when d = 2, this is identical to the
realizable OCP function (58).

It is not known whether configurations corresponding to
(64) for d ≥ 3 are realizable. We target the structure factor

FIG. 14. A three-dimensional, 400-particle configuration drawn
from ensembles in which the target function S0(k) is taken to
be Eq. (63) at ρ = 1.

in this case in three dimensions:

S(k) =1− 1
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[
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]}

,

(65)

where Γ(x) is the gamma function,

pFq(a1, · · · , ap; b1, · · · , bq; z) is the generalized hyper-
geometric function, and

a(k) =
k6

20736π2ρ2
. (66)

For small wavenumbers, this 3D structure factor as well
as those for any other values of d goes to zero quadratically
in k as k tends to zero; specifically,

S(k) ∼ k2 (k → 0). (67)

This means that S(k) is analytic at the origin, which in turn
implies that h(r) decays to zero exponentially fast or faster
[18]. We find that this 3D structure factor is indeed realiz-
able for any positive density. The results depicted in Fig.
15 show excellent agreement between the simulated and
target structure factors. One such configuration is shown
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FIG. 15. (a): The structure factor obtained by sampling ensem-
bles of 3D configurations in which the target function S0(k) is
taken to be Eq. (65) at ρ = 1. (b): The corresponding pair cor-
relation function sampled from simulations and the analytical
formula (64).

in Fig. 16. Since (64) is realizable for d = 3, it should be
realizable in higher dimensions and hence such systems in
R

d for any d are hyperuniform of class I [18].

C. Fourier dual of relation (64)

Here we consider the Fourier dual of the function (64) in
d dimensions, namely,

ρh̃(k) = − exp[−v1(k)/(2π)
dρ], (68)

which implies

S(k) = 1− exp[−v1(k)/(2π)
dρ]. (69)

Thus, the structure factor has the following asymptotic
power-law behavior for any d:

S(k) ∼ kd (k → 0). (70)

The realizability of such structure factors, which would be
hyperuniform for any density and d, has heretofore not been

FIG. 16. A three-dimensional, 400-particle configuration drawn
from ensembles in which the target function S0(k) is taken to
be Eq. (65) at ρ = 1.

studied in any space dimension, except for d = 2, where it
has the same form as the OCP structure factor (59). It is
crucial to note that unlike the structure factor correspond-
ing to (64), which is analytic at the origin [cf. (67)], the
structure factor (69) is nonanalytic at the origin for any
even dimension. This attribute in even dimensions results
in pair correlation functions that for large r are controlled
by a power-law decay 1/r2d; see Ref. [18] for a general
analysis of such asymptotics. The corresponding total cor-
relation functions in the first three space dimensions are
given respectively by

h(r) =
−1

(πρr)2 + 1
, (71)

h(r) = − exp(−πρr2), (72)

h(r) = f(r)− 1, (73)

where

f(r) = S(k = 2πρ2/3r) (74)

and S(k) is the structure factor for the 3D generalization
of OCP, given in Eq. (65).
We target such structure factors in one and three dimen-

sions and find that they are realizable as hyperuniform sys-
tems at unit density. Excellent agreement between the sim-
ulated and target structure factors are obtained, as shown
in Figs. 17 and 18. A three-dimensional configuration is
shown in Fig. 19. For aforementioned reasons, this means
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FIG. 17. (a): The structure factor obtained by sampling ensem-
bles of 1D configurations in which the target function S0(k) is
taken to be Eq. (69) at ρ = 1. (b): The corresponding pair cor-
relation function sampled from simulations and the analytical
formula (71). Here it turns out that our usual reciprocal-space
cutoff of K = 30 is not large enough, and so we use K = 50
instead.

that the function (69) is realizable for higher dimensions
(d ≥ 4) and hence for all positive dimensions. Therefore,
we see from (10), (11) and (70) that such systems are hy-
peruniform of class II for d = 1 and of class I for d ≥ 2.

VI. TARGETING NONHYPERUNIFORM
STRUCTURE FACTORS WITH UNKNOWN

REALIZABILITY

In this section, we apply our ensemble-average algorithm
to target two different nonhyperuniform functional forms
for the structure factor in 2D and 3D. As before, they both
satisfy the explicitly known necessary conditions (1)-(3),
but are not known to be realizable. We show that all of
these targets are indeed realizable.
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FIG. 18. (a): The structure factor obtained by sampling ensem-
bles of 3D configurations in which the target function S0(k) is
taken to be Eq. (69) at ρ = 1. (b): The corresponding pair cor-
relation function sampled from simulations and the analytical
formula (73).

A. Hyposurficial structure factors in two and three
dimensions

As we have discussed in the introduction, a hyposurficial
state of matter has A > 0 and B = 0 in Eq. (6). Hyposur-
ficiality may be considered the opposite of hyperuniformity
because the latter implies A = 0 and B > 0. Although
there is numerical evidence of B vanishing at a particular
pressure in a model amorphous ice [38], a rigorous proof
of the existence of hyposurficial point configurations has
heretofore not been found.
Here we design and realize hyposurficial structure factors

in 2D and 3D. Since B is proportional to the d-th moment
of h(r) [see Eq. (8)], we designed the following well-behaved
hyposurficial h(r) targets

h(r) =
exp(−r)

4
− exp(−r) sin(r)

r
, (75)

h(r) =
exp(−r)

4π
− exp(−r) sin(r)

r
, (76)
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FIG. 19. A three-dimensional, 400-particle configuration drawn
from ensembles in which the target function S0(k) is taken to
be Eq. (69) at ρ = 1.

in 2D and 3D respectively. We choose realizable densities
ρ = 1

2
in 2D and ρ = 1

4π in 3D. The 3D target can be
analytically transformed into an S(k) target

S(k) =
6k8 + 12k6 + 19k4 + 24k2 + 16

6(k2 + 1)2(k2 − 2k + 2)(k2 + 2k + 2)
(77)

but the 2D h(r) target has no corresponding analytical
S(k). We target a numerically obtained tabulated S(k)
instead.
We have successfully realized these targets with tuned

parameters: N = 1000, Nc = 200, and K = 20 in 2D; and
N = 4000, Nc = 1000, and K = 12 in 3D. We increase
the system size N because in both cases, S(k) possesses
a small kink near the origin, and we need large systems
to access smaller k values. Our success in realizing these
targets demonstrates, for the first time, that hyposurficial
point configurations indeed exist.
Reference 38 observed that hyposurficiality appears to

be associated with spacial heterogeneities, and so it is in-
teresting to see if our configurations also exhibit such char-
acteristics. We present these configurations in Figs. 22 and
23, which indeed show spatial heterogeneities that are man-
ifested by significant clustering of the particles.

B. Antihyperuniform structure factors in two
dimensions

As discussed in the Introduction, an antihyperuniform
configuration is one for which S(k) diverges at k = 0. Al-
though this behavior has been observed at various critical
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FIG. 20. (a): The structure factor obtained by sampling ensem-
bles of 2D configurations, in which the target function S0(k) is
numerically computed from Eq. (2) and (75), at ρ = 0.5. (b):
The corresponding pair correlation function sampled from sim-
ulations and the analytical formula (75).

points, it is still interesting to challenge our algorithm to
generate such configurations. We designed the following
target structure factor in 2D:

S(k) = 1 +
1√

k2 + κ2
. (78)

Such a system, if realizable, would achieve antihyperunifor-
mity at κ = 0. The corresponding pair correlation function
is

g2(r) = 1 +
exp(−κr)

2πr
. (79)

We have indeed successfully realized this target at ρ = 1,
κ = 0, 0.3, and 1. We show the antihyperuniform case,
κ = 0, in Figs. 24 and 25. In realizing this target, we used
parameters N = 1000, Nc = 3000, and K = 100. We
use a large value of N to provide sufficient resolution to
determine S(k) at small k, and an extremely large value of
K, since this target S0(k) decays very slowly to unity as k
increases. Since K is large, we also need a sufficiently large
value of Nc to provide ample degrees of freedom.
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FIG. 21. (a): The structure factor obtained by sampling ensem-
bles of 3D configurations, in which the target function S0(k) is
taken to be Eq. (77), at ρ = 1

4π
. (b): The corresponding pair

correlation function sampled from simulations and the analyti-
cal formula (76).

VII. CONJECTURE REGARDING THE
REALIZABILITY OF EQUILIBRIUM AND

NONEQUILIBRIUM CONFIGURATIONS VIA
EFFECTIVE PAIR INTERACTIONS

Our equilibrium ensemble-average formalism to solve the
realizability problem in R

d raises a profound fundamental
theoretical question: Can any realizable g2(r) or S(k) as-
sociated with either an equlibriium or nonequilibrium en-
semble be attained by an equilibrium systems with effec-
tive pairwise interaction? Currently, there is no rigorous
proof that the answer to this question is in the affirma-
tive in the implied thermodynamic limit. However, there
are sound arguments and reasons to conjecture that such
an effective pair interaction can always be found, perhaps
under some mild conditions. First, our theoretical formal-
ism strongly supports this conjecture, since it exploits the
fact that an equilibrium ensemble of configurations in R

d

offers an infinite number of degrees of freedom to attain
a realizable g2(r) or, equivalently, S(k) in the thermody-
namic limit with an associated pair potential v(r) at pos-

FIG. 22. A two-dimensional, 1000-particle hyposurficial configu-
ration drawn from ensembles in which the target function S0(k)
is numerically computed from Eq. (2) and (75), at ρ = 0.5.

itive temperatures. While our procedure is not suited for
ground states (T = 0), such targeted structures are even
easier to achieve by pair interactions in light of the high de-
generacy of pair potentials consistent with a ground-state
structure [52]. Second, for finite-sized systems of particles
that are restricted to lie on lattice sites in R

d, it has been
proved, under rather general conditions, that any realizable
g2(r) can be achieved by a pair potential v(r) at positive
temperatures [15]. Third, the success of our algorithm in
all of the known realizable targets cases with nonadditive

interactions supports this conjecture, even if the simula-
tions were necessarily carried out on finite systems under
periodic boundary conditions.

As a highly stringent test of our affirmative answer, we
now target nonequilibrium “perfect-glass” structure factors
[56], which are glassy, nonequilibrium state of a many-
particle system interacting with two-, three-, and four-body
potentials. Counterintuitively, the classical ground state of
this many-body interaction is unique and disordered [57].
By construction, it banishes crystals and quasicrystals from
the ground-state manifold. We have previously investi-
gated the quenched states from infinite temperature to zero
temperature for this model with various parameter choices,
and numerically computed their structure factors. Here we
target the numerically-measured structure factor of a per-
fect glass model with parameters d = 2, ρ = 0.00390625,
χ = 5.10, α = 2, and γ = 3 (see Ref. 56 for the definition
of the last three parameters). We use targeting parame-
ters Nc = 1000 and K = 5. This seemingly small value
of K is actually relatively large considering that ρ is much
smaller than unity, since real-space length scale is inversely
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FIG. 23. A three-dimensional, 4000-particle hyposurficial con-
figuration drawn from ensembles in which the target function
S0(k) is taken to be Eq. (77) at ρ = 1

4π
.

proportional to the k-space length scale. Figures 26 shows
the excellent agreement between the targeted and simu-
lated structure factors and pair correlation functions. This
is a remarkable suggestion that the answer to our question
above is affirmative because a perfect glass is a nonequilib-
rium system with two-, three-, and four-body interactions
while our reconstructed system is an equilibrium state of a
pair potential.

It is interesting to compare configurations produced by
the actual perfect glass interaction and the effective pair
interaction visually, as is done in Fig. 27. Although these
pair of configurations look strikingly similar to one another,
we know that since one system involves three- and four-
body interactions and the other does not, that their higher-
order statistics (g3, g4, · · · ) must be different [2, 3, 59], even
if such distinctions cannot be detected visually.

The realizability of a perfect glass using our formalism
as well as the findings reported in Secs. III-VI lead us to
the following conjecture:

Given the pair correlation function g2(r) of any realizable
statistically homogeneous many-particle ensemble (equilib-
rium or not) in R

d at number density ρ, there is an equilib-
rium ensemble (Gibbs measure) involving only an effective
pair potential v(r) that gives rise to such a g2(r).

Note that statistical homogeneity implies that thermody-
namic limit has been taken. The rigorous validity of this
conjecture is an outstanding open problem.
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FIG. 24. (a): The structure factor obtained by sampling ensem-
bles of 2D configurations, in which the target function S0(k) is
taken to be Eq. (78) at ρ = 1. (b): The corresponding pair cor-
relation function sampled from simulations and the analytical
formula (79).

VIII. CONCLUSIONS AND DISCUSSION

To address the realizability problem, we introduced a
theoretical formalism that provides a means to draw par-
ticle configurations from canonical ensembles with certain
pairwise-additive potentials that could correspond to tar-
geted analytical functional forms for the structure factor.
This theoretical foundation enabled us to devise an efficient
algorithm to construct systematically canonical-ensemble
particle configurations with such targeted pair statistics
whenever realizable. As a proof-of-concept, we tested it
to target several different structure factor functions across
dimensions that are known to be realizable and one hype-
runiform target that meets all explicitly known necessary
realizability conditions but is known to be nontrivially un-
realizable. Our algorithm succeeded for all realizable tar-
gets and appropriately failed for the unrealizable target,
demonstrating the accuracy and power of the method to
numerically investigate the realizability problem. Having
established the prowess of the methodology, we targeted
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FIG. 25. A two-dimensional, 1000-particle antihyperuniform
configuration drawn from ensembles in which the target function
S0(k) is taken to be Eq. (78) at ρ = 1.

several families of structure-factor functions that meet the
known necessary realizability conditions but were hereto-
fore not known to be realizable, including d-dimensional
Gaussian structure factors, d-dimensional generalizations of
the 2D one-component plasma, the d-dimensional Fourier
duals of the previous OCP cases, a hyposurficial target in
2D and 3D, and an antihyperuniform target in 2D. In all
of these instances, we were able to achieve the targeted
structure factors with high accuracy, suggesting that these
targets are indeed truly realizable by equilibrium many-
particle systems with pair interactions. This expands our
knowledge of analytical functional forms for g2(r) and S(k)
associated with disordered point configurations across di-
mensions. When targeting hyposurficial structure factors,
we confirm a previous observation that hyposurficiality is
associated with spatial heterogeneities that are manifested
by significant clustering of the particles [38]. Our results,
especially perfect-glass realizability, led to the conjecture
that any realizable structure factor corresponding to either
an equilibrium or nonequilibrium system can be attained
by an equilibrium ensemble involving only effective pair in-
teractions in the thermodynamic limit.

It is worth stressing that we only constrain S(k) in a finite
range (0 < |k| < K) numerically for K as large as feasibly
possible, but do not enforce explicit constraints on g2(r).
Since g2(r) for small r is related to S(k) for large k, there is
no guarantee that the numerically sampled g2(r) matches
its analytical counterpart at very small pair distances (i.e.,
r < 2π/K). Nevertheless, we always find impressive consis-
tency between the simulated and analytical pair correlation
functions corresponding to the target S(k), which further
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FIG. 26. (a): The structure factor obtained by sampling ensem-
bles of 2D configurations in which the target function S0(k) is
taken to be equal to the numerically measured S(k) of a perfect-
glass system at ρ = 0.00390625. (b): The corresponding pair
correlation function sampled from targeted configurations, com-
pared with that of an actual perfect glass.

demonstrates the success of our algorithm.

Realizable particle configurations generated with a tar-
geted pair correlation function using our algorithm are equi-
librium states of pairwise additive interactions at positive
temperatures. Such a pair potential is unique up to a con-
stant shift [51]. In the case of realizable hyperuniform tar-
gets with the smooth pair correlation functions considered
here, such interactions must be long-ranged [18], which is a
consequence of the well-known fluctuation-compressibility
relation:

lim
k→0

S(k) = ρkBTκT , (80)

where κT is the isothermal compressibility. Since
limk→0 S(k) = 0 and ρkBT > 0, one must have κT = 0.
Using the analysis that relates the large-r behavior of the
direct correlation function to that of the pair potential func-
tion v(r) presented in Ref. 18, it immediately follows that
the asymptotic behavior of v(r) is Coulombic for the Gaus-
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FIG. 27. (a): A two-dimensional configuration of 400 parti-
cles drawn from ensembles in which the target function S0(k) is
taken to be equal to the numerically measured S(k) of a perfect-
glass system at ρ = 0.00390625. (b): An actual perfect-glass
configuration with the same pair statistics g2(r) and S(k).

sian S(k) [cf. (47)] for d ≥ 3, i.e.,

βv(r) ∼ 1/rd−2 r → ∞, (81)

which, of course, is a long-ranged interaction. The same
asymptotic Coulombic form for the pair potential for d ≥ 3
arises in the d-dimensional generalization of the OCP pair
correlation function (64). It would be an interesting fu-
ture research direction to find the specific functional forms
of such pair interactions. For general determinantal point
processes, these would be effective pair interactions that
mimic the two-body, three-body, and higher-order intrinsic
interactions [35].
Our study is also a step forward in being able to de-

vise inverse methods [60, 61] to design materials with de-
sirable physical properties that can be tuned by their pair
statistics. Pair statistics combined with effective pair in-
teractions, which in principle can be obtained using inverse
techniques [62, 63], can then be used to compute all of
the thermodynamic properties, such as compressibility and
energy and its derivatives (e.g., pressure or heat capac-
ity) [1]. In instances in which the bulk physical properties
are primarily determined by the pair statistics, such as the
frequency dependent dielectric constant [64] and transport
properties of two-phase random media [65], our results are
immediately applicable.
While applications of our ensemble-average methodology

were directed toward the realizability of target structure
factor functions that putatively could correspond to disor-
dered hyperuniform and nonhyperuniform (e.g., hyposur-
ficial and anti-hyperuniform) many-particle configurations,
the technique is entirely general and hence not limited to
these systems. In future work, we will apply the algorithm
to discover realizable families of pair correlation functions
associated with other novel configurations. Another inter-
esting future direction is to analytically study how S(k)
at a particular k vector is distributed. We have proved in
the present work that it is exponentially distributed when
there is a single constraint, or when there are up to d in-
dependent constraints. When the number of k vectors is
higher than d, we provided strong numerical evidence that
the exponential distribution still holds (see Appendix A).
Whether such behavior can be proved remains a fascinating
open problem.
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Appendix A: Numerical Tests on the Theoretical
Formalism and Justification of the Algorithm

In this Appendix, we numerically verify the major
conclusions and outcomes of our theoretical canonical-
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FIG. 28. Structure factor for the 1D system with energy E =
S(q)·(1/S0−1), where q is the smallest wave vector and S0 = 0.5,
at temperature kBT = 1. As discussed in the text, the effect of
this energy is to constrain the structure factor at q to S0 = 0.5
(unfilled circle), and leave the structure factor at other wave
vectors unconstrained (solid red circles).

ensemble formalism and justify our algorithm using the
1D fermionic target structure factor (49) as an example.
Specifically, we show/verify: (1) to constrain the ensemble-
average structure factor at a single k vector, one can alter-
natively perform canonical-ensemble simulations at tem-
perature kBT = 1 with energy given in Eq. (37) via the
molecular dynamics algorithm; (2) to constrain S(k) at
multiple wave vectors in 1D, simply performing canonical-
ensemble simulations using (37) is inexact; (3) our algo-
rithm given in Sec. II C outputs configurations drawn from
the canonical ensemble of a pairwise additive interaction;
and (4) when employing our algorithm to reconstruct con-
figurations in 1D,K = 30 is a reasonable cutoff value for the
constrained region. We proved that the single-configuration
structure factors S(k) at a single constrained wave vector
is exponentially distributed when there is one constraint.
However, here we provide strong numerical evidence that
the same distribution holds even for the multiple-constraint
cases.

If we only need to constrain the structure factor at a
single wave vector, then (37) is exact, and one can per-
form molecular-dynamics simulations [with energy defined
in (36) at temperature kBT = 1] to meet this constraint.
We performed such a simulation and collected 5000 snap-
shots. The simulation is performed on a 1D system with
N = 400 particles. We let S0 = 0.5, and choose q to be
the smallest k vector. The resulting structure factor is pre-
sented in Fig. 28. Indeed, the structure factor at q averages
to S0.

We now move on to constraining the structure factor at
multiple, non-independent wave vectors in order to realize
the structure factor of the 1D “fermionic” system. Since the
structure factor at multiple wave vectors are constrained,
Eq. (37) is inexact due to correlations between structure-
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FIG. 29. Structure factor for the 1D system with energy given
in Eq. (A1), in which S0(k) is given in Eq. (49), at temperature
kBT = 1.

factor values at different wave vectors. To find out how
inexact it is, we again performed molecular dynamics sim-
ulations. We define the energy

E =
∑

|k|<2π

ṽ(k)S(k), (A1)

where ṽ(k) is given in (37). Here the summation be-
yond |k| = 2π is unnecessary because for such k vectors,
S0(k) = 1 and ṽ(k) vanishes. As previously discussed,
we performed a molecular dynamics simulation with with
N = 400 particles at kBT = 1. The resulting structure fac-
tor, shown in Fig. 29, exhibits a noticeable deviation from
its target S0(k).
Since we were not able to derive an appropriate ṽ(k)

for the general case of multiple non-independent k vectors,
we could not meet these constraints by simply performing
molecular dynamics simulations. We must therefore use the
method presented in Sec. II C [minimizing Φ in Eq. (46) for
Nc = 100 configurations simultaneously].
One conclusion of our theoretical formalism is that our

reconstructed configurations are drawn from the canonical
ensemble of a pairwise additive interaction at positive tem-
perature. We can test this conclusion because the fermionic
systems in one dimension also correspond to an equilib-
rium state of a logarithmic pairwise-additive potential with
β = 2. By Henderson’s theorem [51], our targeted system
and the fermionic system are both equilibrium states of the
same pair potential, and thus the two systems should have
the same higher-order statistics (g3, g4, · · · ). To check this
conclusion, we computed the three-body correlation func-
tions of our targeted system and compare with the analyti-
cal result of the fermionic system in Fig. 30. In general, g3
is a function of three vectors: r12, r13, and r23. However,
in 1D, we can set r12 = r1, r13 = r2, and r23 = r1+ r2, and
then g3 becomes a function of two scalars, r1 and r2. The
difference between the numerically found g3(r1, r2) of the
targeted system and the analytical g3(r1, r2) of the fermi-
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FIG. 30. (a): Analytical three-body correlation function,
g3(r1, r2), of the 1D fermi-sphere system. (b): The difference in
g3 between the targeted system and the 1D fermi-sphere system,

∆g3(r1, r2) = gfermionic
3 (r1, r2)−g

targeted
3

(r1, r2). (c) and (d):
Same as (a) and (b), except for 1D Lorentzian target.

sphere system is two orders of magnitudes smaller than
unity, and appears completely random with no systematic
trend, consistent with our reasoning.

By contrast, the one-dimensional Lorentzian S(k) tar-
get is also realized by a determinantal point process with
an analytically known g3 [10], but it is not an equilibrium
state of a pairwise additive potential [35]. Therefore, the
difference between the analytic g3 for the determinantal
point process and the numerical g3 of the reconstructed
system exhibits a peak much stronger than statistical noise
at around r1 = r2 = 0.3. The statistically significant dif-
ference is consistent with our theory that the reconstructed
configurations are drawn from an equilibrium state of a pair
potential, and therefore must be different from determinan-
tal point processes not realizable by pair potentials. We
have similarly verified that the exact analytical expression
for g3 of the 2D fermionic system differs from the numer-
ically determined g3 of the reconstructed system with the
same pair statistics, which is expected since 2D fermionic
systems also involve n-particle interactions with n ≥ 3 [35].

We now show numerical evidence that the structure fac-
tor at a constrained k vector is exponentially distributed.
In Fig. 31, we plot the distribution of single-configuration
structure factors at two different wave vectors for four dif-
ferent targets. After normalizing S(k) by its mean, S0(k),
all results collapse onto a single straight line in a semi-
logarithmic plot, demonstrating that S(k) is indeed expo-
nentially distributed in all cases.

Lastly, we explore the effect of changing the cutoff value
K. The results are presented in Fig. 32. With K = 10,
the structure factor develops a discontinuity at the cutoff.
However, as we increase K to 30, the discontinuity dimin-
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FIG. 31. Probability density function (PDF) of the structure
factor, normalized by the target, at two different wave vectors
for four different targets. The two wave vectors are kmin, the
minimum wave vector in the x direction, and 10kmin. The
targets are 1D COE [Eq. (48)], 1D Lorentzian [Eq. (55)], 2D
Gaussian [Eq. (59)], and 3D hyposurficial [Eq. (77)]. Since the
structure factor is always exponentially distributed, the normal-
ized plot for different cases falls on a single strait line on a plot
on a semi-logarithmic scale.

ishes. We have also explored many other targets, detailed
in the rest of the paper, and always find that when K is
sufficiently large, the structure factor is continuous at the
cutoff. In summary, the cutoff value of K = 30 is suitable
for all of the one-dimensional targets we tried, and K = 15
is suitable for all two- and three-dimensional targets re-
ported here.
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FIG. 32. Pair correlation function and structure factor obtained
by targeting Eq. (49) at various K’s.
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