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Abstract

We show that a mesoscopic coarse-grained dynamics model which incorporates the transient po-

tential can be formally derived from an underlying microscopic dynamics model. As a microscopic

dynamics model, we employ the overdamped Langevin equation. By utilizing the path probability

and the Onsager-Machlup type action, we calculate the path probability for the coarse-grained

mesoscopic degrees of freedom. The action for the mesoscopic degrees of freedom can be simplified

by incorporating the transient potential. Then the dynamic equation for the mesoscopic degrees of

freedom can be simply described by the Langevin equation with the transient potential (LETP).

As a simple and analytically tractable approximation, we introduce additional degrees of freedom

which express the state of the transient potential. Then we approximately express the dynamics

of the system as the the combination of the LETP and the dynamics model for the transient po-

tential. The resulting dynamics model has the same dynamical structure as the responsive particle

dynamics (RaPiD) type models [W. J. Briels, Soft Matter 5, 4401 (2009)] and the multi-chain

slip-spring type models [T. Uneyama and Y. Masubuchi, J. Chem. Phys. 137, 154902 (2012)].

As a demonstration, we apply our coarse-graining method with the LETP to a single particle dy-

namics in a supercooled liquid, and compare the results of the LETP with the molecular dynamics

simulations and other coarse-graining models.
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I. INTRODUCTION

Soft matters such as polymers form various mesoscopic structures and exhibit various in-

teresting dynamics. Coarse-grained models are useful to study the mesoscopic dynamics of

such complex systems by simulations, especially at the long time scale. The coarse-graining

reduces the degrees of freedom of the system, and changes the characteristic time and length

scales. As a result, the computational costs required for simulations drastically reduce. For

some soft matter systems such as polymer melts, due to their long relaxation times, we can-

not study their long time relaxation behavior without coarse-grained models[1, 2]. Although

the coarse-grained models are useful for simulations, the validity of simulation results are not

always guaranteed. This is because the coarse-graining processes usually involve some ap-

proximations, and the validity of coarse-grained models strongly depends on the properties

of the employed approximations. Unfortunately, the properties of approximations are not

clear in some cases. Some coarse-grained models, such as the reptation model for entangled

polymers[3], are rather phenomenologically proposed, and not theoretically derived from the

underlying microscopic models. For such cases, the relation between the microscopic models

and mesoscopic coarse-grained models is not clear in general.

To study the properties of the coarse-grained models, theoretical methods based on sta-

tistical mechanics are useful. If the target system is not largely deviated from the equilib-

rium state, we can utilize the linear nonequilibrium statistical mechanics. The dynamic

equations for coarse-grained degrees of freedom can be expressed, for example, as the

Langevin equation[4] or the generalized Langevin equation (GLE)[5]. The transport co-

efficients can be related to the correlation functions of underlying microscopic dynamics, by

the fluctuation-dissipation relation[6]. The GENERIC (general equation for nonequilibrium

reversible-irreversible coupling) formalism [7–9] gives a general form of the effective dynamic

equations. The theoretical analyses of the coarse-grained models from such view points are

important to understand them in detail. For example, the dissipative particle dynamics

(DPD), which was originally introduced phenomenologically, has been theoretically justified

by using some statistical mechanical methods[10–12].

For entangled polymer melts which exhibit characteristic slow relaxation behavior, vari-

ous mesoscale phenomenological models have been proposed and utilized[3]. Among them,

some recently proposed models have interesting theoretical structures, from the view point of
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statistical mechanics. Kindt and Briels proposed the responsive particle dynamics (RaPiD)

model[13–15], in which a single polymer chain is expressed as a single coarse-grained particle.

In the RaPiD model, the number of entanglements between different polymer chains is em-

ployed as a fluctuating dynamical variable. The system is expressed by the particle positions

and the numbers of entanglements between particles. Then the dynamics is described by the

dynamic equations for the particles and the numbers of entanglements. Chappa et al[16],

and Uneyama and Masubuchi[17] proposed the multi-chain slip-spring (MCSS) model. In

the MCSS model, polymer chains are modeled as Rouse chains, and chains are connected by

so-called slip springs. The slip springs move along the chains, and are dynamically recon-

structed at chain ends. In the MCSS model, the system is expressed by the positions of beads

which construct polymer chains, and the states of slip-springs. The dynamics is described

by the dynamic equation for beads and some stochastic transition rules for slip-springs.

The RaPiD and MCSS models have similar theoretical structures, and in fact, they can

be unified[18]. The important point is that both the RaPiD and MCSS models employ

some extra degrees of freedom (the numbers of entanglements or the slip spring states), in

addition to the usual coarse-grained degrees of freedom (the positions of centers of mass

or beads). If the system obeys the GLE, the state of the target system is fully described

by the coarse-grained degrees of freedom. We may interpret that the thermodynamic state

is uniquely determined by the coarse-grained degrees of freedom. In this sense, we may

call the coarse-grained degrees of freeedom as the thermodynamic degrees of freedom. (The

memory kernel does not affect the thermodynamic state and thus is qualitatively differ-

ent from the thermodynamic degrees of freedom.) In the RaPiD and MCSS models, in

contrast, the thermodynamic potential explicitly depends both on the coarse-grained and

extra degrees of freedom. In this work, we may call such extra degrees of freedom as the

“pseudo thermodynamic degrees of freedom”. The pseudo thermodynamic degrees of free-

dom dynamically modulate the effective potentials for the normal degrees of freedom. This

dynamic modulation is realized through interaction potentials which are called the “tran-

sient potentials”[14, 15]. The success of the RaPiD and MCSS models leads us to an idea to

generalize these models. If we can construct a general method which employs the transient

potential and pseudo thermodynamic degrees of freedom, it will provide various mesoscopic

coarse-grained dynamic equations for soft matter systems.

In this work, we show that we can actually construct a mesoscopic coarse-grained model
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with the transient potential, starting from the underlying microscopic dynamics model. In

general, we cannot obtain the dynamic equation for the transient potential in an explicit

form. We propose a simple dynamics model for the transient potential by using the pseudo

thermodynamic degrees of freedom. We also propose some formal expressions for the dy-

namics of the transient potential. We show that, under some assumptions, we can derive

the dynamic equation models which are consistent with the RaPiD and MCSS models. To

study properties of our theoretical method in detail, we compare our method with the GLE

and the Langevin equation with the fluctuating diffusivity. Also, we apply our model and

the GLE to the dynamics of a single tagged particle in a supercooled liquid, and consider

whether these coarse-graining methods can reasonably describe the dynamics or not.

II. THEORY

A. Microscopic Model

When we consider the coarse-graining, the Hamilton’s canonical equations are employed

as microscopic models in most cases[5, 19]. However, for soft matters such as polymers,

the overdamped Langevin equations are reasonably utilized as the microscopic molecular

models[3]. In addition, by applying the standard coarse-graining procedure, one can obtain

a Langevin equation from the Hamilton’s canonical equations. Therefore, in this work,

we employ an overdamped Langevin equation as the microscopic model. We consider the

microscopic model which consists ofN particles in a three dimensional space, and we describe

the position of the i-th particle as ri. We employ the following Langevin equation as the

microscopic dynamic equation for the i-th particle:

dri(t)

dt
= −

∑

j

Lij ·
∂U({ri(t)})

∂ri(t)
+
∑

j

√

2kBTBij ·wj(t), (1)

where Lij is the mobility tensor, U({ri}) is the interaction potential energy, Bij is the noise

coefficient tensor which satisfies Lij =
∑

k Bik · BT
jk (the superscript “T” represents the

transpose), kB is the Boltzmann constant, T is the temperature, and wi(t) is the Gaussian

white noise. From the Onsager’s reciprocal theorem, Lij is a symmetric tensor. The noise

wi(t) should satisfy the following fluctuation-dissipation relation:

〈wi(t)〉 = 0, 〈wi(t)wj(t
′)〉 = 1δijδ(t− t′), (2)

4



where 〈. . . 〉 is the statistical average and 1 is the unit tensor. Since eq (1) is a stochastic

differential equation, we should specify the interpretation of the stochastic term[20]. We

employ the Ito interpretation in this work. (One can employ the Stratonovich interpretation

instead. In that case, we convert the Stratonovich type equation to the Ito type equation[20].

The result is the same in the current case.)

For the sake of simplicity, we introduce a short-hand notation for the positions as R ≡
[r1x, r1y, r1z, r2x, . . . , rNz]

T. The vector R can be interpreted as a 3N -dimensional vector.

We describe the mobility tensor, the noise coefficient tensor, and the Gaussian white noise

in a similar way. For the sake of simplicity, we also employ the short-hand notation for

the noise coefficient tensor, B = L1/2. (Here, L1/2 represents the matrix square root which

satisfies L1/2 · (L1/2)T = L.) Then, eq (1) can be rewritten as

dR(t)

dt
= −L · ∂U(R(t))

∂R(t)
+
√

2kBTL
1/2 ·w(t), (3)

and eq (2) can be rewritten as

〈w(t)〉 = 0, 〈w(t)w(t′)〉 = 1δ(t− t′). (4)

In what follows, we use eq (3) as the microscopic dynamic equation. The equilibrium

probability distribution for the position R is simply given as the Boltzmann distribution:

Peq(R) =
1

Z exp[−U(R)/kBT ], (5)

where Z is the partition function:

Z ≡
∫

dR exp[−U(R)/kBT ]. (6)

For simplicity, we have assumed that all the particles in the system are distinguishable and

ignored the Gibbs factor.

The probability (of the realization) for the Gaussian white noise which satisfies eq (4) is

given as[21]

P[w] = N (w) exp

[

−1

2

∫

dtw2(t)

]

, (7)

where N (w) is the normalization factor. Eq (7) can be interpreted as the probability of a

specific path, and thus we may call it as the path probability. The normalization factor

should be determined so that the functional integral (path integral) over w becomes unity:
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∫

DwP[w] = 1. (In this work, however, the normalization factor itself does not become

important and thus we do not consider it in detail.) By combining eqs (3) and (7), the path

probability for R(t) is given as

P[R] = N (R) exp [−S[R]] , (8)

S[R] ≡ 1

2kBT

∫

dtG

(

dR(t)

dt
+L · ∂U(R(t))

∂R(t)
;L

)

, (9)

G(x,C) ≡ 1

2
xT ·C−1 · x, (10)

where N (R) is the normalization factor (and is generally different from N (w), due to the

Jacobian for the variable transform), S[R] is the action which gives the statistical weight

for a specific path (the Onsager-Machlup action)[22, 23]. In what follows, we express nor-

malization factors for the path probabilities by N (··· ) in a similar way. Eq (10) represents

the Gaussian weight for a vector x and a covariance tensor C. The covariance tensor C is

a second rank symmetric positive definite tensor and C−1 is its inverse: C · C−1 = 1. All

the information on the microscopic dynamics is given by the path probability (8).

Before we consider the coarse-graining of the microscopic dynamic equation, here we

briefly comment about the mobility model. In eq (3), the mobility tensor L is assumed to

be independent of the position vector R(t). Such a situation is realized, for example, if we

consider the situation where each particles feel the friction independently. The noise term

is statistically independent of R(t) (the additive noise), and the analyses can be simplified.

However, in general, the mobility tensor can depend on R(t), such as the case of the systems

with the hydrodynamic interaction. If the mobility tensor depends on R(t), then the noise

coefficient tensor L1/2 also depends on R(t). In such a case, the noise term becomes the

multiplicative noise. The extension of our theory to the multiplicative noise is possible but

complicated. (We show the extension in Appendix A.) Thus here we limit ourselves to the

case of the additive noise.

B. Coarse-Graining

What we want to obtain here is the effective dynamic equation for some mesoscopic

degrees of freedom. We limit ourselves that the mesoscopic degrees of freedom which can

be given as the linear combinations the microscopic position, R(t). (The nonlinear variable
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transform can be employed but the calculation becomes complicated. We show the extension

of the theory to the nonlinear variable transform in Appendix A.) For example, the centers

of mass of molecules and the end-to-end vectors of polymers can be expressed as the linear

combinations. We describe the i-th mesoscopic degrees of freedom as Qi, and assume that

there are M mesoscopic variables. (The number of mesoscopic variables M is generally

much smaller than the number of microscopic degrees of freedom, 3N .) Then, without loss

of generality, we can transform the microscopic degrees of freedom R as

X ≡





Q

θ



 = V ·R, (11)

where Q = [Q1, Q2, . . . , QM ]T (an M-dimensional vector), θ is a (3N − M)-dimensional

vector, and V is a transformation matrix (of which dimension is 3N × 3N). We can take

θ so that the transformation matrix is invertible. Then we can express R as follows, by

inverting eq (11):

R = V −1 ·





Q

θ



 = V −1X. (12)

From eqs (11), a function of R such as the potential energy U can be interpreted as a

function of X (or, equivalently, a function of Q and θ).

We rewrite eqs (8) and (9) as functionals of Q and θ:

P[Q, θ] = N (Q,θ) exp [−S[Q, θ]] , (13)

S[Q, θ] =
1

2kBT

∫

dtG

(

dX(t)

dt
+L′ · ∂U(X(t))

∂X(t)
;L′

)

, (14)

where L′ ≡ V ·L ·V −1 is the mobility tensor for X. The path probability for the mesoscopic

degrees of freedom can be obtained by eliminating the variable θ:

P[Q] =

∫

DθP[Q, θ]. (15)

Unfortunately, Q and θ are coupled in a complicated way. In general, we cannot evaluate

eq (15) analytically. We need to introduce some approximations to proceed the calculation.

Here, we recall that the vector θ can be arbitrarily chosen as long as V is invertible.

Because we are interested only on the mesoscopic variable Q, the choice of θ is still rather

arbitrarily at this stage. We choose θ so that the action becomes a simple form. We employ

7



θ which gives the following mobility tensor

L′ =





Λ 0

0 M



 , (16)

where Λ and M are the mobility tensors for Q and θ, respectively. (The dimensions of Λ

and M are M ×M and (3N −M) × (3N −M), respectively.) In other words, we employ

θ which is L′-orthogonal to Q:

[

QT 0
]

·L′ ·





0

θ



 = 0. (17)

With this specific choice of θ, we can further rewrite eq (14) as

S[Q, θ] = S(Q)[Q|θ] + S(θ)[θ|Q], (18)

S(Q)[Q|θ] ≡ 1

2kBT

∫

dt

[

G

(

dQ(t)

dt
+Λ · ∂U(Q(t), θ(t))

∂Q(t)
;Λ

)]

, (19)

S(θ)[θ|Q] ≡ 1

2kBT

∫

dt

[

G

(

dθ

dt
+M · ∂U(Q(t), θ(t))

∂θ(t)
;M

)]

. (20)

In eq (18), the Gaussian weight factor is split into two contributions (eqs (19) and (20)),

unlike that in eq (14). However, it should be noticed that two split weight factors are coupled

through the interaction potential U(Q, θ). Thus we cannot simply eliminate the degrees of

freedom θ by performing the functional integral over θ.

The Onsager-Machlup action (18) gives the statistical weight for a certain path[24]. This

is in analogy to the free energy functional in the field theory[25]; the free energy functional

gives the statistical weight for a certain field. In the field theory, we often introduce some

auxiliary fields to obtain the approximate expression for the free energy. We expect that

the action can be approximated in a similar way. We introduce a transient potential as

an auxiliary variable. We interpret the potential at time t, U(Q(t), θ(t)), as a transient

potential Φ(Q(t), t). This transient potential Φ is a function of Q and t, and is independent

of θ. Following the standard procedure in the field theory [26, 27], we use the following

identity for the delta functional:

1 =

∫

DΦ δ [Φ(q̃, t)− U(q̃, θ(t))] . (21)
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Here, q̃ represents the dummy variable which has the same dimension as Q. By inserting

eq (21) into eq (15), we have

P[Q] =

∫

DθDΦ δ [Φ(q̃, t)− U(q̃, θ(t))]N (Q,θ) exp [−S[Q, θ]]

=

∫

DΦN (Q,Φ) exp
[

−S̃(Q)[Q|Φ]
]

P̃(Φ)[Φ|Q],

(22)

S̃(Q)[Q|Φ] ≡ 1

2kBT

∫

dtG

(

dQ(t)

dt
+Λ · ∂Φ(Q(t), t)

∂Q(t)
;Λ

)

, (23)

P̃(Φ)[Φ|Q] ≡
∫

Dθ δ [Φ(q̃, t)− U(q̃, θ(t))]

× exp

[

− 1

2kBT

∫

dtG

(

dθ

dt
+M · ∂U(Q(t), θ(t))

∂θ(t)
;M

)]

.

(24)

S̃(Q)[Q|Φ] (eq (23)) can be interpreted as the action for Q under a given Φ. Similarly,

P̃(Φ)[Φ|Q] (eq (24)) can be interpreted as the path probability for Φ under a given Q. For

convenience, we introduce the action for Φ and rewrite eq (22) as

P[Q] =

∫

DΦN (Q,Φ) exp
[

−S̃(Q)[Q|Φ]− S̃(Φ)[Φ|Q]
]

, (25)

S̃(Φ)[Φ|Q] ≡ − ln P̃(Φ)[Φ|Q]. (26)

So far, we have not introduced any approximations for the Onsager-Machlup action. Thus

eq (25) is exactly equivalent to eq (15). Of course, eq (25) is just a formal expression and

we have no simple analytic expression for the action S̃(Φ). Nonetheless eq (25) is useful

for the coarse-graining. Eq (25) implies that, the transient potential Φ can be employed as

additional degrees of freedom of the mesoscopic system. Instead of the path probability for

Q (as eq (15)), here we consider the path probability for Q and Φ:

P[Q,Φ] ≡ N (Q,Φ) exp
[

−S̃(Q)[Q|Φ]− S̃(Φ)[Φ|Q]
]

. (27)

Clearly, we have
∫

DΦP[Q,Φ] = P[Q]. Thus, if we eliminate the transient potential from

eq (27), we recover the path probability for Q. Now we have two actions in eq (27). The

action for Q, S̃(Q) (eq (23)), is simple and we need no further manipulation for it (as long

as Φ is given). The Langevin equation which corresponds to the action (23) is

dQ(t)

dt
= −Λ · ∂Φ(Q(t), t)

∂Q(t)
+
√

2kBTΛ
1/2 ·W (t), (28)

where W (t) is the M-dimensional Gaussian white noise vector. The noise W satisfies

〈W (t)〉 = 0, 〈W (t)W (t′)〉 = 1δ(t− t′). (29)
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On the other hand, the action for Φ, which is given by eqs (24) and (26), is not simple.

From eq (26), the transient potential Φ obeys a stochastic time evolution equation (such

as the Langevin equation), and this equation depends on Q. We need to approximate

it by a simple and tractable form, in order to obtain a dynamic equation model which is

suitable for numerical simulations and theoretical analyses. Once we have the (approximate)

dynamic equation for the transient potential, we can combine it with eq (28) to describe the

dynamics of the mesoscopic degrees of freedom. Therefore, we find that the dynamics for

the mesoscopic degrees of freedom is described by the Langevin equation with the transient

potential (LETP). Eqs (27) and (28) formally justify the dynamics models with transient

potentials, which were originally proposed as phenomenological models.

We can derive a similar Langevin equation for the cases where the noise is multiplicative

and/or the variable transform is nonlinear. In general, the mobility tensor Λ becomes

time-dependent and fluctuating quantity, just like the transient potential Φ. The detailed

calculations are shown in Appendix A. In what follows, for the sake of simplicity, we consider

only the case of the additive noise and the linear variable transform.

C. Dynamics Model for Transient Potential

We should notice that our procedure in Sec. II B does not give the information on the

dynamics of the transient potential. The derivation above is formal and one may criticize

that it does not fully justify the LETP and thus cannot be accepted as a concrete derivation.

Such a criticism is partly true. However, generally we cannot obtain the “exact” dynamic

equations for coarse-grained systems. We need to employ some approximations for the

full dynamics model to obtain a coarse-grained model, but approximations may not be fully

justified and are rather empirical. In this subsection, we consider some methods to determine

the effective dynamics model for the transient potential. We cannot determine the dynamics

model uniquely, but we show that we can construct physically reasonable models under given

approximations.

We start from a rather formal expression. The dynamics of the transient potential can

be formally determined by the action S̃(Φ)[Φ|Q]. From eq (27), we have

S̃(Φ)[Φ|Q] = − lnP[Q,Φ]− S̃(Q)[Q|Φ] + (const.). (30)
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The explicit form of the action S̃(Q)[Q|Φ] is given by eq (23). Also, the path probability

P[Q,Φ] can be obtained as the ensemble average as:

P[Q,Φ] =
〈

δ(Q(t)−Q(R̂(t))) δ[Φ(q̃, t)− U(q̃, θ(R̂(t)))]
〉(R̂)

. (31)

Here, R̂ represents a trajectory (or a path) directly generated by the Langevin equation (3),

and the statistical average 〈. . . 〉(R̂) is taken for realizations of R̂. Therefore, in principle,

we can construct the action S̃(Φ)[Φ|Q] from the path probability calculated by the direct

microscopic simulations. Of course, the calculation of the path probability by eq (31) is

practically impossible since the path probability is the joint distribution functional for the

path and potential function in very high dimensions.

We consider to construct a dynamics model which can be used for practical simulations

and analyses, by introducing some approximations. Even if the resulting dynamics model for

the transient potential is not exact, the model which mimics the exact dynamics and gives

physically reasonable results would be still useful. We assume that the transient potential

can be approximately expressed as a function of a Z-dimensional auxiliary variable A(t):

Φ(q̃, t) ≈ Φ̌(q̃,A(t)). (32)

The auxiliary variable A(t) should be chosen so that it gives a reasonable approximation

for the dynamics of the transient potential. The dimension Z should be sufficiently smaller

than the dimension of θ, Z ≪ (3N − M). A(t) does not need to have the expression in

terms of θ(t). From eq (32), A(t) can be interpreted as a sort of the state of the transient

potential. Then we expect that it behaves in a similar way to the coarse-grained variable

Q(t). We further assume that, in equilibrium, the joint probability of Q and A should be

expressed as

Peq(Q,A) =
1

Ž exp[−Φ̌(Q,A)/kBT ], (33)

where Ž is the effective partition function:

Ž =

∫

dQdA exp[−Φ̌(Q,A)/kBT ]. (34)

Eq (33) is the same form as the usual partition function. Thus our assumption for A

is that, it behaves as usual degrees of freedom. The thermodynamic state of the coarse-

grained model is usually determined by the coarse-grained variable Q. (As we stated, we

may call such coarse-grained variables as the thermodynamic degrees of freedom, in this
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work.) In a similar way, we assume that the thermodynamic state can be now determined

by Q and A. Therefore we may call the auxiliary variable A as pseudo thermodynamic

degrees of freedom.

Since the pseudo thermodynamic degrees of freedom were introduced to approximately

describe the dynamics for the transient potential, they should never affect the equilibrium

statistics of the mesoscopic degrees of freedom. Thus we require

Peq(Q) =

∫

dAPeq(Q,A), (35)

or, equivalently,

exp[−F(Q)/kBT ] =

∫

dA exp[−Φ̌(Q,A)/kBT ], (36)

where F(Q) is the free energy for the mesoscopic degrees of freedom Q:

F(Q) ≡ −kBT ln

∫

dθ exp[−U(Q, θ)/kBT ]. (37)

From eq (36), we can relate the forces by the transient potential and the free energy as

∂F(Q)

∂Q
=

∫

dA
∂Φ̌(Q,A)

∂Q
Peq(Q,A). (38)

The physical meaning of eq (38) is clear. If we average the thermodynamic force by the

transient potential over the pseudo thermodynamic degrees of freedom, we just have the

thermodynamic force by the free energy F . Therefore, if the pseudo thermodynamic degrees

of freedom relax much rapidly compared with the mesoscopic degrees of freedom, we just

have a usual Langevin equation.

We want the dynamics model for A(t) to be simple and free from the memory kernel.

We assume that A(t) obeys a Markovian stochastic process. We express the probability

distribution ofQ andA at time t as P (Q,A; t). For a Markovian process, the time evolution

of P (Q,A, t) can be formally expressed as follows.

∂P (Q,A; t)

∂t
= [L(Q) + L(A)]P (Q,A; t), (39)

L(Q)P (Q,A) =
∂

∂Q
·Λ ·

[

∂Φ̌(Q,A)

∂Q
P (Q,A) + kBT

∂P (Q,A)

∂Q

]

, (40)

L(A)P (Q,A) =

∫

dA′ [Ω̌(A|A′,Q)P (Q,A′)− Ω̌(A′|A,Q)P (Q,A)]. (41)
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Eq (40) is derived from the Langevin equation (28) with the approximate transient potential

(32). Ω̌(A′|A,Q) is the transition rate from A to A′, and it should satisfy the detailed-

balance condition:

Ω̌(A′|A,Q)Peq(Q,A) = Ω̌(A|A′,Q)Peq(Q,A′). (42)

The dynamics of the coarse-grained system can be fully described by two hypothetically

introduced functions Φ̌ and Ω̌. These functions can be interpreted as the trial functions[28].

The optimal forms of these functions should be determined so that they minimize the dif-

ferences between the approximate and exact dynamics. Therefore we can apply the vari-

ational method[28] to determine the functional forms of Φ̌ and Ω̌. The Kullback-Leibler

divergence[29] would be suitable to measure how different two models are[30, 31]:

K[Φ̌, Ω̌] ≡
∫

DQ P̌[Q|Φ̌, Ω̌] ln P̌ [Q|Φ̌, Ω̌]
P[Q]

, (43)

where P̌[Q|Φ̌, Ω̌] and P[Q] are the path probabilities for Q by the approximate and micro-

scopic models. (The path probability by the approximate dynamics model can be interpreted

as the functional of Q, Φ̌, and Ω̌.) The Kullback-Leibler divergence satisfies K[Φ̌, Ω̌] ≥ 0 and

it becomes zero (K[Φ̌, Ω̌] = 0) if two path probabilities are the same. Therefore, by min-

imizing the Kullback-Leibler divergence with respect to trial functions, we have the most

reasonable forms for Φ̌ and Ω̌. The most reasonable functional forms, Φ̌∗ and Ω̌∗, satisfy the

following conditions:

δK[Φ̌, Ω̌]

δΦ̌

∣

∣

∣

∣

Φ̌∗,Ω̌∗

= 0,
δK[Φ̌, Ω̌]

δΩ̌

∣

∣

∣

∣

Φ̌∗,Ω̌∗

= 0. (44)

Unfortunately, the calculation of the path probabilities P̌[Q|Φ̌, Ω̌] and P[Q] and the mini-

mization with respect to Φ̌ and Ω̌ are still not practical. We will need further approximations

and simplifications for the trial functions and the path probabilities. For example, we may

assume the functional form and perform the minimization with respect to several parame-

ters. We may approximate the path probabilities by the path probability for a single particle,

or we may employ the hypothetical path probability forms based on dynamical quantities

such as the mean-square displacement.

There are several possible simple yet non-trivial models for the dynamics of A. Among

them, the simplest model would be the following Langevin equation for A:

dA(t)

dt
= −Γ · ∂Φ̌(Q(t),A(t))

∂A(t)
+
√

2kBTΓ
1/2 · ω(t). (45)
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Here, Γ is the mobility tensor and ω is the Z-dimensional Gaussian white noise. As before,

we have simply assumed that the mobility tensor Γ is independent of Q and A. The

fluctuation-dissipation relation should be satisfied for the noise ω:

〈ω(t)〉 = 0, 〈ω(t)ω(t′)〉 = 1δ(t− t′). (46)

Eqs (28) and (45) give the dynamics which is consistent with eqs (41) and (42). This type of

coupled Langevin equations correspond to the RaPiD model for entangled polymers[13–15].

We can employ other dynamics models, as well. For example, if the transient potential

instantaneously changes, the simple transition dynamics models would be suitable. We

may employ a specific transition rate model such as the Glauber dynamics. Then the

transition rate will be explicitly given in terms of the difference of the transient potential

before and after the transition. This type of coupling of the Langevin equation and transition

dynamics corresponds to the MCSS model[17] and the transient bond model[18] for entangled

polymers, and the alternating diffusive state model for supercooled liquids[32].

III. DISCUSSIONS

A. Generalized Langevin Equation

We have proposed the LETP model by introducing the transient potential to approxi-

mately describe the mesoscopic dynamics. Also, we have proposed some possible approxi-

mate dynamics model for the transient potential by introducing the pseudo thermodynamic

degrees of freedom. This is not a unique way to describe the complex mesoscopic dynamics.

We may employ other methods to describe the mesoscopic dynamics. The most popular and

established way is to use the projection operator[5, 19]. The projection operator method

gives the GLE as the effective dynamic equation for the mesoscopic degrees of freedom.

The GLE involves the memory kernel which directly expresses the memory effect for the

mesoscopic degrees of freedom. In this subsection, we compare the LETP model with the

dynamic equation which incorporates the memory kernel.

We start from the same microscopic dynamics model as Sec. II, and consider the effective

dynamic equation for the degrees of freedom Q. By eliminating the fast degrees of freedom,

14



we have the GLE as the dynamic equation for the mesoscopic degrees of freedom:

dQ(t)

dt
= −

∫ t

−∞

dt′ K(t− t′) · ∂F(Q(t′))

∂Q(t′)
+ ξ(t), (47)

where K(t) is the memory kernel and ξ(t) is the colored noise. The fluctuation-dissipation

relation requires the noise to satisfy

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = kBTK(|t− t′|). (48)

The projection operator method gives eqs (47) and (48), but it does not tell us the detailed

statistical properties of the colored noise ξ(t). In most practical cases, the colored noise

ξ(t) is simply assumed to be Gaussian. (This assumption seems to be often employed

implicitly.) Then the dynamic equation for the mesoscopic degrees of freedom can be fully

specified. This Gaussian assumption cannot be justified a priori, and we should interpret

it as an approximation. In this work, we explicitly distinguish the GLE with the Gaussian

noise (GLEG) with the GLE with a general non-Gaussian noise. It would be reasonable to

consider that both the GLEG and the LETP can be obtained from the same microscopic

dynamics model with different approximations. We expect that the difference between the

GLEG and the LETP originates from the properties of the employed approximations.

To consider the difference between the GLEG and the LETP in detail, it would be better

for us to derive the GLEG by utilizing the path probability and the Onsager-Machlup action.

Therefore here we go back to eqs (13) and (18). As we mentioned, two actions in eq (18) are

coupled via the interaction potential U(Q, θ). In the derivation of the LETP, we introduced

the transient potential to rewrite the action for Q in a simple form. Here we consider to

introduce a different quantity to simplify the action for Q. We consider an average of the

force term for Q,

v̄[Q, t] = −
〈

Λ · ∂U(Q(t), θ(t))

∂Q(t)

〉(θ)

, (49)

where 〈. . . 〉(θ) represents the statistical average over θ. The thus defined v̄ can be interpreted

as the average “velocity” for the mesoscopic degrees of freedom Q. From the causality, v̄ at

time t is a functional of Q(t′) for t′ ≤ t. If the system is fluctuating around the equilibrium,

v̄ should be expressed as a linear function of the thermodynamic force. Thus we expect the

following form for v̄:

v̄[Q, t] = −
∫ t

−∞

dt′K(t− t′) · ∂F(Q(t′))

∂Q(t′)
. (50)
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We may employ eq (50) as the definition of v̄, instead of eq (49). Anyway, v̄ is an average

and the force term is fluctuating around it. We introduce the deviation of the force term

from v̄ as ∆v(t):

∆v(t) = −Λ · ∂U(Q(t), θ(t))

∂Q(t)
− v̄[Q, t]. (51)

This ∆v(t) can be interpreted as the fluctuation around the reference path. As before, we

utilize the functional identity to introduce ∆v as additional degrees of freedom:

1 =

∫

D∆v δ

[

∆v(t)−Λ · ∂U(Q(t), θ(t))

∂Q(t)
− v̄[Q, t]

]

. (52)

We insert eq (52) into eq (13). Then we can rewrite the path probability for Q as

P[Q] =

∫

DθD∆v δ

[

∆v(t)−Λ · ∂U(Q(t), θ(t))

∂Q(t)
− v̄[Q, t]

]

N (Q,θ) exp [−S[Q, θ]]

=

∫

D∆vN (Q,∆v) exp
[

−S̄(Q)[Q|∆v]− S̄(∆v)[∆v|Q]
]

,

(53)

with

S̄(Q)[Q|∆v] ≡ 1

2kBT

∫

dtG

(

dQ(t)

dt
− v̄[Q, t]−∆v(t);Λ

)

, (54)

S̄(∆v)[∆v|Q] ≡ − ln

∫

Dθ δ

[

∆v(t)−Λ · ∂U(Q(t), θ(t))

∂Q(t)
− v̄[Q, t]

]

× exp

[

− 1

2kBT

∫

dtG

(

dθ(t)

dt
+M · ∂U(Q(t), θ(t))

∂θ(t)
;M

)]

,

(55)

where N (Q,∆v) is the normalization factor. Eqs (53)-(55) have similar forms to eqs (22)-(26).

As the case of eqs (22)-(26), eqs (53)-(55) are derived without approximations and thus they

are formally exact.

To obtain the GLEG, we approximate the action for ∆v (eq (55)) by a simple Gaussian

form:

S̄(∆v)[∆v|Q] ≈ − 1

2kBT

∫

dtdt′∆vT(t) · C̄−1(t− t′) ·∆v(t′), (56)

where C̄(t) is a tensor which represents the covariance of ∆v. (The explicit form of this

tensor is not required here.) Under this approximation, the path probability for Q can be

explicitly calculated. The Gaussian weight for Q in eq (54) can be also interpreted as a

Gaussian weight for ∆v. Thus the path probability for Q can be calculated by integrating
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the path probability over ∆v. From eqs (53), (54), and (56), we have

P[Q] ≈
∫

D∆vN (Q,∆v) exp

[

− 1

2kBT

∫

dtdt′
[

∆vT(t) · C̄−1(t− t′) ·∆v(t′)

+

(

∆v(t)− dQ(t)

dt
+ v[Q, t]

)T

· 2Λδ(t− t′) ·
(

∆v(t′)− dQ(t′)

dt′
+ v[Q, t′]

)]]

= N (Q) exp

[

− 1

2kBT

∫

dtdt′
(

dQ(t)

dt
− v[Q, t]

)T

· K̄−1(t− t′) ·
(

dQ(t′)

dt′
− v[Q, t′]

)]

,

(57)

where N (Q) is the normalization factor and K̄(t) is the kernel function defined as

K̄(t) = C̄(t) + 2Λδ(t). (58)

Eq (57) is equivalent to the GLEG if the kernel K̄(t) is given as K̄(t) = K(|t|). This

condition is equivalent to the fluctuation-dissipation relation (48), and thus it should be

satisfied to reproduce the correct equilibrium distribution. Thus we find that the GLEG can

be obtained from eqs (13) and (18), if we approximate the fluctuation of the force term ∆v

by a simple Gaussian from (eq (56)).

By comparing the derivations of the GLEG and the LETP, we find some differences

between them. The first difference is that the LETP employs additional degrees of freedom,

the transient potential, to express the force term in the action (18). The GLEG employs

the average v̄, which is a functional of Q, instead. This average v̄ incorporates the memory

kernel. The second difference is that the additional degrees of freedom is not eliminated in the

LETP. In other words, we explicitly have the dynamic equation for the additional degrees of

freedom (the transient potential Φ), in addition to that for the mesoscopic degrees of freedom

Q. This is in contrast to the case of the GLEG. To derive the GLEG, we eliminated the

fluctuation around the average, ∆v, by integrating the path probability over it. The LETP

does not require the memory kernel but requires additional degrees of freedom, whereas the

GLEG does not require additional degrees of freedom but requires the memory kernel.

B. Example: Supercooled Liquid

Because the GLEG and the LETP are based on different approximations, some statistical

properties of them can be quantitatively different, although the target system is the same.

As a simple example, here we consider the effective dynamic equation model for a single
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tagged particle (or the center of mass of a tagged molecule) in a supercooled liquid in a

three dimensional space.

The dynamics of supercooled liquids have been widely studied by binary Lennard-Jones

mixture systems[33–39]. To study the diffusion behavior, the mean-square displacement

(MSD) data are useful. If the temperature is sufficiently high, we just observe normal

diffusion behavior: 〈[r(t) − r(0)]2〉 ∝ t. If the temperature is sufficiently low, we observe

the slowing-down of the dynamics. As a result, the MSD of the particle typically show three

regions[40, 41]. At the short time region, it exhibits a normal diffusion. At the intermediate

time region, the MSD becomes almost independent of time, and exhibits a plateau. At the

long time region, it again exhibits a normal diffusion. Therefore, the MSD of a particle

would be as follows:

〈[r(t)− r(0)]2〉 ∝























t1 (t . τ ′),

t0 (τ ′ . t . τ ′′),

t1 (τ ′′ . t),

(59)

where τ ′ and τ ′′ are characteristic time scales. (Strictly speaking, at sufficiently short time

scale, we observe the ballistic diffusion behavior. In this work we consider overdamped dy-

namics and thus we do not consider the ballistic region.) The MSD data are not sufficient to

characterize the dynamics of a particle. The distribution of the displacement is generally not

Gaussian, and the non-Gaussianity cannot be detected via the MSD. The non-Gaussianity

parameter (NGP)[39, 42], which characterizes the deviation of the diffusion behavior from

the ideal Gaussian behavior, is useful to study the non-Gaussianity. For a three dimensional

system, the NGP is defined as α(t) ≡ 3〈|r(t)− r(0)|4〉/5〈[r(t)− r(0)]2〉2 − 1.

We show the MSD and NGP of a particle in a model binary Lennard-Jones mixture

with different temperatures in Figure 1. Here, the dimensionless units are employed (the

characteristic length, mass, and energy are set to be unity) and the temperature is changed

from kBT = 0.4 to kBT = 1. The details of the simulation model and the simulation setup

are shown in Appendix B. We show some trajectories of particles in a supercooled liquid at

kBT = 0.6 in Figure 2. We clearly observe that the trajectories are qualitatively different

from those of normal Brownian motions. This can be interpreted as the fluctuation of the

mobility, which is called the dynamic heterogeneity.

We consider whether such behavior can be successfully modeled by the GLEG and the
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LETP. We express the position of the tagged particle as r(t), and use this as the mesoscopic

degrees of freedom. We construct the effective dynamic equations for r, and then analyze

the MSD and NGP.

From the translational symmetry, the free energy is zero: F(r) = 0. Therefore, if we

employ the GLEG to describe the dynamics, we have the dynamic equation as

dr(t)

dt
= ξ(t), (60)

where ξ(t) is the Gaussian colored noise. The first and second moments of the noise ξ(t) are

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = kBTK(|t− t′|)1. (61)

Here K(t) is the (scalar) memory kernel. We have assumed that the system is isotropic and

the memory kernel tensor is given as an isotropic tensor. The MSD is simply calculated to

be

〈[r(t)− r(0)]2〉 =
∫ t

0

dt′
∫ t

0

dt′′ 〈ξ(t′) · ξ(t′′)〉 = 6kBT

∫ t

0

dt′ (t− t′)K(t′). (62)

Thus we find that the memory kernel can be determined if the MSD of the tagged particle is

given. From the Gaussian nature of the noise ξ(t), the NGP is exactly zero: α(t) = 0. This

means that, the GLEG can reproduce the MSD observed in supercooled liquids successfully

(by tuning the memory kernel), but it cannot reproduce the non-Gaussian behavior.

If we employ the LETP, the dynamic equation becomes

dr(t)

dt
= −Λ

∂Φ̌(r(t),A(t))

∂r(t)
+
√

2kBTΛW (t), (63)

where Λ is the (scalar) mobility and W (t) is the Gaussian white noise. The force term

by the transient potential in eq (63) is not zero. Unlike the case of the GLEG, we should

specify the dynamics model of the transient potential or the pseudo thermodynamic degrees

of freedom. As a simple yet nontrivial model, we employ a simple harmonic type potential

as the transient potential:

Φ̌(r,A) =
1

2
κ(r −A)2, (64)

where κ is the spring constant and A corresponds to the center position of the potential.

(The dimension of A is assumed to be the same as that of r.) The dynamic equation can

be then simplified as

dr(t)

dt
= −Λκ[r(t)−A(t)] +

√

2kBTΛW (t). (65)
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We need to specify the dynamics model for the pseudo thermodynamic degrees of freedom.

If we employ the Langevin equation for A(t), the full stochastic process become a Gaussian

process, and thus the results will be very similar to those of the GLEG. Namely, the MSD

will be reproduced but the NGP is always zero. Here we employ the stochastic transition

dynamics with the following transition rate, instead:

Ω̌(A′|A, r) =
1

τ

(

κ

2πkBT

)3/2

exp

[

−κ(A′ − r)2

2kBT

]

, (66)

where τ is the characteristic time of the transition. This transition rate model corresponds to

the simple resampling of the new potential center position from the equilibrium probability

distribution. Now the dynamics of the system can be fully specified by eqs (65) and (66).

(This model would be interpreted as a special case of the alternating diffusive state model[32],

where the fraction of the free diffusive state is very small.) Although the model looks simple,

the calculations of the MSD and NGP become rather complicated. We show the detailed

calculations in Appendix C, and here we only show the results. The MSD and NGP of our

model become

〈[r(t)− r(0)]2〉 = 6kBT

κ

η

1 + η

[

t

τ
+

η

1 + η
[1− e−t(1+η)/τ ]

]

, (67)

α(t) =

[

t

τ
+

η[1− e−t(1+η)/τ ]

1 + η

]−2 [
2η2

(1 + η)(1 + 2η)

t

τ
+

4η

1 + η

t

τ
e−t(1+η)/τ

+
4[1− e−t(1+η)/τ ]

(1 + η)2
− 4(1 + η)2[1− e−t(1+2η)/τ ]

(1 + 2η)2
+

η2[1− e−2t(1+η)/τ ]

(1 + η)2

]

,

(68)

where η ≡ Λκτ . We show the MSD and NGP data by the LETP, with various average

waiting times, in Figure 3. If the waiting time is sufficiently short, the transient potential

does not contribute the diffusion dynamics. Thus, in the case of Λκτ ≪ 1, we recover the

simple diffusion behavior where the MSD is proportional to t and the NGP is almost zero.

On the other hand, if the waiting time is sufficiently long, the particle will be trapped in the

transient potential and exhibits the plateau at the intermediate region. The MSD data by

the LETP are qualitatively consistent with the data by the molecular dynamics simulation,

Figure 1(a). For example, eq (67) clearly exhibits three regions shown in eq (59). In addition,

the LETP gives non-zero NGP. Although the t-dependence of the NGP by the LETP is

not quantitatively coincide with that by the molecular dynamics simulation, the trend is

qualitatively reproduced by the LETP. In both Figures 1(b) and 3(b), the NGP exhibits a
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peak where the MSD shows the crossover from the plateau to the diffusion behavior. The

peak value of the NGP increases as the plateau region in the MSD develops.

By comparing the results of the GLEG and the LETP, we find that the MSD can be

well described both by the GLEG and the LETP. The GLEG can easily reproduce any

MSD by tuning the memory kernel. However, the diffusion dynamics given by the GLEG is

essentially a Gaussian process and non-Gaussian behavior can never be reproduced. On the

other hand, the LETP can reasonably reproduce the non-Gaussian behavior. But both the

MSD and NGP depend on the dynamics model and the tuning of the forms of a transient

potential and a dynamics model such as a transition rate is difficult.

The simple structure of the LETP would be especially useful when we perform numerical

simulations. According to the results shown above, the LETP model can successfully re-

produce some dynamical properties of supercooled liquids. If we integrate such a dynamics

model into more complex systems, we will be able to simulate complex relaxation process

with a relatively simple and numerically efficient model. For example, if we combine the

single chain polymer model (such as the Rouse model) with the LETP in this subsection,

we may be able to simulate the dynamics of supercooled polymer melts by a simple single

chain model.

C. Fluctuating Diffusivity

In Secs. IIIA and IIIB, we have showed that the LETP is qualitatively different from

the GLEG. Recently, another type of mesoscopic coarse-grained model which is called the

fluctuating diffusivity (or diffusing diffusivity) model has been investigated. In this model,

the diffusion coefficient tensor (or the mobility tensor) is considered as a stochastically

fluctuating physical quantity. The dynamic equation is expressed as the Langevin equation

with the fluctuating diffusivity (LEFD)[43–47]. The LEFD for the mesoscopic degrees of

freedom Q can be expressed as

dQ(t)

dt
= − 1

kBT
D(t) · ∂F(Q(t))

∂Q(t)
+
√
2D1/2(t) ·W (t), (69)

where D(t) is the time-dependent fluctuating diffusion coefficient tensor. The diffusion

coefficient D(t) is assumed to obey another stochastic process which is independent of Q.

Although eq (69) is not the same as eq (28), they are similar in some aspects. Both of them
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employ additional degrees of freedom to describe the mesoscopic dynamics. In addition, the

LEFD model can reproduce the non-Gaussian behavior successfully[43].

It would be informative to discuss how the LETP and the LEFD can be related and

whether these models can be unified or not. If we employ the LEFD to describe the diffusion

of a single particle in a supercooled liquid (the same system as considered in Sec. III B), we

have
dr(t)

dt
=

√

2D(t)W (t), (70)

where D(t) is a scalar fluctuating diffusion coefficient. We assume that D(t) obeys an

equilibrium stochastic process and the statistical average of D(t) is independent of time.

Then the MSD becomes

〈[r(t)− r(0)]2〉 = 6〈D〉t. (71)

Eq (71) means that the MSD of the LEFD is simply proportional to t for any t. Therefore,

unlike the GLEG and the LETP (eqs (62) and (67)), the LEFD cannot describe the MSD

of a supercooled liquids. However, the fluctuation of the diffusion coefficient strongly affects

the higher order correlation functions, unlike the GLEG. Thus physical quantities which

incorporate the higher order correlation functions, such as the NGP, exhibit nontrivial be-

havior. The NGP can be related to the correlation function of the fluctuating diffusivity

as[43]

α(t) =
2

t2

∫ t

0

dt′
∫ t′

0

dt′′
[〈D(t′)D(t′′)〉

〈D〉2 − 1

]

=
2

t2

∫ t

0

dt′ (t− t′)

[〈D(t′)D(0)〉
〈D〉2 − 1

]

. (72)

From eq (72), in general, the LETP gives non-zero NGP, and therefore the heterogeneity

of the diffusion behavior can be successfully reproduced. At the short time scale, eq (72)

approximately becomes independent of time: α(t) ≈ 〈D2〉/〈D〉2−1. Generally, the NGP by

eq (72) becomes a monotonically decreasing function of time t. Such behavior is qualitatively

different from that of the LETP. Therefore, we conclude that both the LETP and the LEFD

can reproduce non-Gaussian dynamics, but they are not equivalent.

We may interpret the LEFD as an approximation for the LETP in the long region. If

the time scale is larger than the average relaxation time of the transient potential, we will

observe simple diffusion behavior where the MSD is approximately proportional to time.

Also, the NGP can be interpreted as a monotonically decreasing function of time. These

properties are qualitatively consistent with those of the LEFD. Therefore, in such a case,
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the effect of the transient potential on the dynamic equation may be further coarse-grained.

Then the thermodynamic force will be simply determined by the free energy, and the LETP

can be coarse-grained into the LEFD model. It should be noted here that the GLEG cannot

be employed for a system which exhibits non-Gaussian behavior. As Fox showed[48], the

memory kernel is uniquely determined if the MSD is given. At the long time scale, the

memory kernel approximately becomes the delta function and thus we just have a simple

Langevin equation without memory effects and the fluctuation of diffusivity.

D. Transient Potential as Thermostat

One may consider the structure of the LETP is somewhat similar to some thermo-

stat models in molecular dynamics simulations. The Nosé-Hoover thermostat utilizes

the extended Hamiltonian where the extra degrees of freedom for the thermostat are

incorporated[6, 49]. Leimkuhler, Noorizadeh and Theil[50] proposed a modified version

of the Nosé-Hoover thermostat which employs the Langevin equation for the dynamics of

the thermostat. We expect that the transient potential with the pseudo thermodynamic

degrees of freedom may work as a thermostat. In this subsection, we consider a possible

application of the transient potential as a thermostat.

From eqs (39)-(41), the approximate dynamics model for the coarse-grained system is

detailed-balance. Therefore, if we simply omit the noise term in the Langevin equation for

Q, the resulting dynamics becomes physically incorrect, since the detailed-balance condition

is no longer satisfied. Therefore, we consider the Hamiltonian-like dynamics for Q. We

hypothetically introduce the momentum P and mass m, and assume that the system obeys

the following dynamic equations:

dP (t)

dt
= −∂Φ̌(Q,A)

∂Q
,

dQ(t)

dt
=

1

m
P . (73)

Eq (73) corresponds to the Hamilton’s canonical equations for the hypothetical Hamiltonian

H = P 2/2m+Φ̌(Q,A). We further assume that the transient potential is given as the sum

of the effective interaction potential Ū(Q) and the harmonic potential as

Φ̌(Q,A) = Ū(Q) +
κ

2
(Q−A)2, (74)

where κ is a constant. The variables Q and P are coupled to the stochastic variable A via

the harmonic potential, and thus we expect that the equilibrium state will be realized.
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To demonstrate the transient potential actually works as a thermostat, we consider the

case where A obeys the overdamped Langevin equation (45). If we assume that the mobility

is given as Γ = 1/ζ with ζ being the friction coefficient, the dynamic equation becomes

dA(t)

dt
= −κ

ζ
(A−Q) +

√

2kBT

ζ
ω(t). (75)

From eqs (73) and (75), we have

A(t) = Q(t)− 1

κ

∫ t

−∞

dt′ K(t− t′)
1

m
P (t′) + ξ(t) (76)

with K(t− t′) = κe−tκ/ζ and ξ(t) ≡
√

2kBT/ζ
∫ t

−∞
dt′K(t− t′)ω(t′). By substituting eq (76)

into eq (73), the dynamic equation for Q(t) can be simply expressed as

m
d2Q(t)

dt2
= −∂Ū (Q(t))

∂Q(t)
−

∫ t

−∞

dt′ K(t− t′)
dQ(t′)

dt′
+ ξ(t). (77)

The noise ξ(t) is a linear combination of the Gaussian white noise ω(t) and becomes a

Gaussian colored noise. The first and second moments of ξ(t) are calculated to be

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = kBTK(|t− t′|)1. (78)

Eq (78) can be interpreted as the fluctuation-dissipation relation. Therefore we find that

Q(t) obeys the GLEG with the memory kernel K(t), and thus the transient potential works

as a thermostat. Although we have not explicitly introduced the memory kernel in eqs (73)-

(75), the resulting dynamics reproduces the memory effect. If we employ a non-harmonic

transient potential model and/or a transition dynamics model, we will be able to reproduce

a non-Gaussian thermostat as well.

IV. CONCLUSIONS

We showed that we can formally derive the transient potential model (LETP) starting

from the microscopic Langevin equation model. We showed that we can formally justify the

use of the transient potential, based on the path probability formalism which utilizes the

Onsager-Machlup action. However, the dynamics for the transient potential is generally not

given in a simple and tractable form. Instead of the exact dynamics for the transient poten-

tial, we proposed to introduce the pseudo thermodynamic degrees of freedom and employ
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simple approximate dynamics model. The obtained LETP consist of two dynamics models;

one is the simple Langevin equation for the mesoscopic degrees of freedom, and another is

the Markovian stochastic dynamics model for the additional degrees of freedom (the pseudo

thermodynamic degrees of freedom). The LETP can reproduce non-Gaussian dynamics

which the GLEG cannot reproduce. As a simple example, we considered the dynamics of a

tagged particle in a supercooled liquid. We found that the LETP can qualitatively reproduce

the characteristic diffusion behavior.

We expect that the LETP can be utilized as a general coarse-grained equation for meso-

scopic dynamics of soft matters. The result of this work justifies the mesoscopic dynamics

model such as the RaPiD and MCSS model which were originally introduced as purely phe-

nomenological models. However, at least currently, the derivation of the LETP is limited

to rather simple systems. The underlying microscopic dynamics model is assumed to be

the overdamped Langevin equation with the constant mobility tensor. The mesoscopic de-

grees of freedom are limited to the linear combinations of microscopic degrees of freedom.

More general derivations and detailed analyses will be required to further elaborate the

coarse-grained dynamics models. For example, the derivation of the LETP from the micro-

scopic Hamiltonian dynamics is an interesting future work. In addition, the development

of accurate and practical approximation models for the transient potential is also required.

Although we simply assumed the Markovian process for the pseudo thermodynamic degrees

of freedom in this work, other dynamics models would be employed instead.
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Appendix A: Multiplicative Noise and Nonlinear Variable Transform

In this appendix, we consider the coarse-graining for a system described by the over-

damped Langevin equation with the multiplicative noise. We employ the following Langevin

equation with the position-dependent mobility as the microscopic dynamic equation, instead

of eq (3):

dR(t)

dt
= −L(R) · ∂U(R)

∂R
+ kBT

∂

∂R
·L(R) +

√

2kBTL
1/2(R) ·w(t), (A1)

where L(R) is the position-dependent mobility. The noise term in eq (A1) is multiplicative

and we interpret it according to the Ito manner.

As the same way in the main text, we introduce the variable transform from R to X ≡
[QT θT]T (Q is an M-dimensional vector and θ is a (3N − M)-dimensional vector). This

transform can be nonlinear, but the inverse transform should exist. X can be interpreted as

a function of R, as X(R). The inverse transform exists if the following condition is satisfied:

det
∂X

∂R
6= 0, (A2)

where ∂X/∂R corresponds to the Jacobian matrix for the variable transform. Then, R can

be interpreted as the function of X, as R(X). The effective interaction potential for X

becomes[51]

U ′(X) = U(R(X)) + kBT ln det
∂X

∂R
. (A3)

The second term in the right hand side of eq (A3) arises from the metric of the nonlinear

variable transform. If the variable transform is linear and X is linear in R (as the case we

considered in the main text), it reduces to a constant and negligible. The mobility tensor

becomes[52]

L′(X) =





L′(Q)
ij (X) L′(Qθ)

iβ (X)

L′(θQ)
αj (X) L′(θ)

αβ (X)



 , (A4)

with

L′(Q)
ij (X) =

∂Qi(r)

∂r
·L(R) · ∂Qj(R)

∂R
, (A5)

L′(Qθ)
iβ (X) = L′(θQ)

αj (X) =
∂Qi(R)

∂R
·L(R) · ∂θα(R)

∂R
, (A6)

L′(θ)
αβ (X) =

∂θα(R)

∂R
·L(r) · ∂θβ(R)

∂R
. (A7)
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So far, any θ can be employed as long as the variable transform is invertible. Here we

employ θ which is not kinetically coupled to Q. That is, we employ θ which satisfies the

following condition:
∂Qi(R)

∂R
·L(R) · ∂θα(R)

∂R
= 0. (A8)

Then the mobility tensor (A4) becomes block-diagonal:

L′(X) =





L′(Q)
ij (X) 0

0 L′(θ)
αβ (X)



 . (A9)

The problem is that whether such θ actually exists or not. Fortunately, we can show that

we can construct θ which satisfies eq (A8) for any Q. Eq (A8) can be rewritten as

ui(R) · ∂θα(R)

∂R
= 0, (A10)

with ui(R) ≡ [∂Qi(R)/∂R] · L(R) (i = 1, 2, . . . ,M). Here ui(R) is a 3N -dimensional

vector. This ui(R) can be expanded into the position-dependent orthogonal basis e
‖
i (R)

(i = 1, 2, . . . ,M), as

ui(R) =
∑

j

[

ui(R) · e‖
j (R)

]

e
‖
j(R). (A11)

The position vector R is a 3N -dimensional vector, thus we can construct (3N − M) or-

thogonal basis vectors which are orthogonal to e
‖
i (R). If we describe this basis as e⊥

α (R)

(α = M + 1,M + 2, . . . , 3N), we simply have e
‖
i (R) · e⊥

α (R) = 0. This means that the

condition (A10) can be satisfied if we take θ which satisfies the following condition:

∂θα(R)

∂R
= ραe

⊥
α (R), (A12)

where ρα is constant. (Notice that we do not take the summation over α in the right hand

side of (A12).) We may further rewrite eq (A12) as

∂2θα(R)

∂R2
= ρα

∂

∂R
· e⊥

α (R). (A13)

Eq (A13) is a Poisson equation in the 3N -dimensional space. The solution is

θα(R) = θ̄α + ραē
⊥
α ·R+ ρα

∫

dR′ G(R−R′)
∂

∂R′
·
[

e⊥
α (R

′)− ē⊥
α

]

, (A14)

where θ̄α is a constant, ē⊥
α is the spatial average of e⊥

α (R), and G(R) is the Green function

for the Poisson equation:

−∂G(R)

∂R2
= δ(R). (A15)
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In the three dimensional space, the Green function becomes a simple Coulomb type kernel.

(In a 3N -dimensional space (3N ≥ 3), the Green function G(R) decays as |R|2−3N for large

|R|.) θ(R) given by (A14) satisfies eq (A8), and the mobility tensor can be block-diagonal.

We should notice that the basis vector e⊥
α (R) depends on Q and thus is not constant.

To satisfy eq (A8) for any t, we should modulate θ(t) during the time evolution. This

can be done by introducing the Lagrange multiplier into the Langevin equation for θ(t).

(Intuitively, the Lagrange multiplier can be understood as the external force which drives

θ(t) to satisfy the condition (A10).)

The Onsager-Machlup action and the path probability becomes

exp[−S[R]]DR = exp[−S[Q, θ]]Det
δX

δR
DQDθ, (A16)

where Det · · · represents the functional determinant, and the action S[Q, θ] is given as

follows:

S[Q, θ] = S(Q)[Q|θ] + S(θ)[θ|Q], (A17)

S(Q)[Q|θ] = 1

2kBT

∫

dtG

(

dQ

dt
+L′(Q) · ∂U

′

∂Q
− kBT

∂

∂Q
·L′(Q)

;L′(Q)

)

, (A18)

S(θ)[θ|Q] =
1

2kBT

∫

dtG

(

dθ

dt
−Υ +L′(θ) · ∂U

′

∂θ
− kBT

∂

∂θ
·L′(θ);L′(θ)

)

. (A19)

Here, Υ(t) is the time-dependent Lagrange multiplier for the condition (A8). Now the

situation is similar to that in the main text. We introduce the transient potential Φ(q̃, t) by

the functional identity (21). Also, we introduce the time-dependent and fluctuating mobility

(diffusivity)[43–47] by utilizing another functional identity:

1 =

∫

DΛ δ[Λ(q̃, t)−L′(Q)
(q̃, θ(t))]. (A20)

By utilizing eqs (21) and (A20), we can rewrite the path probability as

P[Q] =

∫

DθDΦDΛ
N (Q,θ,Φ,Λ)

√

DetL′(Q) DetL′(θ)
exp

[

−S(Q)[Q|θ]− S(θ)[θ|Q]
]

× Det
δX

δR
δ[Φ(q̃, t)− U ′(q̃, θ(t))]δ[Λ(q̃, t)− L′(Q)

(q̃, θ(t))]

=

∫

DΦDΛ
N (Q,Φ,Λ)

√
DetΛ

exp
[

−S(Q)[Q|Φ,Λ]− S(Φ,Λ)[Φ,Λ|Q]
]

,

(A21)

with

S̃(Q)[Q|Φ,Λ] =
1

2kBT

∫

dtG

(

dQ

dt
+Λ · ∂Φ

∂Q
− kBT

∂

∂Q
·Λ;Λ

)

, (A22)

28



S̃(Φ,Λ)[Φ,Λ|Q] = − ln

∫

Dθ
exp

[

−S(θ)[θ|Q]
]

√

DetL′(θ)
Det

δX

δR

× δ[Φ(q̃, t)− U ′(q̃, θ(t))]δ[Λ(q̃, t)−L′(Q)
(q̃, θ(t))].

(A23)

Finally we have the following Langevin equation for Q(t):

dQ(t)

dt
= −Λ(Q, t) · ∂Φ(Q, t)

∂Q
+ kBT

∂

∂Q
·Λ(Q, t) +

√

2kBTΛ
1/2(Q, t) ·W (t), (A24)

where W (t) is the Gaussian white noise which satisfies eq (29). Eq (A24) has the same

form as the LETP (28). However, in addition to the transient potential Φ(Q, t), the fluc-

tuating mobility Λ(Q, t) is also incorporated in eq (A24). Therefore, for the systems with

multiplicative noises and/or coarse-grained variables by nonlinear transforms, we have the

Langevin equation with two transient and fluctuating quantities; the transient potential and

the fluctuating mobility (diffusivity). If the mobility tensor for R is constant and the vari-

able transform from R to X is linear, then Λ(Q, t) reduces to a constant and the LETP is

recovered.

Appendix B: Molecular Dynamics Simulation for Supercooled Liquid

In this appendix, we show the details of the molecular dynamics simulation model for

a supercooled liquid used in the main text. We employ a binary Lennard-Jones mixture

type model[33–39]. In this model, we consider two particle species, A and B. To prevent the

crystallization, the A and B particles have different sizes σA and σB. The ratios of sizes and

masses are set as σB/σA = 1.2 and as mB/mA = 2, respectively, and the number fraction of

the A particles is 1/2. The interaction potential between particle species K and K ′ is given

as the Lennard-Jones type potential:

uKK ′(r) =











4ε[(σKK ′/|r|)12 − (σKK ′/|r|)6 + 1/4] (|r| < 21/6σKK ′),

0 (|r| ≥ 21/6σKK ′),
(B1)

where σKK ′ ≡ (σK +σK ′)/2 and ε is the Lennard-Jones potential parameter. In eq (B1) We

have truncated the Lennard-Jones potential so that the potential becomes purely repulsive.

We consider a three dimensional system which consists of N particles. We use a cubic

simulation box of which volume is L3, and use the periodic boundary condition. We express

the position of the i-th particle in the system as ri. The particle species is A for i =
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1, 2, . . . , N/2 and B for i = N/2 + 1, N/2 + 2, . . . , N . The total potential energy of the

system simply becomes

U({ri}) =
N/2
∑

i=1

i
∑

j=1

uAA(ri − rj) +
N
∑

i=N/2+1

i
∑

j=1

uBB(ri − rj) +

N/2
∑

i=N

N
∑

j=N/2+1

uAB(ri − rj). (B2)

As the dynamic equation, we employ the underdamped Langevin equation:

mi
dri(t)

dt
= −∂U({ri(t)})

∂ri(t)
− ζ

dri(t)

dt
+
√

2kBTζwi(t), (B3)

where mi is the mass of the i-th particle, ζ is the friction coefficient, wi(t) is the Gaussian

white noise which satisfies the fluctuation-dissipation relation.

To perform simulations, we employ usual Lennard-Jones dimensionless units by setting

σ = σA = 1, m = mA = 1, and ε = 1. In this work, we set N = 4000 and L = 17.1 (this gives

the average number density as ρ = N/L3 = 0.800). The friction coefficient is set as ζ = 10.

The characteristic momentum relaxation time is estimated to be τm = m/ζ = 0.1. Initially,

the particles are randomly placed in the box and then relaxed before the simulation starts.

Simulations are performed for different temperatures ranging from kBT = 0.4 to kBT = 1.

The time step size is ∆t = 2.0 × 10−3 and simulations are performed for t = 105 for each

temperature. To remove the artificial diffusion behavior due to the center of mass motion

of the system, the momentum of the system is set to zero at each time step. All the

simulations are performed with LAMMPS (22Aug18)[53, 54]. The particle trajectories are

recorded and then the MSD and NGP are calculated. To improve the statistical accuracy,

several runs with the same parameter set and the different initial structures and random

seeds are performed, and then the averages are taken over different runs.

Appendix C: Detailed Calculations for MSD and NGP

The LETP model for a tagged particle in a supercooled liquid in the main text consists of

two stochastic processes (which are characterized by eqs (65) and (66)); one is the Langevin

equation for the particle and another is the resampling process for the potential center.

The Langevin equation describes the continuum process whereas the resampling process is

discrete in time. We utilize the renewal theory[55] which is suitable for the analyses of

the resampling type process. The analyses shown in this appendix are based on those in

Ref. [32].
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We consider the statistics of the resampling events from time 0. We describe the i-th

resampling event occurs at time ti. For convenience, we set t0 = 0. We call the interval

between two successive resamplings as the waiting time. During the time between successive

resamplings, the potential center position does not change. We express the potential center

for ti < t < ti+1 as Ai. Also, we express ri = r(ti). Without loss of generality, we can set the

initial position of the particle as r(0) = r0 = 0. Since the resampling events are statistically

independent, the interval between two successive resamplings (the waiting time) is given as

the exponential distribution:

Ψ(ti+1 − ti) =
1

τ
e−(ti+1−ti)/τ . (C1)

Here, τ is the characteristic time of the transition in eq (66), and can be interpreted as the

average waiting time. The statistical properties of the displacement can be calculated by

using the probability distribution of the particle position at time t, P (r; t).

For ti < t′ < t < ti+1, no resampling occurs and the Langevin equation for r reduces to

the Ornstein-Uhlenbeck process[56]. Thus the propagator can be easily calculated:

Q(r, t|r′,Ai, t
′) =

[

κ

2π(1− e−2Λκ(t−t′))kBT

]3/2

exp

[

−κ[(r − r′)− (1− e−Λκ(t−t′))(r′ −Ai)]
2

2(1− e−2Λκ(t−t′))kBT

]

,

(C2)

where r′ represents the position at time t′. At time ti, the potential center is resampled

from the equilibrium distribution:

Ψ′(Ai, ri) =

(

κ

2πkBT

)3/2

exp

[

−κ(ri −Ai)
2

2kBT

]

. (C3)

We describe the number of total resampling events from time 0 to time t is n, and

calculate the probability distribution of the particle position at time t for a given n, Pn(r; t),

by using eqs (C1)-(C3). The probability can be calculated as the product of propagates of

the successive events. The resampling times should satisfy 0 = t0 ≤ t1 ≤ t2 ≤ . . . tn ≤ t.

Thus we have

Pn(r; t) =

∫ ∞

t

dt′
∫ t

0

dtn

∫ tn

0

dtn−1· · ·
∫ t2

0

dt1

∫

dAndAn−1 . . . dA0

×
∫

drndrn−1 . . . dr1Q(r, t|rn,An, tn)Ψ(t′ − tn)Ψ
′(An, rn)

×
[

n
∏

i=1

Q(ri, ti|ri−1,Ai−1, ti−1)Ψ(ti − ti−1)Ψ
′(Ai−1, ri−1)

]

.

(C4)
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The integral over t′ in eq (C4) can be easily calculated:
∫∞

t
dt′ Ψ(t′− tn) = τΨ(t− tn). Also,

the integral over Ai eq (C4) can be calculated straightforwardly:
∫

dAi−1Q(ri, ti|ri−1,Ai−1, ti−1)Ψ(ti − ti−1)Ψ
′(Ai−1, ri−1)

=

[

κ2

(1− e−2Λκ(ti−1−ti))(2πkBT )2

]3/2 ∫

dAi−1 exp

[

− κ(ri−1 −Ai−1)
2

2kBT

− κ[(ri − ri−1)− (1− e−Λκ(ti−1−ti))(ri−1 −Ai−1)]
2

2(1− e−2Λκ(ti−1−ti))kBT

]

Ψ(ti − ti−1)

=
1

τ

[

κ

4π(1− e−2Λκ(ti−1−ti))kBT

]3/2

exp

[

− κ(ri − ri−1)
2

4(1− e−Λκ(ti−1−ti))kBT
− ti+1 − ti

τ

]

≡ Ψ̄(ri − ri−1, ti − ti−1).

(C5)

Thus the probability (C4) can be rewritten as follows:

Pn(r; t) = τ

∫ t

0

dtn

∫ tn

0

dtn−1· · ·
∫ t2

0

dt1

∫

drndrn−1 . . . dr1

× Ψ̄(r − rn, t− tn)
n
∏

i=1

Ψ̄(ri − ri−1, ti − ti−1).

(C6)

Because eq (C6) contains multiple convolutions over positions and times, the Fourier-Laplace

transform is convenient. The Fourier-Laplace transform of eq (C6) can be straightforwardly

calculated as

P̂n(k; s) ≡
∫ ∞

0

dt

∫

dr e−st−ik·rPn(r; t) = τΨ̂n+1(k, s), (C7)

where

Ψ̂(k, s) ≡
∫ ∞

0

dt

∫

dr e−st−ik·rΨ̄(r, t)

=

∫ ∞

0

dt
1

τ
exp

[

−(s + 1/τ)t− (1− e−Λκt)kBTk
2

κ

]

.

(C8)

For small k2, we can expand eq (C8) into the power series of ǫ ≡ −k2 as

Ψ̂(k, s) = Ψ̂0(u) + Ψ̂1(u)ǫ+ Ψ̂2(u)ǫ
2 +O(ǫ3), (C9)

where we have defined u ≡ τs, and the explicit forms of the expansion coefficients become

as follows, with η ≡ Λκτ :

Ψ̂0(u) =
1

u+ 1
, (C10)

Ψ̂1(u) =
kBT

κ

(

1

u+ 1
− 1

u+ 1 + η

)

, (C11)

Ψ̂2(s) =
(kBT )

2

2κ2

(

1

u+ 1
− 2

u+ 1 + η
+

1

u+ 1 + 2η

)

. (C12)
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The probability of the position r at time t is given as the sum of Pn(r; t) for n = 0, 1, 2, . . . :

P (r; t) =

∞
∑

n=0

Pn(r; t), (C13)

and its Fourier-Laplace transform becomes

P̂ (k; s) ≡
∫ ∞

0

dt

∫

dr e−ik·r−stP (r; t) = τ

∞
∑

n=0

Ψ̂n+1(k; s) =
τΨ̂(k; s)

1− Ψ̂(k; s)
. (C14)

By substituting eq (C9) into eq (C14), the power series expansion of eq (C14) becomes

P̂ (k; s) =
τ

u
+

τΨ̂1(u)

[1− Ψ̂0(u)]2
ǫ+

[

τΨ̂2(u)

[1− Ψ̂0(u)]2
+

τΨ̂2
1(u)

[1− Ψ̂0(u)]3

]

ǫ2 +O(ǫ3). (C15)

The Laplace transforms of the MSD and the mean-quartic displacement (MQD) are obtained

by using the expansion coefficients of ǫ and ǫ2, respectively. From the symmetry, we can

rewrite P (r; t) as P (r; t) = P (r; t)/4πr2 with r = |r|. Also, without loss of generality, we

can set the wave number vector k parallel to the z-direction. Then we can calculate the

Fourier transform in eq (C14) in the spherical coordinates:

P̂ (k; s) =

∫ ∞

0

dt

∫ ∞

0

dr

∫ 2π

0

dθ

∫ π

0

dφ r2 sinφ e−ikr cosφ−stP (r; t)

4πr2

=
1

2

∫ ∞

0

dt e−st

∫ ∞

0

dr

∫ π

0

dφ sinφ

[

1 +
ǫ

2
r2 cos2 φ+

ǫ4

24
r4 cos4 φ

]

P (r; t) +O(ǫ3)

=
1

s
+

∫ ∞

0

dt e−st

[

ǫ

6
〈r2(t)〉+ ǫ2

120
〈|r(t)|4〉

]

+O(ǫ3).

(C16)

By comparing eqs (C15) and (C16), we can determine the MSD and the MQD.

The coefficient of ǫ in eq (C15) can be calculated as

τΨ̂1(u)

[1− Ψ̂0(u)]2
=

kBTτ

κ

η(u+ 1)

u2(u+ 1 + η)

=
kBTτ

κ

[

η

(1 + η)u2
+

η2

(1 + η)2

(

1

u
− 1

u+ 1 + η

)]

.

(C17)

By performing the inverse Laplace transform for eq (C17), we have the following expression

for the MSD:

〈r2(t)〉 = 6kBT

κ

η

1 + η

[

t

τ
+

η

1 + η
[1− e−t(1+η)/τ ]

]

. (C18)
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The coefficient of ǫ2 in eq (C15) can be calculated in a similar way, although the calculation

becomes lengthy:

τΨ̂2(u)

[1− Ψ̂0(u)]2
+

τΨ̂2
1(u)

[1− Ψ̂0(u)]3

=
(kBT )

2τ

κ2

η2(u+ 1)(u2 + 2u+ ηu+ 1 + 2η)

u3(u+ 1 + η)2(u+ 1 + 2η)

=
(kBT )

2τ

κ2

[

η2

(1 + η)2u3
+

η3(1 + 3η)

(1 + η)3(1 + 2η)u2
+

η3

(1 + η)3(u+ 1 + η)2

+
η2(2 + η2)

(1 + η)4

(

1

u
− 1

u+ 1 + η

)

− 2η2

(1 + 2η)2

(

1

u
− 1

u+ 1 + 2η

)]

.

(C19)

The MQD is calculated by performing the inverse Laplace transform of eq (C19):

〈|r(t)|4〉 = 60(kBT )
2

κ2

[

η2

(1 + η)2
t2

τ 2
+

2η3(1 + 3η)

(1 + η)3(1 + 2η)

t

τ
+

η3

(1 + η)3
2t

τ
e−t(1+η)/τ

+
2η2(2 + η2)

(1 + η)4
[1− e−t(1+η)/τ ]− 4η2

(1 + 2η)2
[1− e−t(1+2η)/τ ]

]

.

(C20)

Then we can calculate the NGP. From eq (C18), the square of the MSD becomes

〈r2(t)〉2 = 36(kBT )
2

κ2

[

η2

(1 + η)2
t2

τ 2
+

2η3

(1 + η)3
t

τ
[1− e−t(1+η)/τ ]

+
η4

(1 + η)4
[1− 2e−t(1+η)/τ + e−2t(1+η)/τ ]

]

.

(C21)

By combining eqs (C20) and (C21), we have

3

5
〈|r(t)|4〉 − 〈r2(t)〉2 = 36(kBT )

2

κ2

[

2η4

(1 + η)3(1 + 2η)

t

τ
+

4η3

(1 + η)3
t

τ
e−t(1+η)/τ

+
4η2

(1 + η)4
[1− e−t(1+η)/τ ]− 4η2

(1 + 2η)2
[1− e−t(1+2η)/τ ]

+
η4

(1 + η)4
[1− e−2t(1+η)/τ ]

]

.

(C22)

Finally we have the following explicit expression for the NGP:

α(t) =

[

t

τ
+

η

1 + η
[1− e−t(1+η)/τ ]

]−2 [
2η2

(1 + η)(1 + 2η)

t

τ
+

4η

1 + η

t

τ
e−t(1+η)/τ

+
4

(1 + η)2
[1− e−t(1+η)/τ ]− 4(1 + η)2

(1 + 2η)2
[1− e−t(1+2η)/τ ] +

η2

(1 + η)2
[1− e−2t(1+η)/τ ]

]

.

(C23)

Eqs (C18) and (C23) give eqs (67) and (68) in the main text.
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If the parameter η is sufficiently large, two characteristic time scales (1/Λκ and τ) are

well separated, and both the MSD and the NGP exhibit several characteristic regions with

different t dependence. For the MSD, from eq (C18), we have

〈r2(t)〉 ≈ 6kBT

κ

[

t

τ
+ 1− e−Λκt

]

, (C24)

and thus we find that the MSD exhibits three regions:

〈r2(t)〉
6kBT/κ

≈























Λκt (t ≪ 1/Λκ),

1 (1/Λκ ≪ t ≪ τ),

t/τ (τ ≪ t).

(C25)

Eq (C24) is the same form as eq (59). For the NGP, from eq (C23), we simply have α(t) ≈ τ/t

as the approximate form for τ ≪ t. For 1/Λκ ≪ t ≪ τ , we have

α(t) ≈ (1 + η)2

η2

[

2η2

(1 + η)(1 + 2η)

t

τ
+

4

(1 + η)2
− 4(1 + η)2

(1 + 2η)2
+

η2

(1 + η)2

]

≈ t

τ
. (C26)

For t ≪ 1/Λκ, we expand eq (C23) with respect to t and have

α(t) ≈ 1

(1 + η)2(t/τ)2

[

η2(1 + η)2

30
(t/τ)5

]

=
η2t3

30τ 3
. (C27)

Therefore, we find that the NGP exhibits three regions with different t dependence:

α(t) ≈























Λ2κ2t3/30τ (t ≪ 1/Λκ),

τ/t (1/Λκ ≪ t ≪ τ),

t/τ (τ ≪ t).

(C28)

Eqs (C25) and (C28) are consistent with the data in Figure 3.
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Figure Captions

Figure 1: The mean-square displacement (MSD) and non-Gaussianity parameter

(NGP) data of binary Lennard-Jones fluids. The temperatures are set as kBT =

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. For relatively low temperature systems, the MSD exhibits

three characteristic regions, and the NGP becomes large. See Appendix B for the details of

the simulations.

Figure 2: Trajectories of some particles in a supercooled fluid at kBT = 0.6. Points represent

the positions of particles at every 1 unit time scale. (The size of points is much smaller than

the particle size.) The thick black bars are the scale bars of which length is the unit length

scale σ. See Appendix B for the details of the simulations.

Figure 3: (a) The mean-square displacement (MSD) and (b) the non-Gaussianity parameter

(NGP) of a particle in a supercooled liquid by the LETP model, with various average

waiting times τ . The time t is normalized by the characteristic time scale of the motion in

the transient potential, 1/Λκ. Also, the MSD is normalized by the characteristic length of

the transient potential.

38



Figures

10-3

10-2

10-1

100

101

102

10-1 100 101 102 103 104

(a)

〈[
r
(t

) 
- 

r
(0

)]
2 〉

t

kBT = 1
0.9
0.8
0.7

0.6
0.5
0.4

10-3

10-2

10-1

100

101

102

10-1 100 101 102 103 104

(b)

α(
t)

t

kBT = 1
0.9
0.8
0.7

0.6
0.5
0.4

FIG. 1:

39



FIG. 2:

40



10-2

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103 104 105 106

(a)

〈[
r
(t

) 
- 

r
(0

)]
2 〉/6

k B
T

κ-1

Λκt

Λκτ  = 10-1

100

101
102

103

104

10-5

10-4

10-3

10-2

10-1

100

101

10-2 10-1 100 101 102 103 104 105 106

(b)

α(
t)

Λκt

Λκτ  = 10-1

100

101
102

103

104

FIG. 3:

41


