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The time-dependent variational principle is used to optimize the linear and nonlinear parameters
of Gaussian basis functions to solve the time-dependent Schrödinger equation in 1 and 3 dimensions
for a one-body soft Coulomb potential in a laser field. The accuracy is tested comparing the
solution to finite difference grid calculations using several examples. The approach is not limited
to one particle systems and the example presented for two electrons demonstrates the potential to
tackle larger systems using correlated basis functions.

I. INTRODUCTION

The experimental advances in attosecond extreme ul-
traviolet light pulses and intense x-ray sources [1] made
possible the exploration of many time-dependent phe-
nomena in atoms. These experiment allow, for example,
the real time observation of ultrafast electron dynamics
[2, 3], study of high harmonic generation [4], temporal
resolution of ultrafast electron diffraction [5], attosecond
imaging [6] and the monitoring of electronic coherence
[7].

The need for theoretical understanding of the new ex-
perimental findings has led to intense research to de-
velop efficient numerical solutions of the time-dependent
Schrödinger equation (TDSE) [8–20]. The conventional
way of solving the time-dependent Schrödinger equation
is to represent the wave function in terms of basis func-
tions or using a real space grid, and describe the dynam-
ics with the time dependent linear coefficients. Three
dimensional or radial grids [21–23] are flexible represen-
tations of time-dependent wave functions, but discrete
variable representations [24–26] and B-splines [27–29] are

also often used to solve the TDSE. To solve the TDSE
for problems including ionization, one often needs to rep-
resent the wave function up to a few hundred Bohr dis-
tances, requiring large spatial grids or basis dimensions.
The proper boundary conditions in these problems are
usually enforced by using complex absorbing potentials
[11, 30, 31], exterior complex scaling [32, 33], or perfectly
matched layers [34].

In the conventional approaches described above the ba-
sis functions or grid is time independent and the linear
coefficients are used to describe the dynamics. The goal
of this paper is to explore an alternative approach using
time dependent basis functions with time dependent lin-
ear coefficients. One expects that the increased flexibility
allows more efficient calculations. In our approach the
basis functions will be instantaneously optimized to ac-
curately represent the rapidly changing time-dependent
wave function. The optimization of the parameters of the
basis function is based on the time-dependent variational
principle (TDVP) [35, 36].

The time-dependent variational method was intro-
duced by Dirac [35], extended by McLachlan [36] and



2

reformulated for Gaussian wave packets in Ref. [37].
The time-dependent variational method has been used in
various calculations, such as in the description of the dy-
namical behavior of Bose-Einstein condensates [38], and
in wave packet dynamics [39, 40]. Furthermore, the study
of the dynamics of strongly interacting lattice bosons [41]
and strongly correlated electrons [42] reflect the increas-
ing popularity of the time dependent variational method
in other fields.
The TDVP is also often used in approximating com-

plex many-body wave functions, e.g. Fermionic Molecu-
lar Dynamics [43], Electron Nuclear Dynamics [44], and
time-dependent Multi configuration Self-consistent-field
calculations [45]. In these approaches, the wavefunction
is approximated by Slater determinants of localized sin-
gle particle orbitals. The orbitals are parameterized by
dynamical variables (wave packet width, average position
or momentum) and the TDVP is used to derive equation
of motion for these dynamical variables.
In this work we will solve the time-dependent

Schrödinger-equation by time propagation using a time-
dependent basis. We will construct the basis by using
Gaussian functions

e−(αr(t)+iαi(t))x
2

(1)

allowing time dependent complex nonlinear parameters
αr(t) + iαi(t), and optimize the parameters by TDVP.
Gaussians basis functions are the most popular choices

of quantum mechanical calculations because their matrix
elements can be evaluated analytically [46, 47]. Gaus-
sian functions however, have difficulties in reproducing
the characteristic oscillatory behavior of continuum or-
bitals in the asymptotic region. Gaussians with complex
parameters may be better suited to describe the contin-
uum because of their inherent oscillatory nature [48]. An
alternative way to extend Gaussians for problems involv-
ing ionization is to augment them with suitable functions
such as B-splines [49].
The conventional way to optimize the parameters of

the Gaussians is to use a gradient based Newton-Raphson
approach [46, 50, 51], or use a random optimization, the
so called stochastic variational method [46, 47]. Both ap-
proaches produce highly accurate ground state energies
and wave functions [46]. It is not immediately clear that
the TDVP is efficient and powerful enough to optimize
the nonlinear parameters to reach similar accuracy. To
test the TDVP for ground states, in a previous paper we
used the imaginary time propagation method combined
with the TDVP to solve few-particle problems [48]. It
was shown, that the TDVP can be used to obtain basis
functions with accuracy comparable or better than gra-
dient based Newton-Raphson optimization. This success
paves the way for the application of the TDVP to time-
dependent problems, which is the objective of the present
work.
To test the solution of the TDSE using time depen-

dent Gaussian basis functions with time propagating the
linear and nonlinear parameter simultaneously on equal

footing, we will study the interaction of one and two elec-
tron atoms with strong laser pulses [52]. The examples
include 1D and 3D Hydrogen atoms and an 1D 2 electron
He atom. The Coulomb interaction will be represented
with a Gaussian or soft Coulomb potential to avoid the
singularity in 1D and to allow the direct comparison with
the results of finite difference grid calculations.

II. FORMALISM

A. Time-dependent variational principle

A variational ansatz (a linear combination of basis
functions depending on some parameters) for a time de-
pendent wave function in a general form can be written
as:

ψ(x,q, t), (2)

where q(t) = (q1(t), q2(t), . . ., qK(t)) is a set of linear and
nonlinear variational parameters, x is a set of spatial co-
ordinates describing the system (e.g. the position of the
electrons), and K is the total number of unknown vari-
ables, the sum of number of linear and nonlinear basis
parameters. To simplify the notation we drop the spatial
dependence and use the following shorthand notation:

ψ(t) = ψ(q, t). (3)

The time-dependent Schrödinger equation,

i
d

dt
ψ(t) = Hψ(t) (4)

will be solved by the McLachlan variational method [36].
In this approach, the norm of the deviation between the
right-hand and the left-hand side of the time-dependent
Schrödinger equation is minimized with respect to the
trial function. The quantity

I = ||iφ(t)−Hψ(t)||2 → min (5)

is to be varied with respect to φ only, and then the equiv-
alency ψ̇ ≡ φ is enforced. At time t the wave function is
known and its time derivative is determined by minimiz-
ing I. In case of I = 0, an exact solution exists, but the
approximation in the expansion of ψ(t) leads to I > 0
values.
The variations of I with respect to φ gives the equa-

tions of motion:

〈

∂ψ

∂q

∣

∣

∣iψ̇ −Hψ

〉

= 0 . (6)

This equation can be used to determine the (linear and
nonlinear) variational parameters.
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B. Parameter optimization

The equation of motion, Eq. (6) is a set of equations

〈

∂ψ

∂qj

∣

∣

∣iψ̇ −Hψ

〉

= 0 j = 1, 2, . . .,K , (7)

which, using

ψ̇ =
K
∑

k=1

∂ψ

∂qk
q̇k (8)

can be rewritten as

i

K
∑

k=1

〈

∂ψ

∂qj

∣

∣

∣

∂ψ

∂qk

〉

q̇k−
〈

∂ψ

∂qj

∣

∣

∣Hψ

〉

= 0 j = 1, 2, . . .,K.

(9)
By defining

Mij =

〈

∂ψ

∂qi

∣

∣

∣

∂ψ

∂qj

〉

, (10)

and

vi =

〈

∂ψ

∂qi

∣

∣

∣Hψ

〉

. (11)

we can write the equation of motion in matrix form as:

iM q̇ = v. (12)

This can be solved to express the time dependence of the
variational parameters as

q̇ = −iM−1
v. (13)

There are various established ways to solve such first or-
der linear differential equations [53–55], and approxima-
tions allowing larger time steps such as a Runge-Kutta
approach can be used, but we elected to use the Euler
method for time propagation for simplicity. The Euler
method is a simple first order approximation of the time
derivative and leads to

q(t+∆t) = q(t) − iM−1
v∆t, (14)

where ∆t is the time step.

C. Hamiltonian and basis functions

We will test the approach by using a Hamiltonian de-
scribing a particle in a laser field in length gauge

H = −1

2

(

d2

dx2
+

d2

dy2
+

d2

dz2

)

+V (x, y, z)+F (t)z, (15)

where F (t) is the time dependent electric field pulse,
which is defined as:

F (t) = E0e
−(t−T )2/τ2

cos(ωt). (16)

We define two different types of basis functions to rep-
resent the time-dependent wave function. The first one
takes on the form:

gi = ciz
nigαi

(x)gαi
(y)gβi

(z) = ciz
nie−αi(x

2+y2)−βiz
2

,
(17)

where

gσ(x) = e−σx2

(18)

is a one dimensional Gaussian and will be referred to as
polynomial times Gaussian (PTG). The second basis is a
plane wave times Gaussian (PWG):

gi = cigαi
(x)gαi

(y)gβi
(z)ekz = cie

−αi(x
2+y2)−βiz

2+kz .
(19)

The parameters of the Gaussians are kept equal in the x
and y direction due to the cylindrical symmetry of the
potential. In one dimensional (1D) test calculations α =
0 is used to reduce the basis to 1D.
The variational parameters form a vector,

q(t) =





c(t)
α(t)
β(t)



 =

































c1(t)
...

cN (t)
α1(t)
...

αN (t)
β1(t)
...

βN (t)

































, (20)

in the case of PTG and a similar vector can be defined
for PWG. For PTG, the values of nk must be set to be
integers. The variational trial function is

ψ(t) = ψ(q(t)) =

N
∑

k=1

ck(t)φk(t) =

N
∑

k=1

gk(t). (21)

To illustrate the flexibility of the Gaussian basis in
time-dependent calculations, we solve the TDVP equa-
tion (Eq. (12)) analytically for a free particle in Ap-
pendix A. This case can be used to test the time step
and matrix elements in the numerical calculations.
As the example in Appendix A and Eq. (14) show,

the parameters of the basis functions become complex
during the time propagation. This shows that to use the
TDVP for time propagation one has to allow complex
basis functions, which in our case is a Gaussian function
with complex parameters.
A Gaussian with a complex parameter can be written

as:

e−(αr+iαi)x
2

= e−αrx
2 (

cos
(

αix
2
)

+ i sin
(

αix
2
))

. (22)

This function is an oscillatory function with a Gaussian
envelope, and seems to greatly enhance the flexibility of
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the basis function [48]. To make the integrals of the ma-
trix element convergent, αr should be positive, which is
not explicitly guaranteed in the time propagation of Eq.
(14), but in our numerical examples it was always satis-
fied. The reason for preservation of the positive sign is
not clear. In the simple example of the free wave packet,
Eq. (A10) shows that if one starts with a real positive
α(0) (which is a natural choice to describe a localized
initial state), then the real part of α(t) will remain posi-
tive. We could not derive an analytical proof for a more
general case.
We will use two potentials to test the approach. A

single Gaussian potential,

V = −V0e−µ(x2+y2+z2), (23)

with V0 = 1 and µ = 0.1 a.u., and a soft Coulomb poten-
tial,

V = − 1
√

x2 + y2 + z2 + a2
, (24)

the value of a used in the calculations is listed in Ta-
ble I. We will use the soft Coulomb potential because
the Coulomb potential cannot be easily used in grid cal-
culations [56] and its use is problematic in 1D [57]. In
the case of the PWG basis, the soft Coulomb potential
is expanded into 50 Gaussians to facilitate the analyti-
cal calculations of the matrix elements. Soft Coulomb
potential has been often used in model calculations of
ionization of atoms [58, 59].
In 1D test cases, the condition x = y = 0 is set in the

potential and α = 0 is used in the basis function with
1D kinetic energy. The matrix elements of these basis
functions can be calculated analytically as it is shown in
Appendices B, C and D.

D. Time propagation of the wave function

In Eq. (20) we have defined q(t) for Gaus-
sian basis functions by separating the linear parame-
ters (c1(t), c2(t), . . ., cN (t)) of the wave function from
the nonlinear ones (that appear in the exponents)
(α1(t), . . ., αN (t), β1(t), . . ., βN (t)). Equation (14) defines
the time propagation of both linear and nonlinear param-
eters of the wave function. With the exception of very
small time steps, the simple first order finite difference
approximation is not expected to be accurate enough to
preserve the norm of the wave function. To alleviate this
problem, we only use Eq. (14) to time propagate the non-
linear parameters and we update the linear parameters
separately to preserve the norm. One can view this as an
optimization of the basis functions by updating the non-
linear parameters using TDVP. We then time propagate
the wave function on the updated basis.
We have a set of basis function in time t, φk(t), which

is time-propagated to time t+∆t to become φk(t+∆t)

using Eq. (14). Both of these sets of basis functions can
be used to represent the wave function at time t:

ψ(t) =
N
∑

k=1

ĉk(t, t)φk(t) =
N
∑

k=1

ĉk(t, t+∆t)φk(t+∆t).

(25)
In this equation ĉk(t, t) is known as we know the wave
function at time t (and it is not calculated using Eq.
(14)). The unknown ĉk(t, t+∆t) coefficients can be easily
derived by defining the overlap of the basis functions

Sij(t, t
′) = 〈φi(t)|φj(t′)〉 (26)

and multiplying Eq. (25) with ψi(t). The result is:

ĉi(t, t+∆t) =

N
∑

j=1

S−1
ij (t, t)

N
∑

k=1

Sj,k(t, t+∆t)ĉk(t, t).

(27)
Now we know the linear combination coefficient of the
wave function ψ(t) at time t on the optimal basis φk(t+
∆), so we can time propagate the wave function in the
conventional way using

ψ(t+∆t) = e−iH∆tψ(t) (28)

to calculate ĉk(t + ∆t, t + ∆t). We choose the numeri-
cally stable Crank-Nicolson approach to update the co-
efficients:

Ĉ(t+∆t, t+∆t) = (29)

S(t+∆t, t+∆t)− i
2H(t+∆t, t+∆t)

S(t+∆t, t+∆t) + i
2H(t+∆t, t+∆t)

Ĉ(t, t+∆t),

where ĈT = (ĉ1, . . ., ĉN ) and

Hij(t, t
′) = 〈ψi(t)|H |ψj(t

′)〉. (30)

This approach significantly improves the stability of the
approach and allows larger time steps.

III. CALCULATIONS

A. Ground state

Before the time propagation we need to calculate the
ground state (without the laser field). In the time propa-
gation that will be the initial state at t = 0. To calculate
the ground state the parameters of the Gaussians will be
defined with a geometric progression,

1√
αi

= aνi−1, (31)

with a = 0.5 and ν = 1.3. For the ground state calcula-
tion, we will use n = 0 for the PTG basis and k = 0 in the
PWG basis. For 1D grid calculation, N = 5000 equidis-
tant grid points are used with h = 0.125 grid spacing ,
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Basis N Potential Energy

1D PTG 30 Gauss -0.79526702

1D PWG 20 Gauss -0.79526702

1D Grid 5000 Gauss -0.79526702

1D PWG 20 Soft Coulomb (a = 1) -0.66977138

1D Grid 5000 Soft Coulomb (a = 1) -0.66977138

1D PWG 30 Soft Coulomb (a = 2) -0.50000000

1D Grid 5000 Soft Coulomb (a = 2) -0.50000000

3D PWG 30 Soft Coulomb (a = 1) -0.27489135

3D Grid 4465200 Soft Coulomb (a = 1) -0.27461231

TABLE I. Ground state energies (in a.u.). The basis dimen-
sion is N for the PWG and PTG, and the number of grid
points in the 1D and 3D grid case.

and a N = 61× 61× 1200 size grid with h = 0.25 is used
in 3D. While very fine grid spacing can be used in 1D,
it must be larger in 3D due to the increase in computa-
tional cost. These grid parameters define a 600 a.u. box
size in 1D and 300 a.u. size in 3D in the direction of the
laser field. The atom is placed in the middle of the box.
These simulation boxes are sufficiently large to propagate
the wave function during the laser field without reflection
from the boundaries. The grid dimensions are listed in
Table I. We note that due to the cylindrical symmetry of
the system one could use cylindrical coordinates instead
of Cartesian 3D ones. This would significantly reduce the
computational cost for the 3D H atom. In this work our
main goal is to demonstrate the accuracy of the time-
dependent Gaussian basis and for that purpose the 3D
grid approach can be simply implemented and provides
sufficient precision.
The ground state energies are listed in Table I. These

energies were calculated by diagonalization of the PTG
and PWG case. In the case of the grid calculations, the
ground state energy was calculated by the conjugate gra-
dient method using the codes of [60]. There is an excel-
lent agreement in 1D, and a slight difference between the
PWG and the grid calculation in 3D. While agreement
can be achieved with a finer grid, there are more com-
putational constraints the finer the grid becomes. We
only used the PTG for the Gauss potential, so the PTG
ground state energy for other cases is not shown.

B. Time propagation

Two different laser pulses are used in the calculation.
The first (see Fig. 1), laser A, has only a few cycles
and moves the electron to one direction as will be shown
later. The second, laser B, has many cycles and moves
the electron almost symmetrically left and right. The
time step is ∆t = 0.001 a.u. in 1D calculations, and
∆t = 0.0005 a.u. in the 3D calculations for both the
PWG and the grid. The PTG requires a smaller time
step as we will discuss later.

The PTG ground state calculation was restricted to
n = 0 and to make a starting PTG basis for time propa-
gation, the basis will be doubled by adding n = 1 states
with the same βi parameters as of the n = 0 states. These
states are needed because the laser field operator F (t)z
matrix elements are only nonzero for basis states for even
ni + ni′ + 1. To start the calculation from the ground
state, the linear coefficients of the ni = 1 basis states
will be set to zero. States with n > 1 do not seem to
improve the calculation. The PWG basis does not need
any modification and one can start the computation from
the ground state wave function.
The electron density, |ψ(x, t)|2, after time propagation

up to t=100 a.u. are compared in Fig. 2 in the case of the
Gaussian potential. The agreement between the grid and
the PWG calculations are excellent. In the asymptotic
region where the density becomes smaller than 10−4, the
two approaches do not fully agree. This is partly because
of numerical noise, which can be decreased with a smaller
time step, and partly due to the grid spacing.
Test calculations show that PTG basis can only be

used with smaller time steps (∆t = 0.00001 a.u.) to
produce the same results as the grid and PWG. This is
because this basis easily becomes nearly linearly depen-
dent (large overlap between basis functions), especially
in the 1D case, which makes the calculation of the in-
verse of M difficult. The other difficulty is choosing the
optimal number of basis states with n = 0 and n = 1. It
is still useful to consider the PTG basis as an alternative
test, especially that in 3D the Coulomb potential can be
analytically calculated for this basis (see Appendix C).
Figures 3, and 4 show the energy and the occupation

probability of the ground state as a function of time. The
occupation probability is defined as:

P (t) = |〈ψ(0)|ψ(t)〉|2. (32)

The energy and the occupational probability are in excel-
lent agreement for the grid, PTG, and PWG basis func-
tions for both laser fields. The ionization probability is
equal to 1 minus the occupation probability of the bound
states. In these examples the excited state occupation
probabilities are much smaller than the occupation prob-
ability of the ground state, so the ionization probability
is ≈ 1 − P (t) (the bound state excitations are negligi-
ble). Laser A strongly ionizes the system and the ground
state occupation becomes about 0.3 after the pulse. This
means (see Fig. 2) that the tail of the wave function has
large amplitude far away form the center of the poten-
tial, but the complex Gaussian basis is flexible enough to
represent this.
The next example is a test for a soft Coulomb poten-

tial. Since the PTG requires much smaller time step, we
exclude it from the discussion from now. Figures 5 and 6
show that the approach works well for the soft Coulomb
potential as well. Comparing Figs. 3 and 4 to 5 and 6
show that the effect of the laser field is very similar in
both the Gauss and soft Coulomb potentials. The elec-
tron is slightly less bound in the soft Coulomb potential
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FIG. 1. The laser fields used in the calculation, laser A, E0 = 0.25, τ = 20.5, ω = 1.0/2π, T = 50 (black dotted line); laser B,
E0 = 1.0, τ = 20.5, ω = 1.0, T = 50 (red line)

and the laser causes larger excitation and ionization.
The last 1D example is the calculation of the photo-

electron spectra (PES). To calculate the PES we will use
the approach proposed in Ref. [61]. This approach calcu-
lates the wave function ψ(R, t) in time at a fixed sampling
point R far away from the nucleus. This function is time
Fourier transformed to energy space

ψ(R,E) =

∫ ∞

0

eiEtψ(R, t)dt. (33)

Using this function we can define

PR(E) = |ψ(R,E)|2 (34)

which represents the probability of having an electron at
R with energy E. This approach has been tested by com-
paring to other definitions of PES in Ref. [62]. We have
calculate the PES of the 1D H atom using the benchmark
test of Ref. [62]. This model uses a soft Coulomb poten-
tial with a = 2 and a 25 fs long laser field. The laser
parameters are listed in Fig. 3 of [62]. We have used a
large simulation box for the grid calculations (5000 grid
points with grid spacing of 0.4 a.u.) to avoid reflections
from the boundary. One could add a complex absorb-
ing potential to avoid reflections (as it has been done

in Ref. [62]), but that could slightly change the PES.
Moreover, as we do not use complex absorbing potential
in the TDVP PWG approach, it is better to compare the
calculations without absorbing boundary. We have used
N = 30 Gaussians (see Table I.), which is a larger basis
than the ones used in the previous examples, because the
laser pulse in the PES calculation is longer. The PES was
calculated at R = 500 a.u. from the center.

The results presented in Fig. 7 are in very good agree-
ment with Ref. [62], the grid and the Gaussian basis
produces very similar PES. This is not surprising consid-
ering that as we have shown before, the wave functions
calculated on the grid and using TDVP with Gaussians
is nearly identical (see Fig. 2.)

The next example covers the case of soft Coulomb in
3D for lasers A and B, which are illustrated in Figs. 8
and 9. The agreement between the grid and PWG calcu-
lations is still very good, although the necessary time step
to reach accuracy is smaller for PWG than in 1D. The
grid calculation would converge with a time step that is
10 times larger, but we used the same time step for both
grid and PWG for consistency. However, even with a
larger time step, the grid calculation is computationally
demanding due to its large grid size.
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FIG. 2. Electron densities in Gaussian potential at t = 100 a.u. for laser A and laser B.

We have also tested a restricted PTG basis, constrain-
ing the Gaussian to be spherically symmetric by choosing
α = β in Eq. (19). Test calculations for shorter, weaker
pulses show good agreement between this restricted ba-
sis and the grid calculations, but this basis is not flexible
enough for accurate calculations in the test examples pre-
sented in this work. Despite this, the result is still note-
worthy because it may lead to an extension of Gaussian
atomic orbitals for weak fields.
To test the applicability of the approach for larger sys-

tems we have considered a two electron system in 1D
with the Hamiltonian

H = −1

2

d2

dx21
− 1

2

d2

dx22
(35)

− 2V (x1)− 2V (x2) + V (x1 − x2) + F (t)(x1 + x2),(36)

with a Gaussian potential, V (x) = eµx
2

, µ = 0.1 a.u..
The basis function is taken in the form

gi = cie
−α1ix

2

1
−α2ix

2

2
+βix1x2+k1ix1+k2ix2 (37)

with six variational parameters, α1i, α2i, βi, k1i, k2i and
ci, (i = 1, . . ., N . The two particles are assumed to be
distinguishable (one electron with spin up and one with
spin down).
The energy of the two electron system as the function

of time is shown in Fig. 10. The convergence was checked

by using different starting basis sets and different basis
dimensions. N = 15 basis functions with ∆t = 0.0001
a.u. yields well converged results. Figure 11 show the
snapshots of the two-electron density. At t = 0 the elec-
trons are confined to the potential well around the origin.
The laser field moves them out of the well towards the
positive direction (t = 30 a.u. in Fig. 11), and then
back toward the origin. After the peak of the laser field
(in Fig. 11, t = 50 a.u.) there are two peaks that ap-
pear in the density. This corresponds to a configuration
where the first electron’s probability distribution has a
maximum close to the origin, while the second electron’s
probability distribution has two maxima, which are left
and right with respect to the origin.

IV. SUMMARY

We have used the TDVP to solve the time-dependent
Schrödinger equation using time-dependent Gaussian ba-
sis functions. The TDVP optimizes the linear and the
nonlinear parameters on the same footing. The results
are compared to those of grid calculations and the ac-
curacy to the present approach is demonstrated. We
have tested various forms of basis functions including
Gaussians multiplied by polynomials, plane waves, and
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FIG. 3. Gaussian potential with laser field A in 1D. Top: Energy as a function of time for grid (solid blue line), PWG (red
dashed line) and PTG (black dotted line). Bottom: Ground state occupation probability as a function of time for grid (solid
blue line), PWG (red dashed line) and PTG (black dotted line). The three lines are indistinguishable in the resolution of the
figure.

non-spherical Gaussians. The complex parameters of the
Gaussians make the basis functions flexible enough to
represent oscillatory wave functions. In addition, several
potentials and laser fields were used to test the approach
for different degree of ionization.

The approach has several advantages. First, a sim-
ple Gaussian basis can be used to solve time-dependent
problems, which may be useful in various electronic struc-
ture codes. Second, the number of basis functions needed
is considerably smaller than the number of grid points
required to represent a wave function. The tradeoff is
similar to the solution of a time independent problem
comparing atomic orbital like basis functions to a real
space grid. The atomic functions can be used to form
a smaller basis, but the resulted Hamiltonian matrix is
dense and the basis is nonorthogonal. The dimension
of the real space grid is high, but it is an orthogonal
representation with very sparse Hamiltonian. The Gaus-
sian basis facilitates analytical expressions for the ma-
trix elements, while the grid approach approximates the
derivatives with finite differences. A further advantage
is that no boundary conditions need to be enforced, and

the TDVP automatically generates the Gaussians to rep-
resent the wave function in space. As the free Gaussian
wave packet example (Appendix A) shows, the wave func-
tion can propagate from any given point to any desired
distance without artificial reflections. In principle, a com-
plex absorbing potential can also be used, in which case
the number of Gaussian basis states may be less, because
the wave function only need to be represented in a well
defined region. The approach can be extended to larger
systems using Explicitly Correlated Gaussians [46]. The
TDVP example using explicitly correlated Gaussians for
a time-dependent 2 electron system presented in this pa-
per shows promising results.

The main disadvantage is that the basis needs to be
carefully initialized, otherwise large overlap between ba-
sis functions can make the inversion of the M matrix in
Eq. (10) difficult. This can possibly be alleviated by us-
ing a singular value decomposition for calculation of the
inverse. It is also somewhat difficult to determine a suf-
ficient number of basis functions and their desired initial
parameters to minimize error during time propagation.

The approach can be improved in several ways. Chief
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FIG. 4. Gaussian potential with laser field B in 1D. Top: Energy as a function of time for grid (solid blue line), PWG (red
dashed line) and PTG (black dotted line). Bottom: Ground state occupation probability as a function of time for grid (solid
blue line), PWG (red dashed line) and PTG (black dotted line). The three lines are indistinguishable in the resolution of the
figure.

among them, the simple first order time propagation
should be replaced with a more accurate approach. The
approach can also benefit from adaptive time steps, using
larger time step for smooth regions of the time dependent
potential and smaller time steps where the potential has
abrupt changes. Both of these improvements would allow
for larger time steps and faster calculation. One can also
design some scheme to prune the number of Gaussians
and add new Gaussians as needed. Finally, another pos-
sibility is to refit the wave function with a completely new

set of Gaussians after a certain time interval to exclude
ill-behaved basis states.
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FIG. 10. Energy (black line) and laser field (dashed line) of a 2 electron system as a function of time. The laser parameters
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(2017).

[15] D. Wells and H. Quiney, Scientific Reports 9, 782 (2019).
[16] K. Kormann, Communications in Computational Physics

20, 6085 (2016).
[17] A. D. Bandrauk and H. Shen, The Journal of Chemical

Physics 99, 1185 (1993).
[18] E. Lötstedt, T. Kato, and K. Yamanouchi, Phys. Rev.

A 99, 013404 (2019).
[19] W. van Dijk, T. Vanderwoerd, and S.-J. Prins, Phys.

Rev. E 95, 023310 (2017).
[20] J. Kaushal and O. Smirnova, Phys. Rev. A 88, 013421

(2013).
[21] P. V. Demekhin, D. Hochstuhl, and L. S. Cederbaum,

Phys. Rev. A 88, 023422 (2013).
[22] A. N. Grum-Grzhimailo, B. Abeln, K. Bartschat, D. We-

flen, and T. Urness, Phys. Rev. A 81, 043408 (2010).
[23] J. H. Bauer, F. Mota-Furtado, P. F. O’Mahony, B. Pi-

raux, and K. Warda, Phys. Rev. A 90, 063402 (2014).
[24] B. I. Schneider, Phys. Rev. A 55, 3417 (1997).
[25] D. A. Horner, W. Vanroose, T. N. Rescigno, F. Mart́ın,

and C. W. McCurdy, Phys. Rev. Lett. 98, 073001 (2007).
[26] L. Tao, C. W. McCurdy, and T. N. Rescigno, Phys. Rev.

A 79, 012719 (2009).
[27] H. Bachau, E. Cormier, P. Decleva, J. E. Hansen, and

F. Mart́ın, Reports on Progress in Physics 64, 1815
(2001).

[28] W. Vanroose, D. A. Horner, F. Mart́ın, T. N. Rescigno,
and C. W. McCurdy, Phys. Rev. A 74, 052702 (2006).

[29] J. Feist, S. Nagele, R. Pazourek, E. Persson, B. I. Schnei-
der, L. A. Collins, and J. Burgdörfer, Phys. Rev. Lett.

103, 063002 (2009).
[30] Y. Yu and B. D. Esry, Journal of Physics B: Atomic,

Molecular and Optical Physics 51, 095601 (2018).
[31] U. De Giovannini, A. H. Larsen, and A. Rubio, The

European Physical Journal B 88, 56 (2015).
[32] A. Scrinzi, Phys. Rev. A 81, 053845 (2010).
[33] M. Weinmller, M. Weinmller, J. Rohland, and A. Scrinzi,

Journal of Computational Physics 333, 199 (2017).
[34] A. Scrinzi, H. Stimming, and N. Mauser, Journal of

Computational Physics 269, 98 (2014).
[35] P. A. M. Dirac, Mathematical Proceedings of the Cam-

bridge Philosophical Society 26, 376385 (1930).
[36] A. McLachlan, Molecular Physics 8, 39 (1964).
[37] S. Sawada, R. Heather, B. Jackson, and H. Metiu, The

Journal of Chemical Physics 83, 3009 (1985).
[38] S. Rau, J. Main, H. Cartarius, P. Köberle, and G. Wun-
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Phys. 66, 917 (1994).

[45] R. Anzaki, T. Sato, and K. L. Ishikawa, Phys. Chem.
Chem. Phys. 19, 22008 (2017).

[46] J. Mitroy, S. Bubin, W. Horiuchi, Y. Suzuki, L. Adamow-
icz, W. Cencek, K. Szalewicz, J. Komasa, D. Blume, and
K. Varga, Rev. Mod. Phys. 85, 693 (2013).

[47] Y. Suzuki and K. Varga, Stochastic variational Ap-

proach to Quantum-Mechanical Few-Body Problems, 172
(Springer, New York, 1998).

[48] K. Varga, Phys. Rev. A 99, 012504 (2019).
[49] C. Marante, L. Argenti, and F. Mart́ın, Phys. Rev. A

90, 012506 (2014).
[50] M. Cafiero, S. Bubin, and L. Adamowicz, Phys. Chem.

Chem. Phys. 5, 14911501 (2003).
[51] S. Bubin, M. Pavanello, W.-C. Tung, K. L. Sharkey,

and L. Adamowicz, Chemical Reviews 113, 3679 (2013),
pMID: 23020161, http://dx.doi.org/10.1021/cr200419d.

[52] A. K. Kazansky, Journal of Physics B: Atomic, Molecular
and Optical Physics 31, L579 (1998).

[53] C. Leforestier, R. Bisseling, C. Cerjan, M. Feit, R. Fries-
ner, A. Guldberg, A. Hammerich, G. Jolicard, W. Kar-
rlein, H.-D. Meyer, N. Lipkin, O. Roncero, and
R. Kosloff, J. Comput. Phys. 94, 59 (1991).

[54] H. Tal-Ezer and R. Kosloff, J. Chem. Phys. 81, 3967
(1984).

[55] D. Kosloff and R. Kosloff, J. Comput. Phys. 52, 35
(1983).

[56] A. Gordon, C. Jirauschek, and F. X. Kärtner, Phys. Rev.
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Appendix A: Propagation of a free Gaussian wave

packet

To illustrate the time propagation on a simple example,
we consider the time evolution of a Gaussian wave packet
in 1D. The Hamiltonian is:

H = −1

2

∂2

∂x2
, (A1)

and the trial function is written in the form Defining a
one dimensional Gaussian as:

g = eγ−αx2−κx, (A2)

. The derivatives with respect to the parameters are:

∂g

∂γ
= g,

∂g

∂α
= −x2g, ∂g

∂κ
= −xg, (A3)

so the M matrix (see Eq. (10)) is:

M =







〈g|g〉 −〈g|x2|g〉 −〈g|x|g〉
−〈g|x2|g〉 〈g|x4|g〉 〈g|x3|g〉
−〈g|x|g〉 〈g|x3|g〉 〈g|x2|g〉






. (A4)

The action of the Hamiltonian on the trial function can
be expressed as:

Hg = −1

2

∂2g

∂x2
=
(

(α− κ2/2)− 2α2x2 − 2ακx
)

g. (A5)

The v vector is defined as:

v =







〈g|H |g〉
−〈g|x2H |g〉
−〈g|xH |g〉






, (A6)

which can be rewritten using Eq. (A5) and the definition
of M as:

v =M







α− κ2/2

2α2

2ακ






. (A7)

Using this Eq. (12) becomes:

iM







γ̇

α̇

κ̇






=M







α− κ2/2

2α2

2ακ






. (A8)

The equation for α,

iα̇ = 2α2, (A9)

can be integrated easily:

α(t) =
α(0)

2iα(0)t+ 1
. (A10)

Substituting this into

iκ̇ = 2ακ, (A11)

we get

κ(t) =
κ(0)

2iα(0)t+ 1
. (A12)

Now using

iγ̇ = α− κ2/2, (A13)

we get

γ(t) = −1

2
ln(2iα(0)t+ 1) +

iκ(0)2t

4iα(0)t+ 2
+ γ(0). (A14)

The solution agrees with the analytical solution of time
propagation of Gaussian wave packets.

Appendix B: Matrix elements: 1D PTG

For simplicity, first we calculate the matrix elements
for a single basis function:

g = zneγ−βz2

, (B1)

and the we show how to generalize the results for N basis
functions. Instead of using using the linear coefficient c
we use c = eγ , which makes the equations simpler: The
derivative of the exponential function is proportional to
the exponential so the basis function remains in the same
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form. In the ground state calculations, c is a real number,
so to initialize γ we set Im(γ) = 0 if c > 0 and Im(γ = π)
if c < 0. Alternatively, one can write the matrix elements
in terms of γ and switch back to c in the numerical work.

We take the derivatives with respect to the parameters:

dg

dγ
= g (B2)

dg

dβ
= −z2g. (B3)

We then get the matrix M from Eq. (10):

M =

(

〈g|g〉 − 〈g|z2|g〉
− 〈g|z2|g〉 〈g|z4|g〉

)

. (B4)

Then v is defined as:

v =

(

〈g|H |g〉
− 〈g|z2H |g〉

)

. (B5)

To calculate these matrix elements we need the action
of the kinetic energy operator on g:

−1

2

∂2g

∂z2
=

(

−1

2
n(n− 1)z−2 + (2n+ 1)β − 2β2z2

)

g.

(B6)

The generalization for N basis functions, g1, . . ., gN is
simple. The M matrix in Eq. (B4) will now be built up
in N ×N block matrices:

M =

(

〈gi|gj〉 − 〈gi| z2 |gj〉
− 〈gi| z2 |gj〉 〈gi| z4 |gj〉

)

. (B7)

Similarly for v we have:

v =

(

∑N
k=1 〈gi|H |gk〉

−∑N
k=1 〈gi| z2H |gk〉

)

. (B8)

Now we assume a general potential can be expanded
in terms of Gaussians:

V (z) =
∑

i

vie
−vi

zz
2

. (B9)

In this case all the necessary matrix elements can be
derived from:

〈gσ|zke−νz2 |gσ′〉 = eγ∗+γ′ (k − 1)!!
√
π

(σ∗ + σ′ + ν)(k+1)/22(k/2)

(B10)
if k is even and zero otherwise. Note this formula is
valid if the integral is convergent, which in turn is true
if Re(σ∗ + σ′ + ν) > 0. The principal value square root
should be used in Eq. (B10).

Appendix C: Matrix elements: 3D PTG

In this section we calculate the matrix elements for a
PTG basis function:

g = zneγ−α(x2+y2)−βz2

. (C1)

We need the derivatives with respect to the parame-
ters:

∂g

∂γ
= g, (C2)

∂g

∂α
= −(x2 + y2)g, (C3)

∂g

∂β
= −z2g. (C4)

To calculate these matrix elements we need the action of
the kinetic energy operator on g:

−1

2

(

∂2

∂x2
+

∂2

∂y2

)

g =
(

2α− 2α2(x2 + y2)
)

g, (C5)

−1

2

∂2g

∂z2
=

(

−1

2
n(n− 1)z−2 + (2n+ 1)β − 2β2z2

)

g.

(C6)
The M matrix in Eq. (10) will now be built up N ×N

block matrices:

M =







〈gi|gj〉 −〈gi|x2 + y2|gj〉 −〈gi|z2|gj〉
−〈gi|x2 + y2|gj〉 〈gi|(x2 + y2)2|gj〉 〈gi|(x2 + y2)z2|gj〉

−〈gi|z2|gj〉 〈gi|(x2 + y2)z2|gj〉 〈gi|z4|gj〉






. (C7)

Similarly, for the v vector we have:

v =







∑N
k=1〈gi|H |gk〉

−∑N
k=1〈gi|(x2 + y2)H |gk〉
−∑N

k=1〈gi|z2H |gk〉






, (C8)

where each entry corresponds to a N × 1 block matrix.
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Now we will assume, that a general potential can be
expanded in terms of Gaussians:

V (x, y, z) =
∑

i

vie
−νi

xx
2−νi

yy
2−νi

zz
2

. (C9)

For spherically symmetric potentials this expansion fur-
ther simplifies:

V (r) =
∑

i

vie
−νi(x2+y2+z2). (C10)

In case of Gaussian potentials, all the necessary matrix

elements of M and v can be derived from:

〈gσx
|xkxe−νxx

2 |gσ′

x
〉〈gσy

|ykye−νyy
2 |gσ′

y
〉〈gσz

|zkze−νzz
2 |gσ′

z
〉

(C11)
The one dimensional integral can be easily calculated

as above in Eq. (B10).
One can also calculate the matrix elements analytically

for the 3D Coulomb potential:

V (r) = − 1
√

x2 + y2 + z2
(C12)

We can calculate the necessary matrix elements using
the following integral identity:

1
√

x2 + y2 + z2
=

2√
π

∫ ∞

0

e−u2(x2+y2+z2)du. (C13)

This allows us to evaluate the integral:

〈g|V (x, y, z) |g′〉 = − 2√
π
eγ

∗+γ′

∫ ∞

0

du

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
zn+n′

e−(u2+a)(x2+y2)−(u2+b)z2

dxdydz, (C14)

where

a = α∗ + α′, b = β∗ + β′. (C15)

With n+ n′ = 0 (C14) yields:

〈g|V (x, y, z) |g′〉 = −2πeγ
∗+γ′

arccos
(√

a√
b

)

√
a
√
b
√

1− a
b

, (C16)

where Re(a) > 0 and Re(b) > 0. In the case that a = b:

〈g|V (x, y, z) |g′〉 = −2π

a
eγ

∗+γ′

. (C17)

Note that (C14) will be 0 when the polynomial terms
are of odd degree. We can thus evaluate the more general
form by taking derivatives as follows:

(−1)n
∂n

∂an
〈g|V (x, y, z) |g′〉 = 〈g| (x2+y2)nV (x, y, z) |g′〉 ,

(C18)

(−1)n
∂n

∂bn
〈g|V (x, y, z) |g′〉 = 〈g| z2nV (x, y, z) |g′〉 ,

(C19)

∂2n

(∂a∂b)n
〈g|V (x, y, z) |g′〉 = 〈g| (x2+y2)nz2nV (x, y, z) |g′〉 .

(C20)
When a = b, the form (C16) cannot be evaluated. In

this case, (C14) simplifies considerably into a form which
can be easily evaluated and yields simple polynomial an-
swers [47].

Appendix D: Matrix elements: 3D PWG

In this case we have the basis function in the form:

g = eγ−α(x2+y2)−βz2+kz . (D1)

The M matrix in Eq. (10) will now be built up N ×N
block matrices:

M =











〈gi|gj〉 −〈gi|x2 + y2|gj〉 −〈gi|z2|gj〉 〈gi|z|gj〉
−〈gi|x2 + y2|gj〉 〈gi|(x2 + y2)2|gj〉 〈gi|(x2 + y2)z2|gj〉 −〈gi|(x2 + y2)z|gj〉

−〈gi|z2|gj〉 〈gi|(x2 + y2)z2|gj〉 〈gi|z4|gj〉 −〈gi|z3|gj〉
〈gi|z|gj〉 −〈gi|(x2 + y2)z|gj〉 −〈gi|z3|gj〉 〈gi|z2|gj〉











. (D2)
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Similarly, for the v vector we have:

v =











∑N
k=1〈gi|H |gk〉

−∑N
k=1〈gi|(x2 + y2)H |gk〉
−∑N

k=1〈gi|z2H |gk〉
∑N

k=1〈gi|zH |gk〉











. (D3)

All the necessary matrix elements can then be calculated

from Eq. (C11) using Eq. (B10) provided that the poten-
tial is expanded into Gaussians. The matrix elements for
1D PWG can be obtained by taking α = 0 and eliminat-
ing the second row and column from M , and the second
row from v.


