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A theoretically highly efficient mechanism, operating at high laser intensities and powers, is
identified for spectral transferring huge laser energies to shorter ultraviolet and x-ray wavelengths.
With megajoule laser energies currently available at near-optical wavelengths, this transfer would,
in theory, enable megajoule x-ray lasers, a huge advance over the millijoules x-ray pulses produced
now. In fact, enabling even kilojoule x-ray lasers would still be a fantastic advance, and a more
likely achievable one, considering practical experimental inefficiencies.

PACS numbers: 42.65.Sf, 42.65.Jx, 52.35.Mw

I. INTRODUCTION

The highest energy intense laser pulses are currently
produced in the near-optical range through chirped pulse
amplification mediated by material gratings [1]. How-
ever, material gratings cannot be employed at much
shorter wavelengths, so that available energies of intense
laser pulses dramatically drop at ultraviolet and x-ray
wavelengths. In particular, the most energetic short
x-ray pulses, currently produced by giant free-electron
lasers, are now only in the mJ range [2]. Hence, an ef-
ficient transfer of laser energies from near-optical wave-
lengths, where megajoule laser energies are available [3],
to deep ultraviolet and x-ray wavelengths would open up
new research and technological frontiers.
The desired spectral energy transfer cannot be accom-

plished through methods of high harmonic generation in
gases [4, 5] or crystals [6], because gases and crystals
cannot tolerate ultra-high intensities. Huge intensities
can be tolerated in plasma. Several techniques do ex-
ploit the properties of plasma to generate very high in-
tensity pulses through resonant 3-wave interactions, like
Raman backscattering [7–12], Brillouin scattering [13–
17], or magnetized low-frequency scattering [18]. How-
ever, these techniques cannot be adapted to produce the
significant frequency upshifts contemplated here.
Frequency upshifts of laser energy could be achievable

via resonant 4-photon interactions in plasma, where two
photons are scattered into a higher frequency photon and
a lower frequency photon [19]. However, there are se-
vere impediments to this approach at high laser powers.
Here we show how to overcome these impediments. Then
cascading a few stages, each of which nearly doubles the
photon frequency, might transfer huge laser energies from
optical to ultraviolet wavelengths; cascading ten stages
would, in theory, dramatically and efficiently convert op-
tical wavelength laser energy to nanometer wavelengths.
The classical synchronism conditions for the resonant

4-photon scattering in plasma are:

k1 + k2 = k3 + k4 , ω1 + ω2 = ω3 + ω4 . (1)

ωj =
√

k2j c
2 + ω2

e , ωe =
√

4πn0e2/m.

Here c is the speed of light in vacuum; m is the electron
rest mass; −e is the electron charge; n0 is the electron

FIG. 1. Resonant wavevector ellipsoid.

density; ωe is the electron plasma frequency; ωj are laser
frequencies; and kj are laser wavevectors in plasma.
Intense laser pulses could be coupled in plasma through

the relativistic electron nonlinearity. So far, the most the-
oretical attention has been devoted to the very degener-
ate case of collinear laser pulses. For the collinear pulses,
the synchronism conditions Eq. (1) have only trivial solu-
tion k1 = k3, k2 = k4 or k1 = k4, k2 = k3. Thus, there
are not 4, but only 2 laser pulses, and such a 4-photon
interaction does not produce a real 4-photon scattering,
but only nonlinear frequency shifts.
For moderately non-collinear pulses in a very under-

critical plasma, ωe ≪ ωj, kj⊥ ≫ ωe/c, kj⊥ · K = 0,
K ≡ k1 + k2 = k3 + k4, the frequency resonance con-
dition reduces to k1 + k2 ≈ k3 + k4, like in vacuum,
where the kj-vectors trace an ellipsoidal manifold, Fig. 1.
Thus, many photon pairs having the same K and ω,
2ω ≡ ω1 + ω2 = ω3 + ω4 can experience real 4-photon
scattering.
We show here how the relativistic 4-photon scatter-

ing of moderately non-collinear laser pulses opens up un-
precedented possibilities of highly efficient spectral trans-
fers of huge laser energies to shorter wavelengths. More-
over, such transfers can be accomplished at very high
powers P , exceeding the critical power Pcr of relativistic
self-focusing of laser pulses in plasma [20–23],

Pcr = m2c5ω2/e2ω2

e ≈ 17 (ω/ωe)
2 GW. (2)

To show this, we first need to get a sufficiently general 3-
dimensional description of the relativistic 4-photon cou-
pling in plasma, which has not yet been available in a
form suitable for addressing this problem.

II. RELATIVISTIC 4-PHOTON COUPLING

We begin with the Maxwell equations in Coulomb
gauge and Hamilton-Jacobi equation for electron mo-
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tion in electromagnetic fields [24] (kinetic effects are ne-
glected, because all the beating phase velocities and elec-
tron quiver velocities considered here are much larger
than electron thermal velocities):

H = ∇×A, E = −∂ctA−∇Φ, ∇ ·A = 0, (3)

�A ≡ ∂2ctA−∆A = 4πJ/c− ∂ct∇Φ, (4)

J = −enP/
√

m2 + P 2/c2, ∆Φ = 4πe(n− n0), (5)

P = eA/c+∇S, ∂tS = eΦ− c
√

m2c2 + P 2 +mc2. (6)

By introducing dimensionless electromagnetic potentials
and electron momentum, and rescaling the action func-
tion S by the factor mc2,

A = mc2a/e, Φ = mc2φ/e, P = mcp, S = mc2s, (7)

the equations can be presented in the form

c2�a = −p(1 + p2)−1/2(ω2

e + c2∆φ)− c∂t∇φ, (8)

∇ · a = 0, p = a+ c∇s, ∂ts = φ−
√

1 + p2 + 1. (9)

For mildly relativistic electron quiver velocities in laser
pulses, a≪ 1, Eqs. (8)-(9) can be expanded in powers of
the small parameter a. To calculate the 4-photon cou-
pling, the expansion should include terms up to cubic in
a. With laser beatings well off the plasma wave reso-
nance, the leading term of the electrostatic potential φ
expansion is quadratic in a, so that the cubic in a expan-
sion of Eq. (8) is

(c2�+ω2

e)a = a(a2ω2

e/2−c2∆φ)−c(ω2

e∇s+∇∂tφ). (10)

Equation∇·a = 0 can be used to exclude s from Eq. (10).
In a uniform plasma, ∇ωe = 0, it gives

ω2

es+ ∂tφ = ∆−1∇ · [a(a2ω2

e/2− c2∆φ)]/c, (11)

(c2� + ω2

e)a = (1−∇∆−1∇·)[a(a2ω2

e/2− c2∆φ)]/c. (12)

Eqs. (11) and ∂ts = φ−
√

1 + p2 +1 can be used now to
exclude φ from Eq. (12),

(∂2t + ω2

e)φ = a2ω2

e/2, (13)

(c2�+ω2

e)a=(1−∇∆−1∇·)a[1−c2∆(∂2t +ω
2

e)
−1]a2ω2

e/2. (14)

For paraxial laser pulses of frequencies which differences
well exceed

√

ω2
e + k2⊥c

2, the beatings of a2 propagate
with speeds close to c. Then, the second term in the
square brackets Eq. (14), associated with the electrostatic
potential φ, nearly exactly compensates the first term in
the square brackets, associated with the relativistic vari-
ation of electron mass. The compensation significantly
reduces the 4-photon coupling for paraxial laser pulses.
This important effect is missed in calculations of the 4-
photon scattering probability [25, 26] neglecting the rel-
ativistic variation of the electron mass.
Apart from their resonant interaction, 4 laser pulses

produce small non-resonant beatings δa, so that the total

field has the form

a =

j=4
∑

j=1,σ=±

aσj exp[ı(kσjr − ωσjt)] + δa, (15)

kj · aj = 0, a−j = a∗
j , k−j = −kj , ω−j = −ωj. (16)

Substituting Eq. (15) into Eq. (14) and collecting the
resonant terms leads to the following equations for slowly
varying canonical amplitudes [27] bj = aj

√
ωj :

[

ı

(

∂

∂t
+
c2kj · ∇
ωj

)

− c2∆j⊥

2ωj

]

bj = δωjbj +
∂H
∂b∗j

, (17)

H = V b1b2b
∗
3
b∗
4
+ c.c., (18)

δωj =
ω2

e

2ωj





l=4,σl 6=j
∑

l=1,σ=±

|blej,−σl|2
ωl

fj,−σl −
l=4
∑

l=1

|bl|2
ωl



 , (19)

V =
ω2
e(f1,2e1,2e−3,−4+f1,−4e1,−4e2,−3+f2,−4e1,−3e2,−4)

2
√
ω1ω2ω3ω4

,

ej,l =
aj · al

ajal
, fj,l =

c2(kj + kl)
2

(ωj + ωl)2 − ω2
e

− 1 (20)

(∆j⊥ is the Laplacian in the plane perpendicular to kj).

III. TRANSVERSE FILAMENTATION

INSTABILITY

For a single laser pulse, b1 = a
√
ω, b2 = b3 = b4 =

0, Eqs. (17)-(20) reduce to the standard cubic nonlinear
Schroedinger equation,

[

ı

(

∂

∂t
+
c2k

ω

∂

∂z

)

− c2∆⊥ + ω2

e |a|2
2ω

]

a = 0. (21)

A spatially uniform solution of this equation,

a = a0 exp(−ıΓt), Γ = |a0|2ω2

e/2ω, (22)

can experience small transverse modulations

ã=exp(−ıΓt){ψ exp[ı(κr⊥−Ωt)]+χ∗exp[−ı(κr⊥−Ω∗t)]},
Ω2 = c2κ2/2ω(c2κ2/2ω − 2Γ) ≡ Ω2

κ . (23)

At κ <
√
2 a0ωe/c, the modulations are unstable. The

largest growth rate, reached at κ = a0ωe/c, is Γ. Pulses
of powers exceeding the critical power Eq. (2) have aper-
tures sufficient to accommodate unstable modulations.
For two laser pulses, such that |b2| ≈ |b1|, b3 = b4 = 0,

e1,−2 ≈ 1, |k2 − k1| ≪ k1, and ω1 ≫ ω2 − ω1 > ωe,
Eqs. (17)-(20) reduce to

[

ı

(

∂

∂t
+
c2k1 ·∇
ω1

)

+
ω2

e(G|a2|2−|a1|2)−c2∆1⊥

2ω1

]

a1 = 0,

[

ı

(

∂

∂t
+
c2k2 ·∇
ω2

)

+
ω2

e(G|a1|2−|a2|2)−c2∆2⊥

2ω2

]

a2 = 0,

G ≈ f1,−2 − 1. (24)
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These equations have a spatially uniform solution

a2 ≈ a1 = a0 exp(ıΓ2t), Γ2 ≈ (G− 1)Γ (25)

with Γ of Eq. (22). Small transverse to K modulations
of this solution satisfy the dispersion equation

[

(

Ω

κc
− k⊥c

ω

)2

− Ω2

κ

κ2c2

][

(

Ω

κc
+
k⊥c

ω

)2

− Ω2

κ

κ2c2

]

≈G2Γ2

ω2
, (26)

where k⊥ ≡ k1⊥ = −k2⊥ and Ω2

κ is given by Eq. (23).
As seen from Eq. (26), modulations of pulses 1 and 2
are weakly coupled for k2⊥ ≫ GΓω/c2, a condition sat-
isfied for (ω2 − ω1 − ωe)k

2

⊥c
2/ω2

e ≫ |a0|2ωe. In the op-
posite limit, the modulations are strongly coupled and
Ω2 ≈ Ω2

κ ± GΓκ2c2/ω. The “+” branch is stabilized for
G > 1, but then the “−” branch gets even more unstable
than for a single pulse. Thus, achieving the defocussing
nonlinear frequency shift in the uniform solution (25) for
G > 1 does not prevent the transverse filamentation in-
stability. Modulations of collinear laser pulses are nec-
essarily strongly coupled and unstable at total powers
exceeding the critical power. (This explains why achiev-
ing a defocussing nonlinear frequency shift for collinear
laser pulses, [28, 29], did not help increase to any signifi-
cant degree the laser power propagating in plasma with-
out filamentation, as was borne out by numerical simu-
lations [29].) In contrast, modulations of non-collinear
laser pulses can easily satisfy conditions for the weakly
coupled regime, and be stable to transverse modulations
at each pulse power not exceeding its own critical power.
The total power of many stable weakly coupled pulses can
then significantly exceed the individual critical powers.

IV. LINEAR GROWTH RATE OF 4-PHOTON

AMPLIFICATION

Resonant 4-photon amplification can be initiated by
two pump pulses 1 and 2, and small seed pulse 3. In
the paraxial geometry with the axis along K, so that
k2⊥ = −k1⊥, k4⊥ = −k3⊥, the frequency resonance con-
dition reduces to k2

1⊥k3k4 ≈ k2
3⊥k1k2. For moderately

close pump frequencies, ω1 ≫ ω2−ω1 ≫ ωe, and moder-
ately large ratio of seed frequencies, ω3 ≫ ω4, the pump
energy mostly goes into the amplified pulse 3, whose fre-
quency is nearly twice the pump frequencies. When all
polarizations are the same, the 4-photon coupling coeffi-
cient Eq. (20) reduces to

V ≈ 3ω2

e k
2

1⊥(2ω1

√
ω3ω4 k

2

1)
−1. (27)

The spatially uniform solution of Eqs. (17)-(20) has then
small seeds 3 and 4 growing exponentially with the rate

γ = V |b1b2| ≈ 3ω2

e k
2

1⊥|a1|2(2
√
ω3ω4 k

2

1
)−1. (28)

For a1 = 0.1, k1⊥ = k1/7, ω4 = ω1/5, the rate
is γ ≈ 4.7 × 10−4 ω2

e/ω1. For the laser wavelength
λ1 ≈ 350 nm, as at NIF [3], and ωe = ω1/50, correspond-
ing to the plasma concentration n0 ≈ 3 × 1018 cm−3,

the distance within which the growing pulse amplitude
makes one exponentiation is c/γ ≈ 30 cm. To keep this
distance the same at succeeding stages of the spectral
energy transfer, occurring at shorter laser wavelengths,
the plasma concentration should be increasing in pro-
portion to the laser frequency. Then, the final stage
of 10-stage cascade, converting micrometer laser wave-
lengths energy to nanometer wavelengths, would require
the plasma concentration n0 ≈ 3× 1021 cm−3. The first-
stage plasma concentration can be produced by ionizing
gas, the tenth-stage concentration can be produced by
ionizing foam. Compared to Raman amplification ampli-
fication of laser pulses in plasma [7], the plasma here is
easier to implement, since it need not be homogeneous.

V. CONTROL OF NONLINEAR DETUNING

As the seed amplitude grows and the pump depletes,
the initially perfect resonance may be detuned by nonlin-
ear frequency shifts δωj . These shifts do not exhibit auto-
matic cancellation of the leading terms for paraxial pulses
and, thus, can much exceed the coupling exhibiting such
a cancellation. The detuning, δω = δω4+δω3−δω2−δω1,
can be controlled by using “dual seeds”, coupled like
pump pulses 1 and 2. Let all pulses have the same po-
larization, and let seed pulse 5 be close to 3 in amplitude
|b5| ≈ |b3|, and frequency ω5 ≫ ω3 − ω5 ≫ ωe, while
k5⊥ ≈ −k3⊥. Pulse 6, resonantly amplified with pulse 5
by the same pumps 1 and 2, would then satisfy conditions
ω4 ≫ ω6 −ω4 ≫ ωe, k6⊥ ≈ −k4⊥, |b6| ≈ |b4| ≈ |b3|. The
nonlinear detuning of each of the dual resonances would
then be

δω≈ ω2

e |b4|2
2ω2

4

[

(k6−k4)
2

(k6−k4)2
−3−2ω4

ω3

+
4ω4

ω1

]

+
ω2

e |b3|2
2ω2

3

[

(k3−k5)
2

(k3−k5)2

−3−2ω3

ω4

+
4ω3

ω1

]

−ω2

e |b1|2
ω2

1

[

(k2−k1)
2

(k2−k1)2
−3+

ω1

ω4

+
ω1

ω3

]

. (29)

It can be zeroed out by proper selection of the ratios
between the transverse and longitudinal components of
vectors k6 − k4 = k3 − k5 and k2 − k1.

VI. PUMP DEPLETION REGIME FOR FULLY

OVERLAPPING PULSES

At zeroed out resonance detuning, there is a simple
analytical solution of Eqs. (17)-(20), where all bj keep
constant phases synchronized such that arg b6 +arg b5 =
arg b4+arg b3 = arg b2+arg b1−π/2, while the intensities
are given by the formulas

|b3|2 = |b4|2 = |b5|2 = |b6|2 ≡ Iseed/4,

|b1|2 = |b2|2 ≡ Ipump/2, Iseed = Iseed0 + Ipump0 − Ipump

Ipump =
(Ipump0 + Iseed0)Ipump0

Ipump0 + Iseed0 exp(2γt)
. (30)

Within a few growth times γ−1, nearly all the pump en-
ergy is converted into the seed pulses 3 and 5 of nearly
doubled frequency. Eq. (30) can be generalized for mul-
tiple pumps amplifying multiple seeds.
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The spatially uniform solution is applicable when all
pulses nearly completely overlap throughout the ampli-
fication process. The radius of a pump pulse of power
P1 is R ≈ 2

√
2P1c(a1ωe

√
Pcr)

−1. For a1 ≈ 0.1, λ1 ≈
350 nm, ωe = ω1/50, and P1 ≈ Pcr ≈ 40TW, it means
R ≈ 0.08mm. The transverse slippage between such two
pump pulses having opposite k2⊥ = −k1⊥, k1⊥ = k1/7,
can be prevented by a grazing angle reflecting these
pulses from mirrors forming a kind of channel. The longi-
tudinal slippage between the pump and amplified pulses
can be neglected for a large pulse lengths, say, 30 cm (cor-
responding to the duration 1 ns and each input pump en-
ergy 40 kJ). The amplified output pulses 3 and 5 could be
used then as input pump pulses for the second stage of
the laser energy transfer to shorter wavelengths, and so
on. The spectral transfer of larger laser energies could be
accomplished in multiple channels or by using multiple
weakly coupled pulses in a larger radius channel.

VII. LONGITUDINAL PULSE-SLIPPAGE

REGIME

Very short seed pulses can be amplified in regimes em-
ploying, rather than avoiding, longitudinal slippage be-
tween seed and pump pulses. Let a small seed pulse 3
enter at t = 0 the rear edge of fully overlapping pump
pulses 1 and 2 having close frequencies and equal num-
bers of photons. The 4-photon amplification occurs at
t > 0 in the domain c1t < z < c3t ≤ c1t + L, where
cj ≈ c(1 − k2j⊥/2k

2

j ) is the longitudinal group velocity
of pulse j, and L is the pump length. At an advanced
nonlinear stage, the amplified pulse amplitude is

|b3| ≈ |b10|
√

k4/k3 {1 + exp[2(ζM − ζ)]}−1/2τ/ζM ,

τ = 2γt, ζ = 2γ
√

t(c3t− z)/(c− c4), (31)

ζM exp ζM ≈ τ
√

k4/k3 |b10|/|b30| ≫ 1 (32)

in the domain ζ > 0, ζ − ζM ≪ ζM ; in the overlapping
domain ζ − ζM ≫ 1, where pumps are already depleted,

|b3|≈|b10|
√

k4/k3 τ ζ̃M/ζ
2, ζ̃M ≈ζM+ln(ζM ζ̃M/ζ

2). (33)

The pulse amplitude and energy (located at ζ ∼ ζM )
grow approximately linearly with the amplification time,
while the pulse duration decreases approximately in-
versely to the amplitude. For simplicity, we ignored the
dual seed pulse in these formulas, but it can be taken
into account like in the preceding section.

VIII. DISCUSSION

Our paper presents several important innovations
which jointly accomplish a major conceptual break-
through in the theory and applications of relativistic 4-
photon scattering in plasma.
First, we develop a very compact general description

of the relativistic 4-photon scattering, including non-
collinear laser pulses which have not been studied ad-
equately in the literature..
Second, we show that sufficiently non-collinear laser

pulses can jointly propagate without self-focusing and

transverse filamentation even at total powers exceeding
the critical power of relativistic self-focusing. This is be-
cause such pulses, in contrast to collinear pulses, can be
weakly coupled and stable at individual, rather than to-
tal powers, not exceeding the critical power. As seen
from Fig. 1, multiple pairs of non-collinear laser pulses
can have the same sum of wave-vectorsK and frequencies
2ω, and thus be in the same 4-photon resonance. This al-
lows, in principle, simultaneous amplification of multiple
laser seeds by multiple laser pumps, even at total powers
exceeding the critical power of relativistic self-focusing.

Third, we calculate the growth rate of 4-photon ampli-
fication and show that, at mildly relativistic intensities,
it can be sufficient for accomplishing the amplification
within reasonable distances.

Fourth, we show how to stay within the 4-photon res-
onance throughout the entire amplification process, de-
spite varying nonlinear frequency shifts exceeding con-
siderably the resonance bandwidth. This is achieved by
using novel “dual seeds”, which secure mutual cancella-
tion of the frequency shifts in the synchronism conditions.
An incidental benefit is that unwanted resonances may
not survive.

Fifth, we show how to prevent the energy flow rever-
sal back from intense amplified pulses to pumps. This is
achieved by using pumps with the same number of pho-
tons. Such pumps are depleted simultaneously, which
ensures nearly total energy transfer. Any small leftover
of pump energy, due to inexact matching of numbers of
photons, just slightly reduces the efficiency. The process
can realistically be terminated for multiple pump pulses
simultaneously, before any reversal of the energy flow oc-
curs. This is because the rate of energy transfer drops
significantly when pump amplitudes become small. For
example, if the pump leftover energy is 10% of the initial
pump energy, the distance within which pumps stay that
small is 10 times larger than the initial pump depletion
distance, which leaves an ample space for terminating the
interaction. Incidentally, these means of preventing the
energy flow reversal might suggest tools for controlling
more general inverse cascades. In particular, this might
help improving the kinetic method of suppressing the rel-
ativistic filamentation instability by phase randomization
of powerful laser pulses [30, 31], impeded by the well-
known tendency of Bose-Einstein condensate formation
via the inverse energy cascade [32–34].

Sixth, in the 4-photon amplification of non-collinear
laser pulses, the transverse slippage of the pulses could
be an issue. It can be prevented by side mirrors reflect-
ing pulses at grazing angles as needed. For pulses fully
overlapped in the transverse directions, we present simple
analytical solutions of the evolution equations, showing
energy transfer to a nearly double-frequency seed up to
the total pump depletion, addressing both the cases of
negligible or substantial longitudinal slippages.

Notably, in our scheme, plasma need not be too homo-
geneous. We propose to use a plasma of very undercriti-
cal density, where the electron plasma frequency is much
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smaller than the laser frequencies, so that the 4-photon
resonance synchronism conditions are basically the same
as in vacuum, unaffected by plasma inhomogeneities. At
the same time, the very same plasma inhomogeneities
may, in fact, serve to suppress parasitic processes such
as Raman or Brillouin scattering, mediated by plasma
waves or sound waves, which are much more sensitive
to inhomogeneities than the photons that we consider
[36, 37]. The parasitic processes involving plasma waves
can be further suppressed by laser frequency chirping
[38], without affecting the useful 4-photon resonance.

Although the spectral transfer of optical energy to
x-ray energy is, in principle, very efficient, the achiev-
able experimental efficiencies might be less in practice
for reasons unanticipated here. If each of the ten stages
were, say, only 50% efficient, then a factor of as much
as 1000 would be lost in the ten stages required through
frequency doubling, resulting in kJ in the xray regime
rather than MJ. However, considering that at present
only mJ xrays are available, even attaining kJ would be

a fantastic advance. While we do not emphasize here
applications, it can be expected that short-wavelength
high-energy laser pulses will enable radically new discov-
eries and technologies. An example of new technologies
that might be readily imagined is the delivery of laser
power to the compressed target core for achieving fast
ignition in inertial confinement fusion, not with lasers in
the optical range [35], but with even kilojoules at x-ray
wavelengths capable of naturally penetrating even very
dense plasma layers.
In summary, the proposal advanced here is unique in

its ambition. It identifies the methodologies that can be
used for a highly efficient resonant plasma-based spectral
transfer of huge energies of short optical laser pulses to
deep-ultraviolet and x-ray wavelengths. Apart from the
evident importance of this for applications, the method-
ologies put forth here are of basic academic significance.
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S. Brown, S. Alǐsauskas, G. Andriukaitis, T. Balčiunas,
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