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We systematically study the effects of liquid viscosity, liquid density, and surface tension on global
microbubble coalescence using lattice Boltzmann simulation. The liquid-gas system is characterized
by Ohnesorge number, Oh ≡ ηh/

√
ρhσrF with ηh, ρh, σ, and rF being viscosity and density of

liquid, surface tension, and the radius of the larger parent bubble, respectively. This study focuses
on the microbubble coalescence without oscillation in an Oh range between 0.5 and 1.0. The global
coalescence time is defined as the time period from initially two parent bubbles touching to finally
one child bubble when its half vertical axis reaches above 99% of the bubble radius. Comprehensive
GPU (Graphics Processing Unit) parallelization, convergence check, and validation are carried out
to ensure the physical accuracy and computational efficiency. From 138 simulations of 23 cases,
we derive and validate a general power-law temporal scaling, T ∗ = A0γ

−n, that correlates the
normalized global coalescence time (T ∗) with size inequality (γ) of initial parent bubbles. We found
that the prefactor A0 is linear to Oh in the full considered Oh range, whereas the power index n is
linear to Oh when Oh < 0.66 and remains constant when Oh > 0.66. The physical insights of the
coalescence behavior are explored. Such a general temporal scaling of global microbubble coalescence
on size inequality is believed the first-time reveal. The scaling may provide useful guidance for the
design, development, and optimization of microfluidic systems for various applications.
Keywords: microbubble coalescence, power-law temporal scaling, lattice Boltzmann method,
Ohnesorge number, GPU parallelization.

I. INTRODUCTION

Microbubble coalescence is referred to as an evolving
process during which two or more touching bubbles (par-
ents), with their diameters from 1 − 100(µm), merge to
a single bubble (child). A global coalescence typically
consists of two stages. The first one is the early coales-
cence during which neck bridges form and grow. The
second one is the post coalescence toward a child bubble
with a minimal surface area. Microbubble coalescence ex-
ists in many applications, such as airlift bioreactors [1],
targeted drug and gene delivery [2], water and wastew-
ater treatment [3], and food storage [4]. In some cases,
rapid coalescence might be desirable. One example is
to control bubble formation during gas injection from a
micro-tube into the channel of a downward liquid cross-
flow [5]. While in other systems, coalescence needs to
be prevented or suppressed to avoid the loss of the total
liquid-gas surface area. Therefore, it is of general inter-
est to explore the dynamics of microbubble coalescence
under various influences for better control of various gas-
fluid systems.
There have been efforts to investigate different ef-

fects on the individual stages of microbubble coalescence
through mathematical analyses, laboratory experiments,
and numerical simulations. The majority efforts have
been on the early coalescence to reveal various effects [6–
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10]. For instance, Paulsen et al. [8] studied the effects
of the dense surrounding fluid on the formation of an in-
finitesimal neck bridge and discovered that outer fluid has
a marginal impact on the dynamics of neck bridge forma-
tion and evolution. On this early stage, a half power-law
temporal scaling of neck growth has been well derived
and validated. However, the post coalescence stage has
been rarely addressed. An early attempt was on pure
mathematical modeling for an oscillating ellipse [11]. The
corresponding numerical simulations were done [12] after
two decades under characterized parameters. Based on
these mathematical and numerical frameworks, Stover et
al. [13] experimentally studied the microbubble oscilla-
tion in the post coalescence stage. This study focused
on the effects of liquid viscosity and surface tension on
the decay of the damped oscillation but lacked a quanti-
tative exploration of the underlying physics of the oscil-
lation. It is substantially meaningful to understand the
post coalescence because very different behavior could
occur in this coalescence stage such as damped oscilla-
tion [13, 14], shrinking [15], and off-center/head-on sepa-
ration [16]. However, there remains a challenge to study
global coalescence, especially when size inequality of par-
ent bubbles are involved.
The motivation of this study stemmed from an exper-

iment to prototype and fabricate a novel microreactor
for on-chip gas generation [17]. The major behavior of
this microfluidic device is unequal-size bubble coalescence
[18]. We explore the underlying physics in the global
process of microbubble coalescence to support the design
and optimization of the prototype. Prior to this work,
we have studied the temporal and spatial scalings of air
microbubble coalescence in water [19], the effects of the
initial conditions on the neck growth [9] in the early co-
alescence, and the mechanism of damping oscillation in



2

the post coalescence [14] through numerical simulations
using the lattice Boltzmann method (LBM) [20, 21]. We
showed that unequal-size air microbubble coalescence in
water exhibits a power-law temporal scaling [19]. We
also learned that an Ohnesorge number (Oh, defined in
Section IIIA) determines whether a damping oscillation
would occur in the post coalescence stage [14]. We have
identified a critical Oh value (≈ 0.477) that separates
two distinct post-coalescence behaviors: with or without
damping oscillation when Oh is smaller or larger than
0.477, respectively. The mechanism behind the damping
oscillation has been explored in terms of the competition
between driving and resisting forces in the two fluids.

In the present study, we further investigate the general
effects of inertia and viscosity on the power-law temporal
scaling of global bubble coalescence when the Oh number
is relatively large, i.e., Oh > 0.5. In this range of Oh, no
damping oscillation occurs in the post coalescence stage.
Totally 23 cases, characterized by Oh number with dif-
ferent combinations of liquid density, viscosity, and sur-
face tension, are systematically studied and a general
power-law temporal scaling is derived and validated for
unequal-size microbubble coalescence. We continue to
employ the multiphase LBM model [22–25] based on the
free-energy theory [26–28]. This model has been contin-
uously developed and refined by Lee’s group [29–32]. In
this model, the parasitic current (a small-amplitude ar-
tificial velocity field arising from an imbalance between
discretized forces in multiphase/multi-component flows)
has been eliminated. It is noted that minimizing the par-
asitic current is critically important for accurately simu-
lating multiphase flows.

The computation cost for simulating the global coa-
lescence of microbubbles is high. A global microbubble
coalescence typically takes about 300 milliseconds. With
appropriate temporal and spatial resolutions, one com-
plete simulation through a serial execution on a worksta-
tion (Intelr Xeonr CPU X5660@ 2.80GHz) takes about
151 wall-clock hours. For the 138 simulations in the 23
cases in this study, the total computation time would be
approximately 2.5 years. Using LBM with parallel com-
puting can overcome such a computation bottle neck. It
has been well known that the LBM is a versatile and
highly parallel approach as the discrete Boltzmann trans-
port equation is solved in the velocity (or moment) space
to obtain the time-dependent fluid velocity distributions.
Due to the intrinsic parallel nature, the implementation
of LBM on Graphics Processing Units (GPUs) has be-
come increasingly popular [33, 34]. Vanka group[35, 36]
was among the early groups to study the GPU acceler-
ation for simulating complex flows including turbulence
and multiphase flow. They got around 25 times speed-
up over a single CPU (2.6 GHz AMD Phenom quad-core
processor) performance through a single-core GPU (Tesla
C2070, CUDA 3.2 compiler) implementation. With the
recent fast development of both CPU and GPU hard-
ware, as well as computation algorithms, the speed-up ra-
tio of GPU parallel vs. CPU serial computation for mul-

tiphase flows using LBM has been consistently increas-
ing. Most recently, the acceleration ratio of GPU (Tesla
P100) over CPU (i7-4930K) performance has reached 680
MLUPS (Million Lattice Updates Per Second). using
LBM to simulate droplet dynamics [37]. Since 2013, we
have been implementing GPU parallel computing in dif-
ferent research projects, such as direct numerical sim-
ulation of decaying isotropic turbulence [38], patient-
specific computational hemodynamics [39], image-based
pore-scale porous media flows [40, 41], and the current
multiphase flow. With about 60 times speed-up using
GPU parallel (Tesla C2075) computation, we have re-
duced the wall-clock hours from 2.5 years, as aforemen-
tioned, to 14.4 days, making it possible to study over 23
cases (138 simulations) within a manageable time. Using
the computation resources of XSEDE [42], we achieved
981 times speed-up of GPU parallel(Tesla P100 GPU)
from CPU serial (Intel Broadwell, E5-2683 v4) computa-
tion. A corresponding manuscript addressing the GPU
parallelism and acceleration is in preparation.
The remainder of the paper is organized as follows.

Section II shows the mathematical formulation of lattice
Boltzmann modeling for fluid-gas flows. The computa-
tional setup, validation, and numerical results are pre-
sented in Sec. III. Finally, Sec. IV provides a summary
discussion and concludes the paper.

II. LATTICE BOLTZMANN MODELING FOR

FLUID-GAS FLOWS

We concisely introduce the main modeling idea and
major equations here. The detailed formulation of the
lattice Boltzmann model can be found in [19]. When the
flow involves both fluid and gas, the interfacial behavior
arises as a result of microscopic long-range interactions
among the constituent molecules of the system [43]. Us-
ing a diffuse interface to separate phases is a popular
technique in the modeling of multi-phase flow. The ad-
vantages include the ease of implementation (even for
complex three-dimensional interfaces) and the suitabil-
ity to capture singular phenomena, such as interface rup-
ture, coalescence, or phase change. The governing equa-
tions including Cahn-Hilliard equation, pressure evolu-
tion equation, and momentum equation are

∂C/∂t+ u · ∇C = ∇ · (M∇µ) (1)

∂p1/∂t+ ρc2s∇ · u = 0 (2)

ρ(∂u/∂t+u·∇u) = −∇p1+µ∇C+∇·η(∇u+(∇u)T ) (3)

In the equations, C (= ρ̃i/ρi) is the composition of
liquid and gas, µ is the chemical potential with µ = µ0−
κ∇2C in which µ0 is the classical part of the chemical
potential. We assume that the energy E0 takes a form
[43, 44] of E0 = βC2(C − 1)2 with β being a constant.
Thus, µ0 = ∂E0/∂C = 2βC(C − 1)(2C − 1).
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The equilibrium profile of C is determined when the
energy E0 is minimized and µ is a constant in one di-
mension. At equilibrium, the interface profile is C(z) =
0.5 + 0.5 tanh (2z/D) where z is the distance normal to
the interface and D is the (numerical) interface thick-
ness. The gradient parameter κ = βD2/8 and the
surface tension σ =

√
2κβ/6 can be calculated when

D and β are given. The intermolecular force [31] is
F = 1

3∇ρc2 −∇p1 −C∇µ where p1 is the hydrodynamic
pressure. The thermodynamic pressure p0 is defined by
p0 = C∂E0/∂C − E0 = βC2(C − 1)(3C − 1). The total
pressure is p = p0 + p1 − κC∇2C + κ|∇C|2/2.
The lattice Boltzmann equation (LBE) (before the

time discretization) including the intermolecular force is
[24]

∂fα/∂t+eα·∇fα = −(fα−feq
α )/λ+

3

c2
(eα−u)·Ffeq

α (4)

where fα is the particle distribution function with dis-
crete molecular velocity eα along the α-th direction and
λ is the relaxation time related to the kinematic vis-
cosity ν = 1

3c
2λ. The equilibrium distribution func-

tion, a function of local macroscopic density and ve-
locity, is usually formulated up to O(u2), i.e., feq

α =
ρωα[1 + 3(eα · u)/c2 + 9(eα · u)2/(2c4) − 3u2/(2c2)]. In
the formula, ωα is the weight associated with a particular
discretized velocity eα, ρ and u are macroscopic density
and velocity, respectively, and c = δx/δt = 1 in lattice
units (i.e., δt = δx = 1).
In order to recover the second and the third governing

equations, i.e., Eqs. (2) and (3), we introduce a new
distribution function gα = 1

3fαc
2 + (p1 − 1

3ρc
2)Γα(0),

in which Γα(u) = feq
α /ρ. Taking the total derivative

Dt = ∂t + eα · ∇ of gα results in

∂gα/∂t+ eα · ∇gα = −(gα − geqα )/λ

+ (eα − u) · [ 1
3
∇ρc2(Γα − Γα(0))− C∇µΓα]

(5)

where the corresponding equilibrium distribution func-
tion is geqα = ωα[p1 + ρ((e · u) + 3(eα · u)2/2c2 − u2)]
Discretizing Eq. (5) along characteristics over the time

step δt, we obtain the LBE for gα as following

ḡα(x+eαδt, t+δt)= ḡα(x, t)−
1

τ+0.5
(ḡα−ḡeqα )|(x,t)+

(eα−u)·[ 1
3
δt∇MDρc2(Γα(u)−Γα(0))−Cδt∇MDµΓα]|(x,t)

(6)

In Eq. (6), ∇MD and ∇CD are referred to mixed differ-
ence approximation and central difference approximation
respectively [32], τ(= λ/δt) is the dimensionless relax-
ation time, and ḡα and ḡeqα are introduced below, respec-
tively.

ḡα = gα +
1

2τ
(gα − geqα )− 1

2
δt (eα − u) ·

[

1

3
∇CDρc2C (Γα (u)− Γα (0))− C∇CDµΓα

] (7)

ḡeqα = geqα − 1

2
δt (eα − u) ·

[

1

3
∇CDρc2 (Γα (u)− Γα (0))− C∇CDµΓα

] (8)

The momentum and hydrodynamic pressure of the
liquid-gas system are the zeroth and first-order mo-
ments of ḡα. They are computed as ρu = 3

c2

∑

eαḡα −
δt
2 C∇CDµ and p1 =

∑

ḡα + δt
6 u · ∇CDρc2.

To recover the first governing equation of Eq. (1),
we introduce another new distribution function hα =
(C/ρ)fα with its equilibrium distribution function being
heq
α = (C/ρ)feq

α . Similarly, taking the total derivative Dt

of hα and utilizing Eq. (1) yield

h̄α(x+eαδt, t+δt)= h̄α(x, t)−
(h̄α−h̄eq

α )|(x, t)
τ+0.5

+ δt{eα−u)·

[∇MDC − 3C

ρc2
(∇MDp1+C∇MDµ)] +M∇2µ }Γα|(x, t)

(9)

In Eq. (9), h̄α and h̄eq
α are defined as the same formats

as ḡα and ḡeqα [32], respectively.
The composition C is the zeroth-order moment of h̄α,

obtained by C =
∑

α
h̄α+0.5δtM∇2µ. The density ρ and

the dimensionless relaxation frequency (1/τ) are linear
functions of the composition, given by ρ(C) = Cρ1 +
(1− C)ρ2 and 1/τ(C) = C/τ1 + (1− C)/τ2.

III. NUMERICAL STUDY

The objective of this numerical study below is to ad-
dress two pertinent questions. (1) If the power-law tem-
poral scaling of unequal-size microbubble coalescence[19]
is general? And (2) how is the power-law temporal scal-
ing affected by inertia, viscosity, and surface tension?

A. Computation set-up and GPU parallelism

We consider two unequal-size microbubbles coalesce in
a square domain of 1002 µm2 with periodic boundary in
each direction. As schematized in Figure 1(a), the center
of the father bubble, OF , is located at x = 30µm and
y = 50µm with a fixed radius, rF = 20µm. The mother
bubble is attached to the father bubble on the right, of
which the center is aligned at the same vertical loca-
tion. The radius of the mother bubble varies from 5µm
to 20µm, resulting in the size inequality γ(≡ rF /rM ) in
the range of 4 to 1. Thus, the center of the mother bub-
ble, OM , is located at x = 50 + rM (µm) and y=50µm.
The radius of the final child bubble (dash-dot circle), rC ,
can be determined by the total area of the parent bub-
bles. Figure 1(b) depicts an intermediate stage of the
coalescing child bubble with Dy defined as the half ver-
tical axis at the center of horizontal axis. The global
coalescence time T is defined as the time period from
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two parent microbubbles initially touching to finally one
coalesced child bubble. The end time point of T is deter-
mined when |Dy−rC |/rC < 1%. It is noted that without
oscillation in the post coalescence, Dy asymptotically in-
creases toward rC during the coalescence. Subscripts of
“h” and “l” denote the heavy (liquid) and light (gas)
fluid, respectively. The density and viscosity ratios of
two fluids are defined as ρ∗ = ρh/ρl and η∗ = ηh/ηl, re-
spectively. We define the aforementioned Oh number as
Oh ≡ ηh/

√
ρhσrF . The Oh effects on drop coalescence

have been indicated in a review paper [45] as follows:
when Oh << 1, the coalescence is dominated by the in-
ertial force and the viscous effect is insignificant; when
Oh is of order unity, the coalescence is dominated by vis-
cous force and the inertial effect becomes insignificant.
For these two ends in the Oh spectrum, two characteris-
tic time scales have been introduced [46]: ti =

√

ρhr3F /σ
and tv = ηhrF /σ as inertial and viscous time scale, re-
spectively. In between, i.e., 0.2 < Oh < 1, both inertial
and viscous forces contribute to the resisting force in the
coalescence process and ti and tv have approximately the
same order. Thus either ti or tv can be used to charac-
terize the coalescence time.
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FIG. 1. Schematic diagrams for a global coalescence of two
unequal-size microbubbles in a square domain periodic in
both directions. (a) Initial parent bubbles (solid circles) and
final child bauble(dash-dot circle). (b) A coalescing child bub-
ble with Dy defined as the half vertical axis at the center of
horizontal axis.

We first develop GPU parallel computing for the LBM
code developed in our previous study [14, 19]. Based on
the previous CUDA-GPU implementation of LBM for
several single-phase flows [38–41], we employ the same
CUDA parallel algorithm in the current two-phase flow.
The parallelism is carried out on Intelr Xeonr CPU
X5660@ 2.80GHz with one Tesla C2075 GPU card. Ta-
ble I shows the comparison between CPU serial and GPU
parallel computation with 5 spatial resolutions from 2002

to 10002 for simulating a global microbubble coalescence.
As a standard measure in parallel LBM, we use MLUPS
to represent the computation performance. The fourth
column shows the performance ratio of GPU parallel to
CPU serial computation. It is seen that the GPU ac-
celeration increases when the resolution increases. For
the resolution of 800 × 800, which is used in this study,
the wall-clock time is reduced from 331.2 hours (CPU
serial computing) to 6 hours (GPU parallel commutat-
ing). Although the acceleration is less significant than

what achieved in our other projects for single-phase flows
[38, 40, 41], 50 times speedup has significantly enhanced
the computation efficiency for the massive parametric
simulations in the current study. With the optimization
of the parallel algorithm and the involvement of multiple
GPU card, higher computation efficiency is expected in
the near future.

B. Convergence check and validation

In order to find out an appropriate spatial resolu-
tion for the parametric study, we select a case with
Oh = 0.509 to conduct a convergence check. The phys-
ical quantities are ρh = 896kg/m3, ρl = 1.28kg/m3,
ηh = 1.22×10−3kg/(m·s), ηl = 1.74×10−5kg/(m·s), and
σ = 3.2 × 10−2N/m. We checked five resolutions from
500× 500 to 900× 900, as seen in Tab. II. The relative
error is calculated from the ratio of the time difference
between two successive resolutions and the time of coarse
resolution. Since the relative difference between the last
two resolutions is smaller than 1%, we select 800 × 800
as the spatial resolution to conduct all the simulations
discussed below.
Next, we show the reliability of the LBM simulation.

The time evolution of the half vertical axis Dy is tracked
when two equal-size bubbles are coalescing correspond-
ing to the neck growth stage, see Figure 2(a). Figure
2 (b) shows the development of normalized half verti-
cal axis Dy/rF with normalized time t/ti. The symbols
are obtained from the numerical simulation. A linear
fitting (solid line) for the symbols on a log-log scale re-
sults in Dy/rF = 1.35(t/ti)

1/2 with the R-squared value
R2 = 0.998. This result demonstrates that the half
power-law scaling of neck growth [6] has been well cap-
tured by the current simulation.

C. Numerical results

The numerical results are on unequal-size microbub-
bles coalescence in various liquid-gas systems with rela-
tively large Oh numbers (Oh > 0.447), with which no
damping oscillation is involved in the post coalescence.
We intend to find out if the power-law temporal scaling
for air microbubble coalescence in water [19] is general
and how the fluid properties affect the scaling.
We fix the density and viscosity of the gas phase as ρl =

1.28kg/m3 and ηl = 1.74 × 10−5kg/(m · s) and surface
tension as 0.032N/m. As shown in Tab. III, variation of
the liquid density (ρh) and liquid viscosity (ηh) are from
448 to 1482kg/m3 and from 0.0111 to 0.0237kg/(m · s),
respectively. And the Oh numbers of the 12 cases range
from 0.509 ∼ 0.946. The size inequalities of the parent
microbubbles are chosen as γ = 4, 3, 2, 1.5, 1.2, 1, in which
γ = 1 corresponds to the equal-size bubble case. Again,
we use the inertial time scale to normalize the global
coalescence time as T ∗ = T/ti.
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Resolution GPU parallel(MLUPS) Serial(MLUPS) Speed-up ratio of parallel vs. Serial Parallel/Serial (in hour)
200× 200 15.5 0.479 32.4 0.25/8.0
400× 400 17.5 0.422 41.5 1.2/49.8
600× 600 19.9 0.396 50.2 3.0/151.2
800× 800 20.9 0.378 55.2 6.0/331.2

1000 × 1000 21.3 0.367 58.2 10.0/583.2

TABLE I. GPU acceleration comparing GPU parallel with CPU serial performance for simulating a global microbubble coales-
cence. The last column shows the wall-clock time in hour of GPU parallel/CPU serial computation. MLUPS stands for Million
Lattice Updates Per Second. Hardware: Intel(R) Xeon(R) CPU X5660 @ 2.80GHz with one Tesla C2075 GPU cards.

Mesh 500 × 500 600× 600 700× 700 800× 800 900× 900
Coalescence time (µs) 87.80 83.78 81.56 80.11 79.33
Relative difference 4.58% 2.65% 1.78% 0.98%

TABLE II. Convergence check through a case with Oh = 0.509. The global coalescence is simulated using five resolutions from
5002 to 9002. The relative difference is calculated from the ratio of the time difference between two successive resolutions to
the time of the coarse resolution.

Case 1 2 3 4 5 6 7 8 9 10 11 12
Oh 0.509 0.522 0.577 0.602 0.638 0.654 0.654 0.705 0.774 0.800 0.872 0.946
ρh(kg/m

3) 896 1408 1152 640 1408 896 1480 1152 640 896 1152 640
ηh(kg/m · s) 0.0122 0.0157 0.0157 0.0122 0.0191 0.0157 0.0201 0.0191 0.0157 0.0191 0.0237 0.0191

TABLE III. Twelve study cases varying liquid density and liquid viscosity with fixed gas density, gas viscosity, and surface
tension, resulting in a range Oh number from 0.509 to 0.946.
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2
=0.998 (b)

(a)

D
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FIG. 2. (a)Illustration of the half vertical axis (Dy) defined
as the vertical distance from the bubble center to the top in-
terface of the bubble. (b) Simulation results (symbols) are
well aligned on the half-power law scaling (line) from ana-
lytical prediction [6], demonstrating the validity of the LBM
simulation.

Figure 3 shows the numerical result of normalized
global coalescence time T ∗ as a function of size inequal-
ity γ with three different Oh numbers. In each case,
power-law temporal scaling T ∗ = A0γ

−n (fitting line) is
exhibited. The average differences and the correlation
coefficients of the numerical results with the fitting lines
are 0.019 and 0.999, 0.02 and 0.998, and 0.011 and 0.999,

γ

T
*

1 1.5 2 2.5 3 3.5 4

10

0.800

0.638

0.509

Oh

T*= 5.21 γ0.690
,  R

2
=0.995

T*=11.57γ0.902
,  R

2
=0.995

T*= 7.79 γ0.891
,  R

2
=0.993

FIG. 3. Power-law temporal scaling of unequal-size microbub-
ble coalescence with three different Oh numbers correspond-
ing to cases 1, 5, and 10 in Tab. III. Symbols: numerical
results; lines:power-law fitting.

corresponding to Oh =0.509, 0.638, and 0.8, respectively.
The average difference is defined as the root-mean-square
of the relative error between the numerical and the fit-
ting value. The pair of dashed lines for each case shows
the 95% confidence band. From bottom up, the prefac-
tor (A0) and power index (n) change as the Oh number
increases. As the surface tensions of these three cases
remain the same (σ = 0.032N/m), this result indicates
that the power-law temporal scaling is affected by the
liquid density and viscosity reflected in the Oh number.
Closely looking into the 12 cases, we show the quanti-
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tative effects of the Oh number on A0 and n in Figure
4 with symbols from the simulations. In Figure 4 (a),
the prefactor A0 shows a linear relation with Oh for the
entire Oh range. The average difference of the numerical
results from the fitting line is 0.02 and the corresponding
correlation coefficient is 0.997. In Figure 4 (b), the power
index n is linear to Oh only when Oh < 0.66, with an
average difference and a correlation coefficient 0.01 and
0.996, respectively. When Oh > 0.66, the power index
remains approximately a constant (0.9) with an average
difference of 0.006. The pair of dashed lines shows the
95% confidence band.

Oh

A
0

0.6 0.8

8

12

Numerical result

A
0
=21.2Oh5.6, R

2
=0.994

(a)

Oh

n

0.6 0.7 0.8 0.9

0.7

0.8

0.9

Numerical result

n=1.35Oh+0.01 Oh<0.66

n=0.9                Oh>0.66

(b)

FIG. 4. Effects of Oh number on (a) prefactor A0 and (b)
power index n with R2 = 0.983 in the power-law temporal
scaling. Symbols: numerical results; lines: fitting outcomes.

From Figure 4, we can derive the following relationship
between the normalized global coalescence time T ∗ and
the size inequality γ of parent bubbles parameterized by
Oh.

T ∗ = A0γ
−n (10)

with

n =

{

1.35Oh+ 0.01 : 0.5 < Oh < 0.66

0.9 : 0.66 < Oh < 1.0

and A0 = 21.2Oh − 5.6. Equation 10 indicates the ex-
istence of a general power-law temporal scaling of mi-
crobubble coalescence in the range of Oh from 0.5 to 1.0.
From Eq. 10, we obtain T ∗ = A0 when γ = 1, meaning

that the prefactor of the power-law scaling represents the
normalized global coalescence time of two equal-size bub-
bles, which is linear to Oh. The meaning of the power
index n is explored by dT ∗/dγ at γ = 1. Corresponding
to two ranges of Oh in Eq. 10, we have

dT ∗

dγ

∣

∣

∣

γ=1
=

{

28.38(Oh)2 − 7.35Oh− 0.06 : 0.5 < Oh < 0.66

19.08Oh− 5.04 : 0.66 < Oh < 1.0

(11)

Equation (11) shows that the quickness of the coales-
cence from equal to unequal-size bubble coalescence is
determined by Oh. These behaviors can be understood
from the following aspects. First, the size inequality γ
reflects the initial driving mechanism. The driving is
generated by the imbalanced surface tension forces on
the parent bubbles due to the different bubble radii of
both. Larger imbalance of surface tension forces gener-
ates stronger inertia, resulting in shorter global coales-
cence time. In our previous work [19], we have tested
the effects of size inequality on the dynamics of veloc-
ity vector, pressure, and vorticity and demonstrated the
effect of size inequality on the global coalescence time.
It has been found that bubbles coalesce faster when the
size inequality is larger. Second, when γ is fixed, larger
Oh means stronger viscous effects in the liquid, leading
to longer global coalescence time. These two effects can
be seen in Figure 3. Third, when the Oh number is rel-
atively large, the viscous effect from the liquid is more
significant to resist the coalescence. In this case, the ini-
tially imbalanced surface tension force is less significant.
Therefore, the effect of size inequality becomes negligi-
ble, resulting in a constant power index. The reasons
that the transition occurs around Oh=0.66 and n equals
to 0.90 when 0.66 < Oh < 1 need further investigation.
Since the temporal scaling of unequal-size microbubble

coalescence has been rarely addressed in open literature,
we now select 11 new and independent cases to validate
the general power-law temporal scaling (Eq. 10). Table
IV lists the new cases with combinations of fluid density,
fluid viscosity, and surface tension. The 11 cases fall into
three Oh numbers: 0.509, 0.654 and 0.800.
We plot the simulation results of global coalescence

time (T ∗) versus size inequality γ in Figure 5 for all
the cases grouped by three Oh numbers in (a), (b),
and (c), respectively. The symbols are simulation re-
sults and the lines are from Eq. (10). Corresponding to
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Case 13 14 15 16 17 18 19 20 21 22 23
Oh 0.509 0.654 0.800

ρh(kg/m
3) 1197 896 1000 680 896 448 640 600 680 1482 896

ηh(kg/m · s) 0.0122 0.0149 0.0182 0.0160 0.0111 0.0157 0.0107 0.0111 0.0204 0.0371 0.0271
σ(N/m) 0.024 0.048 0.064 0.073 0.016 0.064 0.021 0.016 0.048 0.064 0.073

TABLE IV. 11 new and independent cases with three Oh numbers of 0.509, 0.654 and 0.800 for validation of Eq. (10).

Oh = 0.509, 0.654, and 0.800, Eq. 10 predicts the power
index of the power-law temporal scaling as 0.692, 0.893,
and 0.900 respectively. The simulation results agree well
with the predictions in each of the three evaluations.
Thus, Eq. 10 is regarded as a general power-law tem-
poral scaling of unequal-size microbubble coalescence.

IV. SUMMARY

We have systematically studied global coalescence of
unequal-size microbubbles characterized by Oh number
using lattice Boltzmann simulation. The validation was
on the temporal scaling of the early stage (neck growth)
of equal-size bubble coalescence. The simulation results
have well captured the half-power scaling of the neck
growth from analytical prediction. Thanks to the sig-
nificant acceleration of GPU parallelism for LBM, we
were able to conduct 138 simulations in 23 cases varying
the liquid density, liquid viscosity, and surface tension
from 448 ∼ 1482(kg/m3), 0.011 ∼ 0.0237(kg/(m · s)),
and 0.024 ∼ 0.073(N/m), respectively. The Oh number
ranges from 0.5 to 1.0. The effects of liquid viscosity,
liquid density, and surface tension, characterized by Oh
number, have been investigated with the following three
results:

1. The power-law temporal scaling of unequal-size mi-
crobubble coalescence T ∗ = A0γ

−n generally exists
in the range of 0.5 < Oh < 1.0, where no damping
oscillation is involved in the post-coalescence.

2. The prefactor A0 is linear to Oh in the range of 0.5
to 1.0.

3. The power index n is linear to Oh in the range of
0.5 to 0.66 and remains constant in the range of
0.66 to 1.0.

A general power-law temporal scaling of normalized
global coalescence vs. size inequality has been derived.
The physical understanding of both prefactor and power
index have been explored. Additionally, 11 new and inde-
pendent cases that vary the fluid density, fluid viscosity,
and surface tension are grouped by three Oh numbers,
0.509, 0.654, and 0.800. The simulation results of these 11
cases agree well with the predictions by Eq. 10, demon-
strating the reliability of the general power-law temporal
scaling in the specified Oh range. This scaling was ob-
tained when the gas phase was fixed. Based on recent
studies [8, 13, 47], the droplet coalescence is sensitive to
the outer fluid (heavy fluid) but insensitive to the inner
fluid (light fluid). We believe that the results of this work
obtained from a fixed gas (air) are applicable for different
gases.

To our best knowledge, it is the first time that the
general power-law temporal scaling for unequal-size mi-
crobubble coalescence is revealed for microbubble coa-
lescence. This temporal scaling can be useful for vari-
ous engineering and medical applications as microbubble
transport frequently appears in different microfluidic sys-
tems and bubble coalescence commonly occurs during the
transport. It is known that studying global bubble co-
alescence in microfluidic systems can be challenging. In
experiments, it requires high-quality and fast-speed cam-
eras. And in computation, it requires advanced modeling
and fast computation speed. Equation 10 can be used
to predict the bubble coalescence time based on the Oh
number and the size inequality of parent bubbles when
the Oh number falls in the specified range. Base on our
reference survey of open resources, many liquid-gas sys-
tems have the Oh number in the specified range of Eq.
10. We hope this general power-law temporal scaling can
further support effective and optimal design and fabrica-
tion of real-world microfluidic systems.
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