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We present a numerical investigation of the effects of gas rarefaction on the energy dynamics
of resonating planar nonlinear acoustic waves. The problem setup is a gas-filled, adiabatic tube,
excited from one end by a piston oscillating at the fundamental resonant frequency of the tube,and
closed at the other end; nonlinear wave steepening occurs until a limit cycle is reached, resulting
in shock formation for sufficiently high densities. The Knudsen number, defined here as the ratio
of the characteristic molecular collision time scale to the resonance period, is varied in the range
Kn = 10−1−10−5, from rarefied to dense regime, by changing the base density of the gas. The
working fluid is Argon. A numerical solution of the Boltzmann equation, closed with the Bhatnagar-
Gross-Krook (BGK) model, is used to simulate cases for Kn ≥ 0.01. The fully compressible one-
dimensional Navier-Stokes equations are used for Kn < 0.01 with adaptive mesh refinement (AMR)
to resolve the resonating weak shocks, reaching wave Mach numbers up to 1.01. Nonlinear
wave steepening and shock formation are associated with spectral broadening of the acoustic
energy in the wavenumber-frequency domain; the latter is defined based on the exact energy corollary
for second-order nonlinear acoustics derived by Gupta and Scalo, Phys. Rev. E 98, 033117
(2018), representing the Lyapunov function of the system. At the limit cycle, the acoustic energy
spectra exhibit an equilibrium energy cascade with a −2 slope in the inertial range, also observed in
freely decaying nonlinear acoustic waves by the same authors. In the present system, energy is
introduced externally via a piston at low wavenumbers/frequencies, and balanced by thermoviscous
dissipation at high wavenumbers/frequencies, responsible for the base temperature increase in the
system. The thermoviscous dissipation rate is shown to scale as Kn2 for fixed Reynolds number
based on the maximum velocity amplitude, i.e. increasing with the degree of flow rarefaction;
consistently, the smallest length scale of the steepened waves at the limit cycle, corresponding
to the thickness of the shock (when present) also increases with Kn. For a given fixed piston
velocity amplitude, the bandwidth of the inertial range of the spectral energy cascade decreases
with increasing Knudsen numbers, resulting in a reduced resonant response of the system. By
exploiting dimensionless scaling laws borrowed by Kolmogorov’s theory of hydrodynamic turbulence,
it is shown that an inertial range for spectral energy transfer can be expected for acoustic Reynolds
numbers ReUmax > 100, based on the maximum acoustic velocity amplitude in the domain.
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I. INTRODUCTION

Nonlinear acoustic processes are observed in various
engineering applications such as harmonic resonators [1,
2], thermoacoustic engines [3, 4], ultrasonic imaging [5,
6], and high-speed boundary layers [7, 8]. An impor-
tant feature of nonlinear acoustic processes is wave steep-
ening, typically associated with thermodynamic nonlin-
earities [9]: regions of positive pressure fluctuations are
characterized by higher temperatures and, hence, locally
higher sound speeds (and vice versa); this leads to the
enhancement of spatial gradients in the wave propaga-
tion speed yielding wave steepening [10]. In the spectral
space, wave steepening entails energy cascade into higher
harmonics, associated with the formation of progressively
smaller length and time scales [11]. Figure 1 illustrates
such energy cascade by showing the temporal evo-
lution of average velocity magnitude and wavenumber
spectral density of a freely propagating nonlinear wave in
a periodic domain. Due to generation of smaller length
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scales and time scales (higher wavenumber and frequency
content), the thermoviscous dissipation increases, caus-
ing the total perturbation energy to decrease in time
(Fig. 1b) but also limiting the spectral extent of the in-
ertial cascade range (e.g. to k ' 104 at time t = t3, in
Fig. 1c).

For a resonant system with continuous external energy
injection driven to its nonlinear limit cycle, such as the
one considered in the present manuscript (Fig. 2), an
equilibrium inter-scale energy transfer is achieved in the
spectral space: the resonant energy cascades down to
higher harmonics reaching progressively smaller length
scales, until thermoviscous dissipation takes over, sus-
taining the shock thickness. The bandwidth of the thus-
obtained broadened energy spectrum denotes the degree
of wave steepening attained by the system and it is in-
versely related to the shock thickness. Such resonant
energy injection can be achieved via fluid dynamic insta-
bilities or externally applied forcing. In thermoacoustic
devices for example, the energy injection takes place due
to thermoacoustic instabilities. The presence of nonlin-
ear wave effects in thermoacoustics have been identified
and studied experimentally [12, 13], and numerically [4].
More recently, Gupta et al. [4] demonstrated the ex-
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FIG. 1. Velocity perturbation in a high amplitude acoustic traveling wave (a), evolution of normalized spatial average of u2 (b),
and velocity spectra |ûk|2 (c) at times t0, t1, t2, t3. The spectral broadening occurs due to the nonlinear terms in the governing
equations resulting in the energy cascade from larger to smaller length scales.

istence of an equilibrium spectrum, resulting from a
balance between the thermoacoustic energy produc-
tion and thermoviscous dissipation at length scales cor-
responding to the shock thickness. Similar observations
have been made experimentally for a gas in a resonance
tube periodically driven by a piston oscillating at fre-
quencies close to the fundamental frequency [2, 14, 15].

The aforementioned studies only focus on acoustic non-
linearities in dense gases, in most cases air at stan-
dard temperature and pressure (STP). However, nonlin-
ear acoustic wave propagation also plays a crucial role in
controlling transition to turbulence in high-speed bound-
ary layers, which are often in rarefied flow conditions.
In canonical cases, transition to turbulence is in fact
governed by the amplification of ultrasonic waves with
energy mostly confined in the boundary layer [16–
19], acting as an acoustic wave guide. For such condi-
tions, the flow can be considered in the rarefied regime
merely due to the very high frequencies involved,
and even more so for high-altitude flight with char-
acteristic pressures and densities of the order of
1kPa and 0.01kg/m

3
, respectively. This consider-

ation motivates the current work, in which we explore
the effects of gas rarefaction on the behavior of resonant
nonlinear acoustic waves.

Propagation of sound waves in rarefied media has been
analyzed in great detail both experimentally [20–23] and
numerically [24–27]. The Knudsen number, Kn, defined

as the ratio of the molecular mean free path to the rel-
evant physical length scale, quantifies the degree of rar-
efaction of a gas. For a single-frequency acoustic wave,
the relevant length scale is taken as the acoustic wave-
length. That is, even at standard atmospheric con-
ditions, a high frequency wave, say 260MHz [28],
yields Knudsen numbers close to 0.02 and is, hence,
in the rarefied regime. Based on this notion, experi-
ments were conducted [20, 21] focusing on noble gases
only excited by a high frequency pulse (∼ 11MHz)
in a transmitter-receiver system to investigate acoustic
wave propagation in a rarefied medium, with Knud-
sen numbers in the range 0.002 − 2. It was found
that the attenuation rate of the sound wave increased
with the Knudsen number, due to so-called transla-
tional dispersion: in rarefied environments, only the
faster moving molecules contribute to the macro-
scopic wave transmission mechanism due to larger
mean free path values, thus accelerating the high
frequency waves leading to wave dispersion and,
hence, attenuation [28]. Inspired by these experimen-
tal attempts, we herein focus on a canonical flow setup; a
one-dimensional system excited at its resonant frequency
with Argon as the working fluid.

Other theoretical investigations [24–27] confirm the in-
crease in the attenuation of the sound wave with in-
creasing Knudsen number, also showing how Navier-
Stokes based solutions deviate from the experimen-
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TABLE I. Piston velocity amplitudes, Up,max, for the simulation parameter space considered.

Up,max
←− Dense Rarefied −→

Kn = 10−5 Kn = 10−4 Kn = 10−3 Kn = 10−2 Kn = 10−1

Reup = 0.2 4× 10−4 m/s 4× 10−3 m/s 0.04 m/s 0.4 m/s 4 m/s

Reup = 0.02 4× 10−5 m/s 4× 10−4 m/s 4× 10−3 m/s 0.04 m/s 0.4 m/s

Reup = 0.002 4× 10−6 m/s 4× 10−5 m/s 4× 10−4 m/s 4× 10−3 m/s 0.04 m/s

tal and kinetic theory results for high Knudsen numbers.
This is not surprising, as the Navier-Stokes equations are
based on a continuum hypothesis and are hence not valid
for high Knudsen numbers, where the Boltzmann equa-
tion is better suited. In this work, in fact, we have used
the Navier-Stokes equations for cases with Kn < 0.01 and
the Boltzmann equation for Kn ≥ 0.01. The novelty of
the present contribution lies in extending the degree of
fidelity of the Navier-Stokes simulations to an advanced
(weak-)shock-resolving numerical framework, as
well as a systematic spanning of the Knudsen and acous-
tic Reynolds number space; the effects of the latter, in
particular, have not been considered in previously. The
approach adopted here in fact relies on the theoretical
framework by Gupta and Scalo [11] on the nonlinear
acoustic spectral energy cascade, which stresses the rel-
ative importance between the convective/acoustic effects
and the viscous dissipation, measured by the acoustic
Reynolds number.

The paper is organized as follows. A description of
the problem setup and the parameter space investigated
is found in § II. Details of the continuum gas dynamics
equations and the associated numerical scheme are pre-
sented in § III, followed in § IV by a description of the
Bhatnagar-Gross-Krook (BGK) model and the nu-
merical scheme employed to solve it. The results from the
simulations are presented in § V, with subsections focused
on comparison between the Navier-Stokes and BGK solu-
tions, steepening of the planar acoustic wave, resonance
amplitudes, the equilibrium spatial and temporal spec-

FIG. 2. Illustration of the investigated one-dimensional
piston-tube setup during maximum compression of the
gas at the adibatic wall (t1) and approximately 180◦

later in the shock resonance cycle (t2).

tra, and the budgets for the base internal energy. We
have also introduced scaling parameters to collapse the
acoustic energy spectra in the wavenumber-frequency do-
main for different Knudsen numbers and provide an an-
alytical estimate of the shock thickness.

II. PROBLEM SETUP

The problem setup, shown in Fig. 2, consists of a closed
tube with a piston at one end, oscillating at the tube’s
fundamental resonant frequency ωres, calculated as

ωres = πa0/L , (1)

and with instantaneous velocity,

up(t) = Up,max sin(ωrest) , (2)

where Up,max is the piston velocity amplitude. The adia-
batic speed of sound, a0, is calculated at the initial base
state temperature of the gas. The walls of the tube and
piston are considered adiabatic and the system is mod-
eled only in one dimension, x, with total length, L = 1
m. The gas inside the tube is Argon.

We decompose the instantaneous pressure, p, veloc-
ity, u, density, ρ, and temperature, T , as

p = p0(τ) + p′(x, t) , u = u0 + u′(x, t) ,

ρ = ρ0 + ρ′(x, t) , T = T0(τ) + T ′(x, t) (3)

where p′, u′, ρ′, and T ′ are the corresponding fluctuating
quantities. Here, x and t refer to the spatial and temporal
coordinates respectively. The base state for velocity is
zero, u0 = 0. Since the domain is closed, the base density,
ρ0, is constant, and as discussed later, the base pressure,
p0(τ), and temperature, T0(τ), increase following a slow
time scale, τ , as

p0(x, t) = p0(t) ' p0(τ) , T0(x, t) = T0(t) ' T0(τ) (4)

due to thermoviscous dissipation. All base state
quantities are spatially uniform.

As mentioned earlier, the Knudsen number is the ratio
of the mean free path of the gas molecules to the char-
acteristic (macroscopic) length scale of the problem; in
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TABLE II. Tabulation of initial base state values of density, pressure and temperature for the span of Knudsen numbers
considered, where ρref = 1.1456× 10−2 kg/m3, pref = 715.332 Pa and Tref = 300 K.

Initial base state
values

←− Dense Rarefied −→

Kn = 10−5 Kn = 10−4 Kn = 10−3 Kn = 10−2 Kn = 10−1

p0 pref pref × 10−1 pref × 10−2 pref × 10−3 pref × 10−4

ρ0 ρref ρref × 10−1 ρref × 10−2 ρref × 10−3 ρref × 10−4

T0 Tref Tref Tref Tref
Tref

the present context it can be written as the ratio of two
time scales [29],

Kn =
1√
2πγ

ωres

ν
=

(
µ

p0L

)√
πKBT0

2m
, (5)

where µ is the dynamic viscosity, ν is the collision fre-
quency, γ = 1.6702 is the ratio of specific heats for
Argon, KB = 1.38× 10−23 m2kg/s2K is the Boltzmann
constant and m = 66.3× 10−27 kg is the molecular mass
of Argon. Based on the piston velocity amplitude, we
define the piston Reynolds number, Reup

, as,

Reup =
ρ0Up,maxL

µ
. (6)

Later we define another (more dynamically relevant)
Reynolds number based on the maximum velocity am-
plitude achieved in the domain, Umax (Eq. 26).

We have spanned five orders of magnitude for Kn and
three orders of magnitude for Reup

in our simulations
(see Tab. I). As the Knudsen number approaches unity,
the mean free path theoretically approaches the length
of the domain, hence the base state inside the tube ap-
proaches near-vacuum conditions. To avoid such condi-
tions, all the Kn values considered are below unity. The
initial value for the base state temperature of the gas
is 300 K for all the cases and the base state values for
density and pressure are evaluated accordingly for each
Knudsen number using Eq. 5. The initial base state
values used to achieve various Knudsen numbers
are reported in Tab. II.

III. FULLY COMPRESSIBLE
ONE-DIMENSIONAL NAVIER STOKES

EQUATIONS

In this section, we present the fully compressible one-
dimensional Navier Stokes equations in § III A followed
by a description of the numerical scheme used to solve
them in § III B.

A. Mathematical model

The fully compressible one-dimensional Navier Stokes
equations comprise the conservation equations for mass,
momentum and energy for the system. They read:

∂ρ

∂t
+
∂ (ρu)

∂x
= 0 , (7)

∂

∂t
(ρu) +

∂

∂x

(
ρu2
)

= −∂p
∂x

+
∂

∂x

(
4

3
µ
∂u

∂x

)
, (8)

∂

∂t
(ρE) +

∂

∂x
[u (ρE + p)] =

∂

∂x

[
4

3
u

(
µ
∂u

∂x

)]
− ∂qx

∂x
,

(9)
where ρ, qx, and E are the instantaneous density, heat
flux in x direction, and total energy per unit mass, re-
spectively. The total energy per unit mass, E is
defined as,

E = CvT +
1

2
u2 , (10)

where Cv is the specific heat capacity at constant
volume. Since only a monatomic gas (Argon) is con-
sidered in this work, bulk viscosity effects are neglected.
The conservation equations are closed by the ideal gas
equation of state,

p = ρRT , (11)

where T is the instantaneous temperature and R =
208.132 J/kg K is the specific gas constant. The dynamic
viscosity is calculated using the power law, µ = µ(T/T )r,
where µ, T and r are the reference dynamic viscosity, ref-
erence temperature and the exponent for the power law
respectively. The values for µ, T and r are [30]

µ = 2.117×10−5 Pa · s , T = 273.15 K , r = 0.81 . (12)

Please note that such reference values do not corre-
spond to the ones used to define the initial base state in
Tab. II.
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B. Numerical Scheme

We have performed shock-resolved Direct Numerical
Simulations (DNS), up to Mach number 1.01 of
the compressible 1D Navier-Stokes Equations (7)–(9)
and (11) with Adaptive Mesh Refinement (AMR) [11]
for cases up to Kn = 10−3 . We have used the second
order Runge-Kutta scheme with a constant CFL of
0.5 for integrating the Navier-Stokes Equations (7)–(9)
and (11) in time utilizing the staggered spectral difference
(SD) spatial discretization approach introduced by Ko-
priva and Kolias [31]. In the SD approach, the domain is
discretized into mesh elements and within each element,
the Lagrange polynomial reconstruction of variables al-
lows numerical differentiation with spectral accuracy.

To accurately resolve all length scales in the flow we
have combined the SD approach with the AMR approach
as first introduced by Mavriplis [32]. The AMR ap-
proach allows to focus computational resources
to adequately resolve unsteady shock waves. To this
end, we expand the values of a generic variable φ local to
the cell in the Legendre polynomial space as,

φ =

N∑

i=1

φ̃iψi(x) , (13)

where ψi(x) is the Legendre polynomial of (i − 1)th de-

gree. The polynomial coefficients, φ̃i, are utilized for
estimating the local resolution error, ε, defined as [32],

ε =

(
2φ̃2N

2N + 1
+

∫ ∞

N+1

2f2ε (n)

2n+ 1
dn

)1/2

, fε(n) = ce−σn ,

(14)
where fε is the exponential fit through the coefficients of
the last four modes in the Legendre polynomial space. As
the estimated resolution error, ε, exceeds a pre-defined
tolerance, the cell divides into two subcells, which are
connected utilizing a binary tree. The subcells merge
together if the resolution error decreases below a pre-
defined limit. The numerical fluxes at cell interfaces
were evaluated using the Harten-Lax-van Leer-Contact
(HLLC) Riemann solver [33]. A schematic of the spa-
tial discretization scheme, the Lagrange polynomial re-
construction and the numerical flux interfaces, as used
by Gupta and Scalo [11], is provided in Fig. 3.

IV. THE BOLTZMANN EQUATION

To study the effects of rarefaction on planar nonlin-
ear acoustic waves for cases with Kn = 10−1 and 10−2,
equations based on kinetic theory have been used. In the
following, we introduce the Bhatnagar-Gross-Krook
(BGK) equation, a model Boltzmann equation which
is characterized by the use of a linearized model for the
molecular collisions in § IV A, and the numerical scheme
used to solve it in § IV B.

FIG. 3. Schematic of (a) the polynomial reconstruction of
a quantity φ(x) over a one-dimensional domain consisting of
three elements, and (b) the staggered spectral difference spa-
tial discretization approach used with solution (•) and flux
points (|) within a single element. Ncv is the number of
elements and p is the number of solution points within an
element.

A. Mathematical model

The Boltzmann transport equation governs the evolu-
tion of the density distribution function, f(~x,~c, t), where
~c refers to the molecular velocity space. In general,
the density distribution function is a seven-dimensional
quantity and depends on three dimensions in physical
space, ~x = (x, y, z), three components of the molecular
velocity space, ~c = (cx, cy, cz), and time. The Boltzmann
transport equation in such case is given by,

∂f

∂t
+ ~c · ∇f = Q , (15)

where Q is the collision operator. The Boltzmann colli-
sion operator has the fundamental property of conserving
mass, momentum and energy, that is

∫

~c∈R3

Q(f, f)θ(~c)d~c = 0 , θ(~c) = 1,~c, |~c|2 . (16)

For more details, the reader is referred to classic text-
books in molecular gas dynamics[30].

For simplicity, we consider the BGK model [34] for the
Boltzmann transport equation restricted to one spatial
dimension, given by,

∂f

∂t
+ cx

∂f

∂x
= ν (fγ − f) , (17)

where fγ is the equilibrium distribution, given by the
local Maxwellian distribution,

M(~c) =
ρ

(2πRT )
3
2

exp

(
−|~c− ~u|

2

2RT

)
, (18)

where ~u = (u, v, w) is the macroscopic flow velocity.
Other macroscopic parameters of the flow are calculated
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from moments of the density distribution function:

ρ =

∫

~c∈R3

f(~c)d~c , ρ~u =

∫

~c∈R3

~cf(~c)d~c ,

T =
1

3ρR

∫

~c∈R3

|~c− ~u|2 f(~c)d~c .

(19)

The pressure is then calculated by using the ideal gas
equation of state. The collision frequency is calculated
at each time step at every location in the physical space
as

ν =
p

µ
(20)

where the dynamic viscosity, µ, for the gas is calculated
using the power law described in § III A.

The BGK model for the collision operator also con-
serves mass, momentum and energy, and preserves the
Euler limit in the Chapman-Enskog expansion [29].
While the Prandtl number for Argon is 2/3, the BGK
model equation naturally yields a Prandtl number of 1 in
the Chapman-Enskog expansion. For the sake of consis-
tency, the Navier-Stokes simulations have been run with
unitary Prandtl number, despite being unphysical. Vari-
ous numerical trials (not shown) reveal that varying the
Prandtl number in the range from 2/3 to 1 in the Navier-
Stokes simulations does not impact the conclusions of this
manuscript nor yields significant quantitative changes in
the results.

B. Numerical Scheme

There are three broad categories of numerical schemes
to solve the Boltzmann equation: Discrete Velocity
method (DVM) [35–38], Fourier spectral methods [39–
42] and Direct Simulation Monte Carlo (DSMC) [30, 43–
45]. We have utilized DVM [38] to solve the BGK equa-
tion, which involves discretization of the molecular ve-
locity space. Consequently, the governing equations and
associated integrals, such as Eqs. 17 and 19, are solved
for in a discrete sense.

We have used the second order Runge-Kutta scheme
to integrate the BGK model equation in time, utiliz-
ing a staggered flux conservative approach for the spatial
discretization. The flux points are collocated at the cell

FIG. 4. Schematic of the staggered flux conservative spatial
discretization used for the BGK solver depicting the flux faces
(i+1/2) and cell centers (i).

FIG. 5. Illustration of three grid sizes for the discretization
of the molecular velocity space in cx and cr.

faces and the solution points at the cell centers as shown
in Fig. 4. The second order upwind QUICK [46] scheme
has been used for the evaluation of fluxes at the flux faces
and can be formulated as:

If cx|i+1/2 > 0 : Fi+1/2 =
cx
∆x

(
6

8
fi +

3

8
fi+1 −

1

8
fi−1

)

or cx|i+1/2 ≤ 0 : Fi+1/2 =
cx
∆x

(
6

8
fi+1 +

3

8
fi −

1

8
fi+2

)
.

(21)

Axial symmetry of the setup is used to reduce the
molecular velocity components to two - axial and
radial. For efficiency and speed of calculations, we have
used Gauss-Hermite and Gauss-Laguerre polynomials to
obtain the discretization points in the molecular velocity
space in the axial and radial directions, respectively. Dif-
ferent grid sizes for integration in the molecular velocity
space are shown in Fig. 5, where cx and cr refer to the
molecular velocities in axial and radial directions respec-
tively. The domain for molecular velocity space used in
this work is comprised of 32× 32 grid points.

The equilibrium distribution function was discretized
as

fγ = α1e
β·p ,

β = [−α2, α3, α4, α5] ,

p = [((cx − u)2 + (cy − v)2 + (cz − w)2, ...

...(cx − u), (cy − v), (cz − w))]T ,

(22)

where the coefficients αi are found by solving Eq. 16 us-
ing Newton’s iteration method. The discrete form of the



7

system of equations solved is shown in Eq. 23.

∑

j

fγξj = ρ;
∑

j

cxfγξj = ρu;

∑

j

cyfγξj = ρv;
∑

j

czfγξj = ρw;

∑

j

(c2x + c2y + c2z)fγξj = ρ(u2 + v2 + w2) +
3

2
ρT

(23)

Here, ξj refers to the weights of the quadrature used
for integration. This scheme was presented by Fre-
zotti [47] and has been evaluated computationally by
Mieussens [48], Mieussens et. al [49] and Chigulappali
et. al [50].

1. Boundary Conditions

As the problem considered here is one dimensional in
space, the only wall boundary conditions to be
imposed are at the duct terminations, which we
chose as adiabatic. This is implemented as spec-
ular boundary conditions [29] in the BGK solver, as-
suming total reflection with no diffusion effects from the
wall and is modeled such that the values of f incident on
the wall boundary are reflected back,

f(~cj + (~vwall · ~n)~n) = f(~ci − (~vwall · ~n)~n) , (24)

where the subscripts i and j represent the incident and
reflected quantities and ~vwall and ~n represent the velocity
of the wall and wall normal respectively.

V. RESULTS AND DISCUSSION

As the piston-tube setup (Fig. 2) is excited at the first
resonant frequency of the system, the acoustic amplitude
of the planar wave inside the tube increases until an equi-
librium is reached between the large-scale energy injec-
tion into the system and the energy dissipation due to
molecular collisions (viscosity). Figure 6 shows the time
series of (a) pressure, p′, and (b) velocity, u, fluctua-
tions at x = L and x = L/2, respectively, for the case
of Reup = 0.2 and Kn = 10−5 (see Tab. I) as obtained
from the Navier-Stokes solver with Adaptive Mesh Re-
finement (NS-AMR). The insets (i) and (ii) show the
different stages of wave steepening before a limit cycle,
or equilibrium limit, is reached. The insets (i) high-
light the harmonic regime in which the ampli-
tude of the acoustic wave is small relative to the
base pressure and the linearized governing equa-
tions are sufficient. The insets (ii) show the nonlinear
regime during which energy begins to cascade from the
fundamental resonant harmonic to higher harmonics in
the frequency domain. In the physical space, this results
in wave steepening. Continued injection of energy due

to resonance results in saturation of the acoustic ampli-
tude, characterized by a balance between the energy in-
jected into the system and the thermoviscous dissipation
– establishing an equilibrium energy cascade. Insets (iii)
show this quasi-steady regime, hereafter referred as the
limit cycle. The latter cannot be considered an equilib-
rium state for the overall system given the steady back-
ground heating caused by the thermoviscous dissipa-
tion (discussed later). Such slow-varying base state
quantities are obtained via sharp spectral tempo-
ral filtering of the numerical simulation data.

A. Comparison of Navier-Stokes and BGK
solutions

In this section we present a comparison between the re-
sults from the Navier-Stokes and BGK equation solvers in
a Knudsen number range typically considered of overlap
between the two models. To this end, we show the tem-
poral spectra of pressure and velocity at the limit cycle
for the cases with Kn = 10−1 and 10−2. Since the signals
are periodic at limit cycle, p′ and u can be expressed as
the following Fourier series expansions,

u(t) =

k=∞∑

k=−∞
k 6=0

û(k)eiωkt , p′(t) =

k=∞∑

k=−∞
k 6=0

p̂(k)eiωkt, (25)

where û(k) and p̂(k) are coefficients of the kth harmonic
mode of the Fourier series expansion with frequency ωk.
The Fourier coefficients are extracted via a windowed
Fourier transform over 20 acoustic periods based on time
series at x = L for p′ and at x = L/2 for u (Fig. 6).

Figure 7 shows the comparison of the temporal spec-
tra of p′ and u as obtained from the NS-AMR solver with
those from the BGK solver for Kn = 10−1 and Kn = 10−2

and varying Reynolds numbers Reup
. The pressure spec-

tra are contiguous, while only odd numbered harmonics
appear in the velocity spectra since the velocity signal is
symmetric in time.

The difference in the solutions obtained from the two
solvers decreases as the Reynolds number and Knudsen
number decrease. Overall, the resonance response pre-
dicted by the NS-AMR solver (which should only be ap-
plied in the dense regime) is systematically lower than
the one predicted from the BGK solver for Kn = 10−1

and Kn = 10−2.

Results from the NS-AMR solver seemingly under-
predict acoustic energy levels for Kn ≥ 10−2 with respect
to the BGK counterpart, and are hence neglected for this
range. On the other hand, the use of the BGK solver
will be restricted to cases with Kn ≥ 10−2 (see Tab. III).
Such choice also reduces the computational cost of span-
ning the full parameter space given in Tab. I with the
BGK solver, which suffers from the stiff collision term
for Kn < 10−2.
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(a)

(b)

FIG. 6. Time series for (a) pressure fluctuations p′ at x = L and (b) velocity u at x = L/2 for Reup = 0.2 and Kn = 10−5 as
obtained from the NS-AMR solver. The figures inset - (i), (ii) and (iii) - show the different stages in steepening of the planar
acoustic wave until a limit cycle is achieved.

B. Wave steepening and resonant response

Figure 8 shows the instantaneous waveform shape as
the Knudsen number of the system is varied, keeping

Reup
constant. Figure 8a shows the spatial profile of

normalized pressure perturbation (p′/|p′|max) at the limit
cycle for Reup

= 0.2 when the piston is at its mean posi-
tion moving away from the cavity (ωrest = (2n+ 1)3π/2
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FIG. 7. Power spectral densities of pressure at x = L (a), (b) and velocity at at x = L/2 (c), (d) at the limit
cycle for Kn = 10−1 and Kn = 10−2 from NS-AMR (black) and BGK (grey) solvers. Only the odd harmonics have been
plotted for û. Spurious high-frequency or wavenumber content due to round-off errors has been omitted.

TABLE III. Tabulation of the list of cases solved for by each solver: Navier Stokes equations with Adaptive Mesh Refinement
(NS-AMR), Boltzmann equation with BGK closure (BGK).

←− Dense Rarefied −→

Kn = 10−5 Kn = 10−4 Kn = 10−3 Kn = 10−2 Kn = 10−1

Reup = 0.2 NS-AMR NS-AMR NS-AMR BGK BGK

Reup = 0.02 NS-AMR NS-AMR NS-AMR BGK BGK

Reup = 0.002 NS-AMR NS-AMR NS-AMR BGK BGK

in Eq. 2). For Knudsen numbers Kn > 10−2 the pres- sure perturbation is qualitatively similar to a half cosine,
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with negligible to no nonlinear distortion. As the Knud-
sen number decreases (flow becomes denser), the limit
cycle pressure perturbation profile steepens further and
a resonating shock wave is observable in the tube. A
similar observation can be made in Fig. 8b, which shows
the spatial profile of normalized velocity (u/|u|max) at
the limit cycle for Reup = 0.2 when the piston is at its
right extremum (ωrest = (2n + 1)π in Eq. 2). The ve-
locity profile for Kn = 10−1 is qualitatively similar (but
not exactly equal) to a half sine, whereas for decreasing
Knudsen numbers, the limit cycle velocity profile steep-
ens and a shock wave is observed. Energy injection from
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FIG. 8. Instantaneous profiles of (a) pressure fluctuation,
p′, and (b) velocity, u, normalized by their maximum values
at the limit cycle for Reup = 0.2. The pressure field is plot-
ted at the instance when the piston is at its mean position
moving towards left, whereas the velocity is taken at the
time instance when the piston is at its right extremum.
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FIG. 9. Variation of ReUmax against Kn and Reup : (a) depicts
the behavior of ReUmax versus Knudsen number for all the
cases considered and (b) illustrates ReUmax scaled by Reup

versus the Knudsen number. The degree of wave amplification
due to resonance observed is the highest for the cases with the
lowest Reup .

the piston at the fundamental harmonic frequency sus-
tains the shock wave at the limit cycle, which, for the
specific piston-Reynolds number considered in this ex-
ample, Reup

= 0.2, is only present for Kn < 10−4.
To more appropriately quantify the limit cycle ampli-

tude dependency on the Knudsen number of the gas (cf.
Fig. 9), the following Reynolds number should be consid-
ered:

ReUmax =
ρ0 Umax L

µ
, (26)

based on the maximum velocity amplitude in the do-
main, Umax, occurring at approximately x = L/2 for all
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cases. ReUmax
characterizes the relative importance of

inertial to viscous forces more accurately than Reup
: the

system can, in fact, achieve an increase of three orders
of magnitude in ReUmax

with a four-orders-of-magnitude
decrease in the Knudsen number, for the same Reup

(Fig. 9a). Consequently, the magnitude of maximum
velocity amplitude in the tube for a fixed piston ve-
locity amplitude also increases with decreasing Knud-
sen number, signifying a stronger resonant response of
the system (cf. Fig. 9b). The resonant energy injected
into the system is balanced by thermoviscous dissipation,
which increases with Knudsen number, resulting in an
increase of the smallest length scale carrying acoustic
energy, analogous to hydrodynamic turbulence [11]; in
other words, as the wave steepening process establishes
an energy cascade towards higher wave numbers, in-
creasing the Knudsen number halts the cascade at larger
length scales, thus preventing further amplification of the
acoustic wave due to resonance and reducing the inertial
range of inter-scale energy transfer (discussed later). In
Fig. 9a three sets of cases, grouped by the same value of
ReUmax

(16.218, 2.889 and 0.333) for different values of
Reup

and Kn are highlighted and will be used, here-
after, when needed, to rigorously isolate Knudsen num-
ber effects from Reynolds number effects, the latter being
ReUmax

and not Reup
.

C. Fluctuation intensity profiles

Besides affecting the resonant response, which is quan-
tified by the ratio of the maximum velocity fluctuation
amplitude in the domain to the piston velocity amplitude
(Fig. 9b), the Knudsen number also affects the spatial
pattern of fluctuation intensities at the limit cycle. Fig-
ure 10 shows the spatial profiles of intensity of pressure
and velocity fluctuations, defined respectively as

p′rms(x) =

√√√√ 1

N

N−1∑

n=0

p′(x, tn)2 ,

urms(x) =

√√√√ 1

N

N−1∑

n=0

u(x, tn)2 , (27)

for Reup = 0.02, and where N is the number of
samples in time over an acoustic period at the
limit cycle. Using the Fourier coefficients and Parseval’s
identity, the sum of squares of point-wise pressure and
velocity fluctuation values in the above equation can be
evaluated as

N−1∑

n=0

p′(tn)2 = 2π

N−1∑

k=0

|p̂(k)|2 ,

N−1∑

n=0

u(tn)2 = 2π

N−1∑

k=0

|û(k)|2 . (28)
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FIG. 10. Spatial variation of (a) pressure fluctuation inten-
sity, p′rms, and (b) velocity fluctuation intensity, urms, at the
limit cycle versus x for Reup = 0.02. For increasing Knud-
sen number, the p′rms profile becomes sharper at the center
indicating decreased movement of the pressure node at the
center.

With increasing Knudsen number, the spatial profile of
pressure fluctuation amplitude displays a progressively
more defined pressure node at the center for increasing
Kn, which is associated to a decrease in acoustic power
emanating from the piston and being transmitted
through the tube. For very low Knudsen numbers, the
intensity profile remains relatively flat due to the redistri-
bution of pressure fluctuation intensity by the resonating
shock wave. With increasing Knudsen number, the de-
viation of the velocity fluctuation intensity profile from
the fluctuation intensity at the piston decreases indicat-
ing less fluctuation amplification and hence a weaker res-
onant response.
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In the following, we study the distribution of tempo-
ral Fourier coefficients with varying Knudsen number, to
quantify the degree of nonlinear wave steepening and the
consequent higher harmonic generation.

D. Spectral analysis and scaling of spectral
quantities

Figure 11 shows the variation of distribution of tem-
poral Fourier coefficients of pressure and velocity fluctu-
ations, p̂2 (taken at x = L) and û2 (taken at x = L/2)
respectively, at the limit cycle for varying Knudsen num-
bers for Reup = 0.2. We note that the range of fre-
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FIG. 11. Comparison of the temporal spectra at the limit
cycle for Reup = 0.2 - (a) for pressure at x = L and (b)
velocity at x = L/2, for which only the odd harmonics
are shown. Spurious high-frequency or wavenumber content
due to round-off errors has been omitted.

quencies spanned by both sets of spectra increases with
decreasing Knudsen number displaying a −2 slope over
more than a decade on a log-log scale at the limit cycle.
A similar behavior is observed in hydrodynamic turbu-
lence, where such range of scales is associated with in-
viscid spectral energy cascade in equilibrium conditions.
Hereafter, this range of scales will be referred to as the in-
ertial range. However, in nonlinear acoustics, such power
law range of spectra exhibits thermoviscous dissipation
as well, unlike hydrodynamic turbulence, as shown by
Gupta and Scalo [11]. The highest energy-containing
frequency in the spectra is associated with the smallest
length scale in the flow, which corresponds to the thick-
ness of the shock (when present). As discussed pre-
viously, with increasing Knudsen number the dissipation
increases resulting in a decrease in the highest acoustic
frequency generated, shortening the inertial range; this
is linked to an effective reduction of the ReUmax

. Con-
sequently, as shown in Fig. 8 the waveform at limit cy-
cle exhibits energy only in larger length scales (it is less
steepened) for higher Knudsen numbers, if Reup

is kept
constant.

As shown by Gupta and Scalo [11], the smallest length
scale generated due to nonlinear wave steepening can
be estimated by closing the spectral energy budgets of
wave perturbation. The perturbation energy for second-
order nonlinear acoustic waves yielding the Lyapunov
function of the system is given by [11, 51]

E(p′, u) =
u2

2a20
+

p′2

2(ρ0a20)2
+ f(p′) , (29)

where the energy correction term f(p′) is given by

f(p′) = − 2γ

(γ − 1)(2γ − 1)

×
((

1 +
γp′

ρ0a20

)1/γ

− 1− p′

ρ0a20
+

(γ − 1)p′2

2(ρ0a20)2

)
. (30)

Utilizing the second order perturbation energy (Eq. 29)
we define a characteristic dimensionless perturbation am-
plitude, Arms, as

Arms =
√
〈E〉 , (31)

where 〈.〉 is the spatial averaging operator,

〈.〉 =
1

L

∫ L

0

(.)dx . (32)

Since the generation and dissipation of energy are bal-
anced at the limit cycle, the cycle-averaged value of the
perturbation energy (Eq. 29) reaches a maximum in time.
Balancing the characteristic rate of energy transfer from
large scales to small scales, with the rate of viscous en-
ergy dissipation, yields the following order-of-magnitude
equivalence [11],

A2
rms

η
∼ δArms

η2
, (33)
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FIG. 12. Comparison of the temporal spectra of Êk at the limit cycle for ReUmax = 16.218 (left); 2.889 (mid); 0.333 (right) at
x = L/2. Spurious high-frequency or wavenumber content due to round-off errors has been omitted.

where η ∼ δ/Arms is the acoustic Kolmogorov length
scale, i.e. the shortest length scale, analogous to the
Kolmogorov length scale in turbulence, carrying acoustic
energy; δ is the thermoviscous diffusivity defined as

δ =
µ

ρ0a0L

(
4

3
+
γ − 1

Pr

)
, (34)

where Pr is the Prandtl number. Analogously to
the shortest length scale, the smallest time scale, τη, can
be evaluated as

τη =
η

a0
. (35)

Utilizing Eq. 29, the spectral energy Êk can be defined
as [11]

Êk =
|û(k)|2

2a20
+
|p̂(k)|2

2(ρ0a20)2
+

<
(
p̂(−k)

(
f̂(p′)

p′

)

k

)
. (36)

Figure 12a (top row)shows the distribution of spec-

tral energy Êk with the frequencies scaled by the fun-
damental frequency of the system. In each subfigure

we compare cases with same ReUmax , which actu-
ally quantifies the limit cycle energy in the system. Fig-
ure 12b (bottom row) shows the scaled spectral energy

ÊkA
−2
rms versus frequency scaled with the smallest time

scale τη for the three sets of cases grouped by ReUmax
.

We note that scaling the frequency with smallest time
scale τη reveals an almost exclusively sub-Kolmogorov
acoustic energy range for ReUmax

< 10. This provides a
quantitative estimate of when to expect the formation of
an inertial range i.e. ReUmax

> 100, as achieved in the
cases with lower Kn in Fig. 11, characterized by the uni-
versal −2 slope of the inertial range. The latter is never
actually observable in the cases shown in Fig. 12.

The spectra are collapsed along the frequency
axis via the normalization ωkτη, but not in am-
plitude by Arms. This indicates that the (dimension-
less) bandwidth of the spectral energy cascade increases
with ReUmax

.

To perform a wavenumber analysis of the spatial pro-
files of p′ and u, a complex Fourier series expansion can
not be used. Due to the computational setup considered,
cosine and sine series expansions are used for the pres-
sure and velocity, respectively. The corresponding spatial

Fourier coefficients, P̂ and Û , of p′ and u respectively, can
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FIG. 13. Comparison of the cycle-averaged spatial spectra of (a) p′(x) and (b) u(x), and cycle-averaged (c) spectral flux, Π̂k,
scaled by Arms, at the limit cycle for Reup = 0.2. Spurious high-frequency or wavenumber content due to round-off errors

has been omitted. The ReUmax values for Kn = 10−1, 10−2, 10−3, 10−4 and 10−5 are 0.396, 3.153, 16.252, 54.518 and 174.571,
respectively, at the limit cycle for Reup = 0.2.

then be evaluated as

P̂ (k) =

N−1∑

n=0

p′(xn) cos

[
π

N

(
n+

1

2

)
k

]
,

k = 0, ....., N − 1 , (37)

Û(k) =

N−1∑

n=0

p′(xn) sin

[
π

N

(
n+

1

2

)
(k + 1)

]
,

k = 0, ....., N − 1 , (38)

where N is equal to the number of points in the spatial
grid. Figures 13a and 13b show the variation of distri-
bution of cycle-averaged spatial Fourier coefficients of

pressure and velocity fluctuations, P̂ 2 and Û2, respec-
tively, at the limit cycle for varying Knudsen numbers
for Reup

= 0.2. Similar to the trend observed for tempo-
ral spectra (Fig. 11), the range of wavenumbers spanned
by both sets of spectra increases with decreasing Knud-
sen number indicating an increase in the steepness of the
waveform as shown in Fig. 8. The range of wavenumbers
spanned by both sets of spectra increases with decreasing
Knudsen number displaying a −2 slope over more than
a decade on a log-log scale at the limit cycle.

Utilizing Eq. 29, the spectral energy in wavenumber

space, Êsp,k, can be written as [11]

Êsp,k =
|Û(k)|2

2a20
+
|P̂ (k)|2
2(ρ0a20)2

+

<
(
P̂ (−k)

(
f̂(p′)

p′

)

k

)
. (39)

Figure 14a shows the distribution of cycle-averaged Êsp,k
with the wavenumber scaled by the length of the tube,
for the three sets of cases with same ReUmax

at the

limit cycle. Figure 14b shows the distribution of cycle-

averaged scaled spectral energy, Êsp,kA
−2
rms, versus scaled

wavenumber, kη, for the three sets of cases with same
ReUmax

at the limit cycle. As observed in the temporal
spectra (Fig. 12), the highest scaled wavenumber, kη, is
much larger than unity, confirming that the acoustic ac-
tivity is in the sub-Kolmogorov range in space and that
ReUmax = 16 is not high enough to yield a proper inertial
range (with −2 slope).

To quantify the rate of spectral energy cascade, we

define the spectral energy flux, Π̂k, from wavenumbers
|k′| ≤ k to |k′| > k as [11]

Π̂k =
∑

|k′|≤k

<
(
P̂−k′

ρ0a20

(
1

a0

∂(û′g)

∂x

)

k′

+
P̂−k′

ρ0a20

(
û′

ρ0a30

∂p′

∂x

)

k′

+
1

2

Û−k′

a0
∂
∂x

(
u′2

a20
− p′2

(ρ0a20)
2

)
k′̂

)
,

(40)

where the function g is defined as [11]

g(p′) =
γ

γ − 1

((
1 +

γp′

ρ0a20

)1/γ

− 1− p′

ρ0a20

)
. (41)

Figure 13c shows the distribution of cycle-averaged spec-

tral energy flux, Π̂k, scaled by A−3rms, versus the wavenum-
ber scaled by the length of the tube, at limit cycle for
cases with Reup

= 0.2. Figure 14c shows the distribu-

tion of cycle-averaged spectral energy flux, Π̂k, scaled by
A−3rms, versus scaled wavenumber, kη, for the three sets
of cases with same ReUmax

at the limit cycle. The high
negative gradient of the distribution implies that all of
the acoustic energy in the system is exhibited within the
dissipation range of the spectra, and the absence of an
inertial range for these sets of cases. The trend observed
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FIG. 14. Comparison of the cycle-averaged spatial spectra of (a), (b) Êsp,k and cycle-averaged (c) spectral flux, Π̂k, at the limit
cycle for ReUmax = 16.218 (left); 2.889 (mid); 0.333 (right). Spurious high-frequency or wavenumber content due to round-off
errors has been omitted.

for the maximum value of Π̂kA
−3
rms at lower wavenum-

bers further confirms that a proper inertial range (with
−2 slope) will be observed only for ReUmax

> 100 (see
Fig. 13c).

The acoustic energy dissipated by thermoviscous dis-
sipation is converted into base internal energy and leads
to an increase in the base state pressure and temperature
as mentioned before in § II. In the subsection below, we
quantify the Knudsen number effects on this process.

E. Base heating rates and thermal energy budgets

The base pressure, p0, and temperature, T0, of the
system increase slowly in time due to the conversion of
acoustic energy to heat by thermoviscous dissipation. To
quantify the Knudsen number dependence of such heat-
ing, we evaluate the rate of change in internal energy with
the slow time scale, τ , introduced in § II. The governing
equation for spatio-temporal evolution of internal energy
for a compressible fluid in one dimension can be derived
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from Eqs. 8 and 9 as

∂ (ρe)

∂t
+
∂ (ρue)

∂x
=
µCp
Pr

∂2T

∂x2

+
4

3
µ

(
∂u

∂x

)2

− p∂u
∂x

, (42)

where e is the internal energy and Cp is the specific heat
capacity at constant pressure. Using Cv = R/(γ−1) and
the ideal gas equation of state, Eq. 42 can be modified to

∂p

∂t
+
∂ (pu)

∂x
= (γ − 1)

∂

∂x

(
µCp
Pr

∂T

∂x

)

+ (γ − 1)
4

3
µ

(
∂u

∂x

)2

+ (1− γ)
∂pu

∂x

+ (γ − 1)u
∂p

∂x
. (43)

Equation 43 governs the rate of change of pressure in
time due to thermal conduction, viscous dissipation, and
acoustic nonlinearities. As mentioned before (see Eq. 3),
p, T and u can be decomposed into rapidly fluctuating
acoustic quantities and slowly evolving base quantities.
To obtain an equation for the slowly increasing base pres-
sure, p0(τ), we apply a sharp spectral filter in time to
Eq. 43. For a generic variable ϕ, the sharp spec-
tral filter is defined as

ϕ = F (ϕ;ωcut) , ωcut < ωres (44)

where F is the sharp spectral filter operator with
cutoff frequency ωcut and ϕ can be decomposed
into its mean and perturbed values as ϕ = ϕ+ ϕ′.
Moreover, by definition F (ϕ′, ωcut) = ϕ′ = 0.

Substituting the decomposition (Eq. 3) for p, u and T ,
and applying the sharp spectral filter to Eq. 43, we get

∂p0
∂τ

+ γ
∂(p′u′)

∂x
= (γ − 1)

4

3
µ

(
∂u′

∂x

)2

+ (γ − 1)u′
∂p′

∂x
. (45)

The thermal conduction term in Eq. 43 drops out
upon filtering since all base state quantities are
considered spatially uniform (see Sec. II). Defining

the mean acoustic power, Ẇac, dissipation rate, Φ, and
mean mechanical work, Γ, as

Ẇac = (p′u′) , Φ =
4

3
µ

(
∂u′

∂x

)2

, Γ = u′
∂p′

∂x
, (46)

Eq. 45 can be compactly written as

∂p0
∂τ

+ γ
∂

∂x
Ẇac = (γ − 1) Φ + (γ − 1) Γ . (47)

Equation 47 yields the rate of change of base pressure,
p0, with the slow time, τ , in terms of cycle-averaged

acoustic power, viscous dissipation rate and the cycle-
averaged mechanical work. Figure 15 shows the spatial
variation of the mean acoustic power, Ẇac, or acoustic
energy flux. The negative gradient of acoustic energy
flux, see Fig. 16a, is due to the energy injection by the
piston at the left end of the tube. The acoustic energy
flux is higher away from the piston for denser regimes in-
dicating that the acoustic energy is transferred farther in
denser gases, i.e. the acoustic near-field extends further
in denser media. Figures 16b and 16c show the scaled dis-
sipation and acoustic mechanical work terms in Eq. 47.
Since the velocity gradients are maximum at the hard
end walls, the viscous dissipation term, Φ, is maximum
at the ends of the tube and increases with the Knudsen
number as Kn2. Moreover, the magnitude of the acoustic
mechanical work is maximum near the center of the tube
since the pressure gradient and velocity amplitudes peak
near the center.

Assuming that the base pressure p0 is only a function
of time, taking the spatial average of Eq. 47 yields

dp0
dτ

= Ẇin + (γ − 1) ΦL + (γ − 1) ΓL , (48)

where

Ẇin = − 1

L

∫ L

0

(
γ
∂

∂x
Ẇac

)
dx = −γẆp ,

ΦL =
1

L

∫ L

0

Φdx , ΓL =
1

L

∫ L

0

Γdx . (49)

Here, Ẇin refers to the acoustic power injected into the
system by the piston and is proportional to the mechan-
ical work done by the piston, Ẇp. The acoustic energy
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FIG. 15. Spatial variation of scaled mean acoustic power Ẇac

for the cases with ReUmax = 16.218. The decreasing trend of
the acoustic power with x indicates that the acoustic power is
directed towards the right of Fig. 2 with influx of acoustic
energy at the left end from the piston.
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FIG. 16. Spatial variation of (a) scaled mean acoustic power derivative ∂Ẇac/∂x, (b) dissipation Φ, and (c) acoustic mechanical
work Γ versus x for the set of cases with ReUmax = 16.218.

injected into the system propagates towards the fixed end
of the tube with the gradient of this flux increasing with
the degree of nonlinearity in the system. The base heat-
ing effect is produced by the terms, Ẇin and ΦL in Eq. 48
which are positive and increase with Knudsen number
(see Fig. 16), suggesting that the rate of increase in the
base pressure of the system is proportional to the Knud-
sen number of the system.

VI. CONCLUSION

We studied the effects of gas rarefaction on finite am-
plitude planar acoustic waves generated in a resonator
by varying the Knudsen number over four orders of mag-
nitude. The setup studied consisted of a piston-tube
assembly with a piston oscillating at fundamental reso-
nant frequency of the tube, closed at the other end. The
tube was modeled as a one-dimensional domain neglect-
ing the effects of shear on wave propagation. The setup
was driven to a limit cycle, characterized by a balance
between the resonant energy production and thermovis-
cous dissipation. The resonant amplification and limit
cycle were simulated using the numerical discretization
of the Navier-Stokes equations for low Knudsen number
cases and the Boltzman equation with BGK closure for
high Knudsen number cases.

The dissipation increases with the degree of rarefac-
tion of the gas in the tube. Due to increased dissipa-
tion, the resonant response and the waveform steep-
ening at the limit cycle is attenuated. Keeping the
Reynolds number associated to the piston constant, we
observed that with increasing the Knudsen number, the
degree of resonance decreases, i.e., the ratio of acoustic
velocity amplitude to the piston velocity amplitude de-
creases. Moreover, the pressure intensity profiles show
that the pressure node, or the zero-crossing of the acous-
tic pressure tends to become quasi-stationary for very
high Knudsen numbers thus suggesting that in highly rar-

efied gas regimes, the system behaves as a quasi-linear
damped oscillator even at limit cycle.

Due to an increase in dissipation with increasing Knud-
sen number, the smallest length scale (diffusion length
scale) which exhibits acoustic energy also increases. Con-
sequently, the acoustic wave at the limit cycle becomes
less steepened with increasing Knudsen number. Since
the nonlinear acoustic wave steepening entails acoustic
energy cascade into higher harmonics and hence spectral
broadening, the range of the acoustic energy spectrum
decreases with increasing Knudsen number. We studied
both the temporal and spatial spectra of the acoustic en-
ergy with varying Knudsen numbers. Furthermore, we
showed that the largest harmonic or wavenumber can be
estimated using the smallest length scale due to nonlinear
acoustic steepening, which can be approximated by bal-
ancing the nonlinear wave propagation and dissipation
terms. Scaling the spectra with the smallest length/time
scale reveals almost exclusively sub-Kolmogorov acoustic
activity for Reynolds numbers based on the maxi-
mum velocity amplitude, ReUmax

, less than 100 and
provides a quantitative metric of when to expect the for-
mation of an inertial subrange.

At limit cycle, the energy due to resonance sustains
the nonlinear waves which dissipate the energy at length
scales depending on the Knudsen numbers. We showed
that the dissipation of energy at the limit cycle increases
the mean internal energy of the system slowly. We quan-
tified this mean heating of the system utilizing time fil-
tered internal energy budget equation. The results from
the budget equation also reveal the scaling of dissipation
with Knudsen number as Kn2 for a fixed ReUmax

.
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