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ABSTRACT 
 
Bistable non-equilibrium systems are realized in catalytic reaction-diffusion processes, 
biological transport and regulation, spatial epidemics, etc. Behavior in spatially 
continuous formulations, described at the mean-field level by reaction-diffusion type 
equations (RDE), often mimics that of classic equilibrium van der Waals type systems. 
When accounting for noise, similarities include a discontinuous phase transition at some 
value, peq, of a control parameter, p, with metastability and hysteresis around peq. For 
each p, there is a unique critical droplet of the more stable phase embedded in the less 
stable or metastable phase which is stationary (neither shrinking or growing), and with 
size diverging as p → peq. Spatially discrete analogues of these mean-field formulations, 
described by lattice differential equations (LDE), are more appropriate for some 
applications, but have received less attention. It is recognized that LDE can exhibit 
richer behavior than RDE, specifically propagation failure for planar interphases 
separating distinct phases. We show that this feature, together an orientation 
dependence of planar interface propagation also deriving from spatial discreteness, 
results in the occurrence of entire families of stationary droplets. The extent of these 
families increases approaching the transition and can be infinite if propagation failure is 
realized. In addition, there can exist a regime of generic two-phase coexistence where 
arbitrarily large droplets of either phase always shrink. Such rich behavior is qualitatively 
distinct from that for classic nucleation in equilibrium and spatially continuous non-
equilibrium systems. 
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I. INTRODUCTION   
 
Diverse non-equilibrium phenomena such as non-linear reaction-diffusion processes in 
catalysis, transport and regulation in cell biology, population dynamics in ecology, 
spatial epidemics, etc., often exhibit bistability of steady-states for a range of some 
control parameter, p, as well as front propagation between coexisting states [1-5]. 
Behavior is typically described for spatially continuous models at the mean-field level by 
reaction-diffusion equations (RDE) of the Nagumo or Cahn-Allen type [2]. In the 
presence of noise, these systems generally exhibit a discontinuous phase transition 
between steady states at some p = peq. Associated metastability, hysteresis, and 
nucleation phenomena occurs for p near peq. This behavior is similar to that in classic 
van der Waals type descriptions of phase transitions for systems in thermodynamic 
equilibrium.  

Away from peq, the steady states are not equally stable, the more stable one 
displacing the less stable one separated from it by a planar interface. The propagation 
velocity vanishes as p → peq, a criterion consistent with and replacing the Maxwell 
construction for equilibrium systems [2,6]. Of particular interest is nucleation of the more 
stable state starting from the less stable (metastable) state wherein fluctuations induce 
droplets of the former embedded in the latter. Growth is inhibited by curvature at the 
droplet interface, but these droplets can grow indefinitely if above a critical size. An 
unstable stationary critical droplet exists at this unique size, and smaller droplets shrink. 
As p → peq, the more stable state is less effective at displacing the less stable state, and 
the critical size diverges [2,6]. We note that the free energy framework for 
thermodynamic systems, which facilitates assessment of equistability and nucleation 
phenomena, is lacking in non-equilibrium systems, as generally is the possibility even to 
construct a Lyapunov functional mimicking free energy. However, this complication may 
open the possibility of more diverse behavior.  

Contrasting the above continuum formulations, a spatially discrete setting is 
arguably more appropriate for many non-equilibrium bistable phenomena. This applies 
for heterogeneous catalysis on crystalline surfaces at high pressure which imposes 
characteristic length scales of a few lattice constants [7,8], signal propagation along 
myelinated nerve fibers, and other biological phenomena reflecting discrete cellular 
structure [9], bistable phenomena in networks with a random or regular topology [10,11], 
spread of spatial epidemics through a periodic grid of urban households [12] and also 
certain electromagnetic circuits [13], atomistic-level descriptions of crystal growth [14], 
etc.  Within a mean-field description, the above RDEs are replaced by analogous lattice 
differential equations (LDEs) [15]. It is well-recognized that LDEs exhibit richer and 
more subtle behavior than RDEs, specifically propagation failure (PF) or pinning of 
planar interfaces [14-19]. Pinning produces stationary planar interface states which exist 
over a finite range of some relevant control parameter. This type of pinning behavior 
has been explored in the material science, chemical and non-linear physics, and applied 
mathematics communities. In addition, LDEs exhibit an orientation dependence of 
interface propagation and equistability not seen in isotropic continuum models. These 
features naturally impact assessment of equistability of states. In context of stochastic 
particle models, orientation-dependent interface propagation leads to so-called generic 
two-phase coexistence [20-22].  
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The above mean-field LDE analysis of interface propagation and failure on 
regular lattices has specifically focused on planar interfaces. However, the topic on 
which we focus is droplet dynamics again on regular lattices, which involves curved 
interfaces. In particular, we explore phenomena related to PF. One might anticipate that 
the presence of PF could facilitate the formation of localized stationary droplet states 
which are stable. We will show that this is the case. However, since pinned fronts may 
only exist for selected orientations, one cannot simply regard localized stationary states 
as a combination of pinned fronts with different orientations. A primary motivation for 
consideration of droplet dynamics is that it underlies nucleation phenomena in bistable 
systems. In continuum models, stationary droplet states correspond to so-called critical 
droplets, which however are unstable [2,23]. It should be noted that localized stationary 
states have been observed previously for bistable models in spatially discrete systems, 
which however incorporated a random scale-free and hierarchical network structure, or 
a tree-like spatial structure [10,11]. These studies present the challenge of separating 
the effect of the random or non-periodic topological spatial structure on localization from 
the intrinsic nature of the model kinetics. In this respect, we note the generic potential 
for randomization to induce localization [24]. However, our analysis of such phenomena 
on regular periodic lattices allows natural connection to nucleation phenomena, and 
specifically critical droplets, addressing fundamental questions related to the effect of 
curvature on interface propagation. 

In this study, we will perform a mean-field LDE analysis of variations of the 
quadratic contact process (QCP) on a square lattice [12,22] describing spatial 
epidemics involving infection and spontaneous recovery of individuals or households 
arranged on a periodic square grid. As discussed further below, the QCP is equivalent 
to a lattice version of Schloegl’s second model for autocatalysis [25]. Our analysis will 
reveal PF, generic two-phase coexistence, and an unprecedented richness in behavior 
for critical and stationary droplets. Entire families of stationary droplets emerge with 
some diverging in size in regimes of propagation failure. This behavior is qualitatively 
distinct and far more diverse than that found for classic nucleation in equilibrium 
systems and in continuum models for non-equilibrium systems. 
 
II. MODEL DESCRIPTION AND EVOLUTION EQUATIONS 
 
A. Model description 
 
In the QCP considered here, households or individuals arranged at sites on a square 
lattice are either sick (S) or healthy (H). If S, they can spontaneously recover, S→H, at 
rate p. If H, they can be infected by transmission of disease in the event of two or more 
sick of neighbors, H+2S→3S. The infection rate, kn, depends on the number, n ≤ 4, of 
sick neighbors with k0 = k1 = 0. For n = 2, we allow the flexibility to assign different rates 
for “linear” (L) and “diagonal” (D) configurations with the two sick neighbors on opposite 
sides of the H (k2L) and on diagonally adjacent sites (k2D). See Fig. 1. Possible 
assignments include kn≥2 = 1 (threshold choice) [26-28], kn = n(n-1)/12 (combinatorial 
choice) [27,29], or k2L = 0, k2D = ¼ , k3 = ½ , k4 = 1 (Durrett choice) [12,22]. All 
assignments suffer from a “quirk” that infection cannot penetrate a semi-infinite healthy 
region with a vertical or horizontal boundary, for any p ≥ 0 (i.e., even for very slow 
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recovery). Why? All healthy sites at the boundary of this healthy region have at most 
one infected neighbor. Thus, vertical (or horizontal) interfaces between healthy and 
infected regions can only move into the infected state. Similarly, infection cannot 
expand beyond an infected rectangular patch or “droplet”.  

It is convenient to remove this quirk by perturbing the model. One can introduce 
“mixing” allow neighboring H and S to exchange places with small rate h [30]. 
Alternatively, in addition to infection requiring at least two sick neighbors, one can also 
allow spontaneous infection, or instead transmitted infection from a single sick neighbor 
[31] (in the spirit of a conventional contact process [32]), with small rate ε. We will focus 
on behavior for the Durrett version of the QCP allowing mixing with h = 0.01.  

As an aside, replacing S by X, and H by ∅, this QCP becomes equivalent to a 
version of Schloegl’s 2nd model for autocatalysis [2,25] involving spontaneous 
annihilation, X→∅, of particles, X, residing at the sites of a square lattice at rate p, and 
autocatalytic creation of particles at empty sites, ∅, induced by neighboring particle 
pairs, ∅+2X→3X [22]. QCP model perturbation by mixing corresponds to introducing 
particle hopping to neighboring empty sites at rate h, and perturbation by spontaneous 
infection corresponds to spontaneous particle creation at empty sites at rate ε. 
 
 

 
 
 
Fig.1. Schematic of the Quadratic Contact Process (QCP) on a square grid and perturbations 

thereof. H (S) denotes healthy (sick). ∗ can be either H or S and does not affect rate for the 
indicated process. 
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B. Mean-field evolution equations 
 
Returning to the QCP perturbed by mixing, our analysis tracks the evolution of the 
probability, Pi,j that site (i,j) on the square lattice is in state S, so 1 – Pi,j gives the 
probability that the site is in state H. Model behavior is described by the LDE 
 
d/dt Pi,j = -p Pi,j (recovery) + ℜi,j (1 - Pi,j) (infection) + h ΔPi,j (mixing).   (1) 
 
where ΔPi,j = Pi+1,j + Pi-1,j + Pi,j+1 + Pi,j-1 - 4Pi,j is a discrete Laplacian. The recovery term 
is clearly exact even in the presence of spatial correlations, but this also applies for the 
mixing term [33]. A closed expression for the rate of infection, ℜi,j, of a healthy site (i,j) is 
obtained at the mean-field level ignoring correlations between the state of different sites. 
One sums contributions from all configurations of neighbors to the healthy site with two 
or more S, weighting by the appropriate infection rate. For example, if sites (i±1,j) are S 
and sites (i,j±1) are H, the contribution is k2LPi+1,jPi-1,j(1-Pi,j+1)(1-Pi,j-1).  

In the following, we just consider the Durrett choice of rates which yields  
 
ℜi,j = ¼(Pi+1,j Pi,j+1 + Pi+1,j Pi,j-1 + Pi-1,j Pi,j-1 + Pi-1,j Pi,j+1),     (2) 
 
after some simplification using binomial summation formulae [34,35]. Behavior of the 
QCP for other rate choices is qualitatively similar, although ℜi,j differs [36]. Naturally, 
some simplification of (1) and (2) is achieved for planar interfaces. For example, in the 
case of a vertical interface where Pi,j = Pi is independent of j, then ΔPi,j reduces to ΔPi =          
Pi+1 + Pi-1 - 2Pi,j, and ℜi,j reduces to ℜi = ½(Pi+1 Pi + Pi+1 Pi). 

It is appropriate to note behavior for spatially homogeneous states with Pi,j = P 
(the probability that any household is sick) where Eq. (1) reduces to [34,35] 
 
d/dt P = R(P) where R(P) = -p P + P2 (1 - P).      (3) 
 
yielding an all-healthy steady state with P = 0, for all p ≥ 0, and stable (+) and unstable 
(-) populated steady states with P±(p) = ½ ± ½(1-4p)1/2, for 0 ≤ p ≤ psn (the regime of 
bistability) with upper spinodal or sn-bifurcation point psn = ¼. Fig. 2 (inset) illustrates 
this equation-of-state. 

It should be noted that there have been multiple previous mean-field 
implementations of spatially discrete heterogeneous versions of Schloegl’s second 
model or QCP type models [10,11,15-19]. However, relative to our model above, these 
typically incorporate simpler traditional spatial coupling of the form d/dt Pi,j = R(Pi,j) +      
k ΔPi,j. More complex spatial coupling should generally be expected in spatially discrete 
“contact” models where infection or reaction involves interaction between a site and its 
local neighborhood. For stochastic models, this coupling is captured in a set of exact 
spatially heterogeneous master equations [8,34,35].  
 Finally, we briefly comment on our numerical analysis of the model. It is 
necessary to truncate this infinite coupled set of equations for Pi,j. However, this is 
readily achieved since the region in which Pi,j varies is localized, and behavior in 
asymptotic regions is uniform adopting a value corresponding to one of the two steady 
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states. Thus, one just appropriately sets the values of Pi,j on the boundary of a finite 
domain with spatial variation confined to the central portion of that domain. Numerical 
integration of Eq. (1) uses a forward difference algorithm. To assess stationary droplets, 
Eq. (1) is generally integrated up to t ≈ 5x105. However, integration is extended up to t ≈ 
107 for p near critical values where droplet sizes diverge, especially near p-(S=∞) or 
p+(S=1). For near-stationary behavior, a longer time step Δt = 1 can be employed in the 
long-time regime. As eluded to above, in the analysis of planar interface propagation 
with interface slope S, some simplification of the evolution equations is possible. Pi,j 
depend only on the combination i + S j, so one equation (1) reduces to an infinite 
coupled set of equations Pm=Pi+Sj labeled by a single parameter, m. 
 
III. PLANAR INTERFACE PROPAGATION 
 
Results for the propagation velocity, V, of planar interfaces between all-healthy and 
infected states in the bistable regime for 0 ≤ p ≤ psn are summarized in Fig. 2 for the 
perturbed Durrett version of QCP with h = 0.01. V > 0 corresponds to the infected state 
displacing the all-healthy state, and V < 0 to the opposite. Interface orientation is labeled 
by the slope S. This analysis is a prerequisite for our subsequent elucidation of 
dynamics of droplets. For h = 0.01, PF or pinning is found for: (i) vertical interfaces 
(S=∞) for 0.20809 ≈ p-(S=∞) < p < p+(S=∞) ≈ 0.20972 (the same applies by symmetry for 
horizontal interfaces); and (ii) diagonal interfaces (S=1) for a far narrower regime of 
0.2127 2978 ≈ p-(S=1) < p < p+(S=1) ≈ 0.2127 3055. If Δp(S) = p+(S) – p-(S), then 
Δp(S=1)/Δp(S=∞) ≈ 0.00047.  

 
 
Fig. 2. Propagation velocity, V, versus p for planar interfaces separating the infected and all-
healthy states for various orientations, S, in the perturbed QCP with h = 0.01. For V > 0, infected 
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invades all-healthy. PF occurs for S = 1, but for a far narrower range of p than for S = ∞ (or S = 
0). 

For S ≠ 1 or ∞, there is no propagation failure, and instead there exists a unique 
equistable p = peq(S) with the interface velocity V(S) ~ p – peq(S) varying quasi-linearly 
through zero at p = peq(S) where the interface is stationary. It is natural to consider 
behavior for near-vertical interfaces where we find that peq(S→∞) ≈ 0.20903 is between 
p±(S=∞) for h = 0.01. See Fig. 2. Similarly, for near-diagonal interfaces, we find that 
peq(S→1) ≈ 0.2127 3015 is between p±(S=1) for h = 0.01. 

As an aside, we note that p±(S = 1 or ∞) and peq(S → 1 or ∞) depend weakly on 
small h. Values converge as h → 0 with limits close to those for h = 0.01. See Table I. 
This applies for p-(S=∞) → 0.19613 as h → 0, even though p-(S=∞) = 0 for h = 0 due to 
the above-mentioned quirk in the unperturbed QCP.  
 
 p-(S=∞) peq(S→∞) p+(S=∞) p-(S=1) peq(S→1) p+(S=1) 
h=0 (h→0) 0 (0.196134) 0.205051 0.207107 0.211375 0.211376 0.211378 
h=0.01 0.208051 0.209034 0.209721 0.2127 2978 0.2127 3015 0.2127 3055
 
Table I. Key p-values for QCP with mixing at rate h = 0.01, and also for h = 0 and h→0. 
 
IV. OVERVIEW OF DROPLET BEHAVIOR 
 
It is instructive to recall the basic features of the equilibrium droplet or cluster shapes in 
Hamiltonian systems based on the Wulff construction, and to note Frank’s description of 
growth shapes based on its kinetic analogue [37,38]. For 2D equilibrium lattice-gas 
models, a line tension is determined for each orientation of the cluster perimeter. Then, 
for the equilibrium shape, the distance from the cluster center to each point on the 
periphery is proportional to the line tension for the orientation at that point. This 
prescription also applies for critical droplets. A consequence is that orientations with 
high line tension tend to be absent. Frank’s model for growth shapes assigns an 
orientation-dependent growth velocity at each point on the perimeter. Then, in the 
kinetic Wulff prescription for growing cluster shape, line tension for equilibrated clusters 
is just replaced by growth velocity. This implies that faster propagating orientations tend 
to “grow out” leaving a cluster shape dominated by the slowest growing orientations. 

For the Durrett version of the QCP perturbed by mixing, we consider both 
droplets of the infected phase embedded in the all-healthy phase, and all-healthy 
droplets imbedded in the infected phase. We first restrict attention to droplets having the 
4-fold rotational symmetry of the underlying 2D square lattice. We determine the size 
(i.e., area) of embedded infected droplets from AI = ∑i,j Pi,j/P+(p), and of embedded all-
healthy droplets from AH = ∑i,j [P+(p) - Pi,j]/P+(p). Droplet behavior for h = 0.01 is 
summarized in Fig.3. It is instructive to describe behavior separately in five distinct p-
regimes:  

 (1a) For slow recovery 0 < p < p-(S=∞), the macroscopic infected state is 
unambiguously more stable than the all-healthy state, and displaces the latter separated 
from it by any planar interface. However, growth of infected droplets embedded in the 
all-healthy state is inhibited by curvature. They only grow above a critical size AI

c+(p) 
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that diverges as p→p-(S=∞). Their shapes reflect the slowest growing horizontal/vertical 
orientations, and are predominantly square. Infected droplets below a critical size AI

c-(p) 
shrink due to larger curvature. AI

c±(p) are coincident for lower p, but one generally finds 
that AI

c-(p) < AI
c+(p) for p above about 0.2060. A discrete set of stationary droplets exists 

within these limits, the number of which increases and diverges for increasing p→p-
(S=∞). 

(1b) For p-(S=∞) < p < peq(S→∞), again small infected droplets embedded in the 
all-healthy state shrink below a critical size AI

c-(p), which diverges as p→peq(S→∞). All 
larger droplets evolve to one of an infinite discrete set of stationary infected droplets 
with square shape, i.e., no droplets grow indefinitely. This behavior can be readily 
understood as stationarity (PF) of vertical and horizontal interfaces in this regime blocks 
unlimited growth of infected droplets. 

(2a) For p+(S=1) < p < psn = ¼, the macroscopic all-healthy state is 
unambiguously more stable than the infected state. Analogous to (1a), all-healthy 
droplets embedded in the infected state only grow above a critical size AH

c+(p), which 
diverges as p → p+(S=1). Their shapes reflect the slowest growing diagonal orientations, 
and are predominantly diamond shaped. All-healthy droplets shrink below a critical size 
AH

c-(p) which coincides with AH
c+(p) for higher p, but generally AH

c-(p) < AH
c+(p) for p 

below about 0.21277. A discrete family of stationary droplets occurs within these limits 
increasing and diverging in number for decreasing p → p+(S=1). 

 (2b) For rapid recovery peq(S→1) < p < p+(S=1), again small all-healthy droplets 
embedded in the infected state shrink below a critical size Ah

c-(p) which diverges as 
p→peq(S→1). Analogous to (1b), all larger droplets evolve to one of an infinite discrete 
family of stationary droplets with diamond shape, i.e., none grows indefinitely due to PF 
of diagonal interfaces. However, given the large values of Ah

c-(p), this behavior is 
difficult to assess numerically. 
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Fig. 3. Summary of the evolution and stationarity of droplets of effective linear size A1/2 from 
LDE analysis of the Durrett model perturbed by mixing with rate h = 0.01.  
 

(3) For peq(S→∞) < p < peq(S→1), both infected and all-healthy droplets 
embedded in the other state always shrink. The shapes of shrinking droplets controlled 
by fastest shrinking orientations. Thus, shrinking all-healthy droplets are effectively 
diamond shaped. Shrinking infected droplets are effectively square (or at least have 
periphery orientations close to vertical and horizontal). We identify this regime as one of 
generic two-phase coexistence since each state is stable against local perturbations of 
the other state (where such perturbations are ultimately extinguished). This feature does 
not apply for the other regimes. 
 
V. DETAILED ANALYSIS OF DROPLET DYNAMICS AND STATIONARITY 
 
Again we consider exclusively the Durrett version of the QCP perturbed by mixing with h 
= 0.01.  
 
A. Breakdown of traditional critical droplet behavior 
 
Behavior for “extremes” of p exhibits somewhat traditional behavior. For low p ≤ 0.2060 
(which is below p-(S=∞) ≈ 0.20809), and high p ≥ 0.21277 (above p+(S=1) ≈ 0.21273), 
there exists a unique symmetric infected critical droplet. For p = 0.2060, Fig. 4a(c) 
shows shrinkage (growth) for infected droplets below (above) the unique critical size of 
AI

c = 735.57. Fig.4b shows evolution to this stationary critical infected droplet. For p = 
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0.2140, Fig. 4d(f) shows shrinkage (growth) for all-healthy droplets below (above) the 
unique critical size of AH

c = 2442.33, and Fig.4e shows evolution to the stationary 
critical all-healthy droplet. In all cases, we start with an octagonal droplet. 
 

 
 
Fig. 4. Dynamics of: (a-c) infected droplets embedded in the all-healthy state for p = 0.206; and 
(d-f) all-healthy droplets embedded in the infected state for p = 0.214. Image size: 100x100 
lattice sites. 

 
To illustrate the breakdown of the traditional picture of a unique unstable critical 

droplet, we first consider behavior for infected droplets for various p < peq(S→∞) ≈ 
0.20903. Fig.5a shows the evolution of droplet size for a range of initial sizes at p = 
0.2060, and indicates a finite basin of attraction (with non-zero measure) to the unique 
symmetric stationary droplet. Thus, this “critical” droplet constitutes a stable stationary 
solution of the LDE contrasting continuum formulations where the critical droplets 
constitute unstable stationary solutions. We attribute this stability to an enhanced 
propensity for stationary solutions in spatially discrete systems. Fig.5b,c show that for 
evolution at p = 0.2070 and p = 0.2076 (still below p-(S=∞) ≈ 0.20809), the basin of 
attraction decomposes into an increasing number of sub-basins for distinct stable 
stationary droplets where this number and the maximum droplet size diverges as        
p→ p-(S=∞). A more comprehensive listing of the sizes of stationary droplets in this 
regime is provided in the SI. Finally, at p = 0.2085 (above p-(S=∞) but still below 
peq(S→∞) ≈ 0.20903), Fig.5d reveals a semi-infinite family of stationary droplets the 
smallest of which has size AI

c- = 4761.76.  
An analogous breakdown of the traditional picture applies for all-healthy droplets 

for p > peq(S→1) ≈ 0.2127301 upon lowering p. Fig.4d-f shows that the traditional 
picture still applies for p = 0.214, but one has two stationary droplets for p = 0.21276, 
three for p = 0.21274, etc. (see the Supplemental Material [39] for further details), and 
an infinite number for p < p+(S=1). 

 



11 

 

 
 
Fig.5. Evolution of A1/2 for infected droplets embedded in the all-healthy state for p = 0.206, 
0.207, 0.2076 < p-(S=∞), and for p-(S=∞) < p = 0.2085 < peq(S→∞). Axes range: see SI. 
 
B. Regime of generic two-phase coexistence  
 
For 0.20903 ≈ peq(S→∞) < p < peq(S→1) ≈ 0.2127 302, we have noted that both infected 
and all-healthy droplets embedded in the other state always shrink. Examples of this 
behavior are shown in Fig.6. For infected droplets starting with an octagonal shape, 
diagonal portions of the periphery expand since V(S ≈ 1) > 0. This leads to a roughly 
square shape which starts to shrink since V(S ≈ 0 or ∞) < 0. Similarly for all-healthy 
droplets starting with an octagonal shape, horizontal and vertical portions of the 
periphery expand since V(S ≈ 0 or ∞) < 0. This leads to a roughly diamond shape which 
starts to shrink since V(S ≈ 1) > 0. Thus, neither phase can sustain embedded isolated 
droplets of the other phase, no matter how large. 
 
C. Asymmetric droplets 
 
While the above stationary droplet behavior is far richer than in continuum formulations, 
these spatially discrete models exhibit even more diverse phenomenology as there exist 
families “asymmetric” droplets with only 2-fold or 1-fold symmetry, and well as 4-fold 
symmetric stationary droplets. For example, considering infected droplets at a low p = 
0.2060 supporting a unique symmetric stationary droplet, there are two additional 
stationary droplets which are elongated, i.e., they have only 2-fold reflection symmetry 
about a single axis. Evolution to these droplets is realized starting with asymmetric initial 
droplet shapes as shown in Fig.7. An oblique 2x1 rectangle evolves to the unique 
symmetric stationary droplet with area of AI = 735.57 shown in Fig.4b and 5a for p = 
0.2060. However, elongated vertical 2x1 and 3x1 rectangles evolve to distinct stationary 
droplets with sizes AI = 755.02 and 787.87, respectively. Thus, behavior for p = 0.2060 
is actually different from the traditional picture with a unique stationary droplet. In this 
context, it might be noted that p = 0.2060 is quite close to the value of p = 0.2061 above 
which multiple symmetric stationary droplets emerge. 
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Fig.6. Shrinking droplet dynamics for 0.20903 ≈ peq(S→∞) < p < peq(S→1) ≈ 0.212730. Infected 
droplet: (a) p = 0.2095; (b) p = 0.211; (c) p = 0.2125. All-healthy droplet: (d) p = 0.2095; (e) p = 
0.211; (f) p = 0.2125. Inage size: 100x 100 lattice sites.  
 

 
 

Fig.7. Asymmetric stationary droplets for p=0.2060 (middle case recovers 4-fold symmetric 
droplet). Image size: 100x100 sites. 
 

If p is far enough below p-(S=∞) ≈ 0.20809 (e.g., for p = 0.205), one does recover 
true uniqueness, i.e., now asymmetric initial shapes which evolve to a stationary 
infected droplet recover that achieved from an octagonal initial shape. On the other 
hand, for higher p < p-(S=∞) where there are multiple symmetric stationary droplets, we 
find additional asymmetric stationary infected droplets. For example when p = 0.207, 
where there are three symmetric droplets with sizes shown in Fig.5b with sizes AI = 
1210.15, 1380.09, and 1545.30, there exist an additional asymmetric stationary droplet 
with sizes AI = 1370.47 obtained by starting with a 2x1 or 3x1 vertical rectangle. In the 
regime p-(S=∞) < p < peq(S→∞) with infinite family of symmetric stationary droplets, 
there is an additional infinite set of asymmetric stationary infected droplets. 

Analogous behavior is found for all-healthy droplets for high p. If p is far enough 
above p+(S=1) ≈ 0.21273, then there is a unique symmetric stationary droplet and no 
additional asymmetric stationary droplets. In fact, this is the case for p = 0.214 shown in 



13 

 

Fig.4d-f (see the Supplemental Material [39]), noting that this p is still significantly 
exceeds the value of p = 0.21277 below which multiple symmetry stationary droplets 
exist. However, for lower p, asymmetric stationary droplets emerge in addition to the 
symmetric ones. 
 
VI. DISCUSSION 
 
A. Connections to nucleation phenomena 
 
 In the introduction, we sketched the generic picture of nucleation phenomena 
associated with discontinuous phase transitions both in systems in thermodynamic 
equilibrium with the environment at some specified temperature [23], and also for noisy 
bistable non-equilibrium systems [40]. Near the transition, the less stable (strictly, 
metastable) steady-state is long-lived as only rare fluctuations can induce sufficiently 
large supercritical droplets to trigger conversion to the more stable state. This 
conversion process involves nucleation of such droplets effectively at constant rate and 
at random locations followed by droplet growth, and thus is governed by Kolmogorov-
Avrami kinetics [41].  

To assess nucleation phenomena, e.g., for our LDE-based QCP perturbed by 
mixing, one would add noise to the LDE where the noise amplitude would naturally be 
dependent on the local S population according to standard prescriptions of stochastic 
chemical kinetics [42]. For example, the noise amplitude would vanish in the “absorbing” 
all-healthy state (since infection cannot occur spontaneously). Consequently, the all-
healthy state cannot undergo fluctuation-mediated evolution to the infected state. 
However, the noise amplitude would be non-zero in the metastable infected state for p > 
peq(S→1). For p > p+(S=1), fluctuations would lead to the nucleation of supercritical all-
healthy droplets with AH > AH

c+ which grow producing conversion to the all-healthy state. 
Notably, such conversion kinetics must differ in detail from traditional Avrami kinetics. 
Now, fluctuations can create stable stationary droplets, which persist until an additional 
fluctuation results in a sufficient size increase to force their growth. This contrasts 
behavior in continuum theories where there is a unique unstable critical droplet and 
droplets either grow or shrink when their size is above or below this critical value, 
respectively. Behavior for peq(S→1) < p < p+(S=1) is fundamentally different from Avrami 
kinetics. Now, fluctuations initially create one of an infinite number of stationary all-
healthy droplets, but if isolated these cannot grow no matter how large. Complete 
conversion to the all-healthy state requires percolative overlap of individual droplets 
creating diagonal interfaces which can expand. 

Adding noise to the QCP perturbed by spontaneous infection, now fluctuations 
also occur in the mostly-healthy steady state which induce conversion to the infected 
state for p < peq(S→∞). Just as above, behavior would differ from traditional Avrami 
kinetics somewhat for p < p-(S=∞) and dramatically for p-(S=∞) < p < peq(S→∞). 
 
B. Brief remarks on beyond-mean-field treatments and behavior 
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The QCP rules specified in Sec.II.A define a stochastic lattice-gas model, the precise 
behavior of which can be assessed by Kinetic Monte Carlo (KMC) simulation. There 
exist KMC studies for the basic Durrett version model [22], and also for versions 
perturbed by mixing [30] or by spontaneous infection [43]. There also exists a KMC 
study for basic threshold version including its perturbation by spontaneous infection 
[28]. For the combinatorial version of the QCP, KMC analysis just exists for the basic 
model [29]. The key qualitative features of behavior are similar to those predicted in the 
mean-field treatment (with suitable interpretation), but all features including the spinodal 
and equistability points are shifted to substantially smaller p. Spinodal points are difficult 
to assess (and actually cannot be precisely defined) in the stochastic model as a result 
of strong fluctuations. However, all the stochastic models with various choices of rates 
and without and with small perturbation exhibit a well-defined regime of generic two-
phase coexistence [22,28,29,30,43]. This regime corresponds to that identified our 
mean-field treatment, where it is significant to note that the regime corresponds to 
peq(S→∞) < p < peq(S→1). The values of p±(S=∞) and p±(S=1) do not determine this 
regime. To understand this feature, consider the vertical interface S=∞ which has a 
perfectly straight featureless form. This is in contrast to interfaces with S>>∞ which can 
be regarded as a straight interfaces with some “defects” kink sites. The latter situation 
corresponds better to interfaces in the stochastic model where fluctuations generate 
defects. 
 In addition to KMC simulation, beyond-mean-field analysis of model behavior is 
possible from higher-order truncation approximations to the appropriate homogeneous 
and heterogeneous master equations [34,35]. The man-field treatment corresponds to 
the lowest-order site approximation, and even the next higher order pair approximation 
greatly improves prediction of the spinodal and equistability point locations. 
 
VII. CONCLUSIONS 
 
There are multiple versions of the basic quadratic contact process (QCP) with distinct 
choices of rates, kn≥2. These all suffer from the quirk that a rectangular infected droplet 
cannot expand into or invade an all-healthy background state, and that a semi-infinite 
infected state cannot invade an all-healthy state separated from it by vertical or 
horizontal interface. However, various perturbations of the basic model remove the 
quirk. Introducing exchange of neighboring H and S at small rate h removes the model 
quirk while preserving the all-healthy stead state. If the model perturbation involves 
spontaneous infection with small rate ε (rather than mixing), then the all-healthy steady 
state is replaced by a mostly-healthy state with a small infected population. If instead 
infection is induced by a single sick neighbor with small rate ε, then again the all-healthy 
steady state is preserved. In all cases, the stable and unstable infected steady-states 
are perturbed relative to ε = 0 [31]. 

For these various model perturbations, apart from removing the quirk, other basic 
features of the basic model behavior such as bistability are preserved. In particular, this 
applies to all aspects of healthy droplet dynamics. To illustrate this feature, the 
Supplemental Material [39] provides descriptions of behavior for the Durrett model 
considered above but with spontaneous infection at rate ε = 0.001 (rather than mixing), 
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and also of behavior for the threshold model perturbed by either mixing or spontaneous 
infection. It should, however, be noted that in the unperturbed or the perturbed models, 
the bistable region, and also the equistability points, peq(S), depend strongly on the 
prescription of the kn. 
 Our analysis of heterogeneous behavior in spatially-discrete non-equilibrium 
systems utilizing LDE relates to a substantial body of previous LDE-based studies, 
which focused on planar interface propagation in 1D and 2D systems. The 1D nature of 
such propagation sometimes allows significant insight from analytical (versus numerical) 
investigation. It might be noted that additional 1D phenomena such as the existence of 
stationary strips of finite width of one steady state embedded in the other could also be 
explored [34], although application appears limited. However, significantly, there has 
been essentially no LDE-based analysis of intrinsically 2D phenomena such as droplet 
dynamics, or more generally the propagation of curved interfaces. Our study advances 
this area of investigation where there is important application to nucleation-type 
phenomena in bistable systems. 

Our focus has been on QCP type model for spatial epidemics. However, the type 
of phenomenology which we find for these models should also occur in a much broader 
class of diffusionless reaction models formulated on lattices exhibiting mean-field 
bistability. (Introduction of significant diffusion leads to large characteristic length scales 
and the disappearance of such features as propagation failure, behavior being 
effectively describe by continuum formalisms.) Examples of such reaction models are 
the generic monomer-dimer model [6,32,44,45], and also a realistic models for catalytic 
CO-oxidation on crystalline oxide surfaces at high-pressure [46-48]. Mean-field 
treatments based on homogeneous and heterogeneous master equations can be 
developed for these models as for the QCP [8].  
 In conclusion, analysis of our LDE-based formulation of spatially-discrete bistable 
non-equilibrium systems has revealed a diversity of droplet dynamics and stationarity 
far richer than RDE-based descriptions of analogous continuum systems. This diversity 
leads to modified and sometimes dramatically different nucleation kinetics compared 
with the traditional picture. 
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