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Unraveling the mechanisms of packing of DNA inside viral capsids is of fundamental importance
to understanding the spread of viruses. It could also help develop new applications to targeted
drug delivery devices for a large range of therapies. In this article, we present a robust, predictive
mathematical model and its numerical implementation, to aide the study and design of bacterio-
phage viruses for application purposes. Exploiting the analogies between the columnar hexagonal
chromonic phases of encapsidated viral DNA and chromonic aggregates formed by plank-shaped
molecular compounds, we develop a first principles effective mechanical model of DNA packing in
a viral capsid. The proposed expression of the packing energy, that combines relevant aspects of
the liquid crystal theory, is developed from the model of hexagonal columnar phases, together with
that describing configurations of polymeric liquid crystals. The method also outlines a parameter
selection strategy that uses available data for a collection of viruses, aimed at applications to viral
design. The outcome of the work is a mathematical model and its numerical algorithm, based on
the method of finite elements, and computer simulations to identify and label the ordered and dis-
ordered regions of the capsid and calculate the inner pressure. It also presents the tools for the local
reconstruction of the DNA ’scafoldding’ and the center-curve of the filament within the capsid.
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INTRODUCTION

The formation of liquid crystal phases in DNA condensates in free solution as well as inside viral capsids led to
the chromonic denomination of a class of lyotropic liquid crystals that also form toroidal shape aggregates in water.
A common denominator between both such systems is that they form hexagonal columnar liquid crystal phases. In
this article, we apply models of hexagonal columnar nematic liquid crystals and their numerical algorithms, originally
developed for lyotropic liquid crystals, to study the organization of a viral genome in an axisymmetric capsid.

Different from liquid crystals consisting of elongated, rod-like molecules found, for instance, in display devices,
chromonic liquid crystals consist of plank-like molecules that form liquid crystal phases with varying concentration.
At low concentration, the molecules stack to form cylindrical aggregates with randomly oriented axial directions,
which tend to align and grow in height as the concentration increases. With even further increase, the cylinders
cluster so their center axes align in a hexagonal lattice, forming what is known as the hexagonal columnar liquid
crystal phase. Upon adding concentrating agents such as Polyethylene Glycol (PEG) and spermedine, the cylinder
clusters rearrange into torus-like shapes [1], topologically analogous to those formed by DNA in free solution, also
in the presence of condensing agents. DNA aggregates are of the order of magnitude of 10−6 of the typical size of a
molecular chromonic cluster.

Indeed, experimental and theoretical studies acquired over the last 30 years [2–8] have shown that encapsidated DNA
molecules form an hexagonal columnar liquid crystal phase. In particular, liquid crystalline phases in bacteriophages
were first proposed in [9], with an explicit reference to hexagonal packing made in [10] and since then, consistent data
have been accumulating [5, 11–14].

This article studies the liquid crystal ordering of viral dsDNA in a capsid with axial symmetry. We combine liquid
crystal models and their numerical implementation to determine the equilibrium structure of the DNA in the capsid
and the forces that it sustains on the long run. The model is aimed to be used as a tool for the design and prediction
of encapsidated DNA in response to the renewed interest in bacteriophages in medicine and biotechnology. This goal
guides our parameter selection strategy which is also a main component of the work. The proposed method delivers a
parameter phase space for the pressure and the size of the inner disordered core. Moreover, the model and numerical
algorithm can integrate additional physics, such as the presence of water, capsid permeability, and the direct effects
of ions and DNA charge. This opens the door to a broad range of future studies.

Icosahedral bacteriophages contain a protein capsid whose assembly is followed by the packing, by means of a
molecular motor, of a single naked dsDNA molecule [15]. Cryo-Electron Microscopy (Cryo-EM) images show a well
ordered, spool-like, genome arrangement in the outer region, next to the capsid wall, becoming disordered in a central
core, feature shown in a density graph obtained from one of such images (Figure1). The DNA molecule inside the
viral capsid is found under extreme concentration, between 200 and 800 mg/ml [9], and pressure estimated in the
range between 40 and 60 atmospheres [16, 17]. Three factors contribute to the excess pressure found inside the viral
capsid: the decrease in entropy associated with the confinement imposed by the capsid, the high resistance of the
DNA molecule to bending beyond its persistence length and the self-repulsion of the DNA molecule [18]. At the time
of infection the DNA is released by a mechanism that suggests a phase transition, possibly into a ’liquid-like’ state
[3, 19, 20]. Both processes, packing and releasing of the genome depend greatly on how the DNA molecule folds
within the viral capsid; however our understanding of this folding remains very limited.

A first principles model of DNA encapsidation would consider a very long flexible rod of finite thickness (dsDNA
molecules) that resists bending and is packed inside a rigid container (for instance, see [21]). Difficulties with this
approach, in addition to accounting for the electrostatic interactions, would stem from treating constraints to prevent
self-overlaping, which would result in a very challenging numerical problem. Indeed, in [22], the authors used Monte
Carlo methods to study DNA packing by a similar “direct” model. Unfortunately, these methods are computationally
expensive, which makes exploration of DNA packing in bacteriophages nearly intractable. Likewise, the methods of
Brownian dynamics are severely limited by the size of the DNA molecule [23, 24].

Therefore, we adopt a phenomenological viewpoint and develop a continuum mechanical model of DNA encapsida-
tion based on the theory of hexagonal columnar liquid crystals, formulated in terms of director fields, together with
that of liquid crystals with variable degree of orientation. The latter brings an additional scalar field, the degree of
orientation s ∈ [0, 1), into the model [25]. The value s = 0 corresponds to the isotropic state, with random molecular
orientation, and the ideal value s = 1 representing perfect alignment.

Indeed, one difficulty with director field models of liquid crystals is that the associated energy may become un-
bounded at defect locations, that is points, lines or surfaces where the vector field vanishes. The scalar degree of
orientation provides a mathematical tool to regularize field singularities, such as those occurring in DNA crossings
and near non-smooth locations in the capsid. Its main role in our work is to characterize the disordered core region of
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the capsid, labelled with s small, close to 0. The region of the capsid with ordered spooled DNA is characterized by
values of s near 1. The rigorous justification of the order parameter s is done in terms of the distinguished eigenvalue
of the symmetric, traceless, uniaxial second order tensor Q obtained from the second order moment of a probability
distribution function defined on the unit sphere S2.

We describe an hexagonal columnar configuration in terms of a triple of orthonormal vector fields, {n,m,p} and
the scalar order parameter s ∈ [0, 1). The director n gives the local direction of the columnar axis and corresponds to
the tangent vector to the DNA center curve at a point. The unit vectors m and p correspond to lattice vectors of the
orthogonal cross sections and represent the directions along which neighboring strands are found in the encapsidated
arrangement (Figure3).

The energy that we construct combines the extension of the Oseen-Frank energy by Ericksen to account for the
variable degree of orientation [25], in addition to the de Gennes energy of columnar hexagonal liquid crystals ([26, 27]).
restricted to the case that the material is made of filaments. An additional term penalizes the area of the interface
between the ordered and disordered core regions in the capsid. We note that Ericksen’s energy can also be viewed
as the restriction of the Landau-deGennes energy of biaxial nematic liquid crystals to uniaxial [28]. Other surface
energy terms will be used as well on the surface of the capsid to represent the contact with the DNA. Indeed, the role
of the boundary proteins in ordering the DNA in the capsid, although not yet fully understood, has been the subject
of many studies [4, 29–31]. We note that Ericksen’s model was first developed to model polymeric liquid crystals that
tend to develop a wealth of defects and texture during processing [32].

Data at our disposal include the genome length L, the volume V and radius Rc of the capsid and the cryo-EM
images of the bacteriophage, that through the ensuing DNA density graphs (Figure1) give the effective diameter d of
the DNA and the size of the disordered core[30, 33–35]. Pressure and concentration data of the encapsidated DNA
are also available. We take the customary point of view that the DNA molecule is a semiflexible elastic polymer
characterized by the persistence length Lp which is about the size of the radius of the capsid. In the calculation of
the bending modulus k3, we also assume that the hydrated DNA fills the entire volume of the capsid [9], justifying
our selection of the maximum linear density m0. This also allows us to simplify the model since the enthropic energy
does not seem to play a main role when the whole genome fills the entire capsid.

The repulsive energy between neighboring DNA strands is not explicitly present in the model but is accounted for
by the effective role of the parameters of the mechanical energy.

In order to calculate the minimizer of the total energy, we proceed into two stages, first, neglecting the elastic
contribution of the cross section to the filaments. We start considering the total energy of encapsidation as consisting
of the bending energy of the DNA filament formulated in terms of the director field n, together with a normalized
potential w(s) that attains its minimum value at the ordered configuration, labeled as s = sa ≈ 1, and the maximum
at s = 0, reflecting the preference of the DNA to organize inside the capsid (Figure2). A penalty is also associated with
changes in s resulting in a transition region between the spooled-like state and the disordered inner core. However,
under parameter choices that provide good agreement between the values of experimental and the calculated disordered
core sizes, we find that the pressure is underpredicted by a factor of 100 with respect to experimentally measured
values [2, 16, 36–38]. This leads us to include an additional term in the energy penalizing distortions of the cross
section formulated as quadratic expressions of the gradients of the cross-sectional vectors ∇m and ∇p, stemming from
the hexagonal columnar elastic energy. It is the bulk and shear modulus, B and C, present in the transverse elastic
energy, that effectively account for the cohesive effects postulated in earlier models of DNA encapsidation [38, 39]
that, in turn, also effectively account for the electrostatic interactions.

We find that the dimensionless energy restricted to spooling configurations involves three material constants, b̂, γ̂0

and α, in addition to k3 that can be directly calculated from DNA data (Table 1). We determine the orders of

magnitude of b̂ and γ̂0 from the size of the disordered core of the T4 virus, as measured by imaging (see references
in Table 1). Likewise, the parameter α, used in scaling the elastic moduli B and C with respect to k3, is estimated
from experimental pressure values corresponding to the same viruses [2, 16, 36–38]. The numerical simulations deliver

phase spaces for the radius of the inner disordered core and the pressure, in terms of the parameters b̂ and γ̂0 (Figures
2-4).

Earlier mathematical results on Ericksen’s model guarantee existence of a global minimizer of the total energy
[40]. In addition, numerical methods previously developed by Walker, et. al. [41–43] on such a model extend to the
present case and provide a convenient algorithm to predict packing configurations and the pressure values that they
sustain. Cryo-EM images for most bacteriophages show multilayered spooling-like configurations on the outer layers
of the packed genome [2, 29–31, 33–35]. We present numerical simulations of minimizing configurations with spooling
geometry.

In section , we give a brief review of the nematic and chromonic models of liquid crystals, to explain, and develop the
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FIG. 1. The graph represents the DNA density of bacteriophage T5. It shows the radial density distribution of DNA inside
the viral capsid. The dashed line shows the density of an empty capsid. Figure reproduced from [44].

TABLE I. Physical measurements of four different bacteriophages. The symbol Lp denotes the persistence length of a DNA
chain of length L, effective diameter d, in a sphere-like capsid of radius Rc with a measured radius r0 of the disordered core.
T4 [45, 46]; T5 [30]; T7 [31]; ε15 [35]. Last column gives the pressure on the capsid.

Virus Lp(nm) d(nm) L(nm) Rc(nm) r0/Rc Pr.(atm)

T4 52.8 2.4 55047.6 40.0 0.5500 28.70

T5 58.38 2.94 39423.8 42.0 0.4286 30.17

T7 52.88 2.6 12932.0 26.05 0.5889 44.02

ε15 53.9 2.55 12846.0 28.37 0.5735 40.41

toolds for our methods, with a special emphasis on Ericksen’s model that includes the variable degree of orientation
field.

In section , we the energy of packing, its scaling properties and the role of the spooling configurations. In section
, we present our approach for estimating parameters, concluding with numerical simulations that relate remaining
phenomenological parameters to the radius of the inner disordered core. Section deals with the shape optimization
method and its application to calculate the pressures near the capsid surface.

This work is motivated by earlier studies of free boundary problems of chromonic liquid crystals and bacteriophages
carried out in the Ph.D dissertation by Lindsey Hiltner [47] and is partially inspired by [39, 48]. The software
supporting the numerical simulations of the model is freely available for downloading [49].

NEMATIC AND CHROMONIC LIQUID CRYSTALS

The unit director field n plays an essential role in the description of order in uniaxial nematic liquid crystals.
For rodlike (calamitic) molecules, it represents the average orientation of the long molecular axis and, for plank-like
molecules (discotic), it corresponds to the average orientation of the normal vector to the disks. Chromonic liquid
crystals are of discotic type.

An alternate approach to describing order in liquid crystals is in terms of the symmetric second order tensor Q. It is
the traceless version of a tensor M defined as the second moment of the probability distribution function ρ(x, l), l ∈ S2,
of the molecular orientation l, at a point x of the liquid crystal domain Ω ⊂ R3. That is, M =

∫
S2 ρ(x, l)l ⊗ l dl

and Q = M − 1
3I. We recall that the first order moment of ρ is zero due to the assumption that liquid crystal

molecules have indistinguishable ends. In the case that two of the eigenvalues of Q are equal and distinct from the
third one, the liquid crystal is optically uniaxial with Q = s(n ⊗ n − 1

3I), s ∈ (− 1
3 , 1) and |n| = 1. The eigenvector

n is associated with the optic axis of the material and correpsonds to the director field of the Oseen-Frank theory;
the scalar s represents the degree of orientation, describing the quality of the molecular alignment with respect to n.
The value s = 1 corresponds to the ideally perfect alignment and s = 0 to the isotropic state, with randomly oriented
molecules. In well aligned nematic liquid crystals, s is found to be in the range 0.5 to 0.9. (The case with s < 0 is
labelled as negative uniaxiality, with s = − 1

2 corresponding to the molecules being placed on a plane perpendicular
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FIG. 2. Plot of the isotropic penalty function w. The asterisks indicate points of zero slope.

to n.) When the three eigenvalues of Q are distinct, the liquid crystal is biaxial, with two distinguished directions.
In the case that the eigenvalues are equal, and equal to 0, Q = 0, corresponding to the isotropic state.

Nematic liquid crystals

In the Oseen-Frank theory, equilibrium states of a nematic liquid crystal are minimizers of the energy given by

E =

∫
Ω

W1(n,∇n) dx, (1)

W1(n,∇n) =k1(divn)2 + k2(n · curln)2 + k3|n× curln|2

+ (k2 + k4)[tr([∇n]2)− (divn)2]. (2)

The splay, twist and bend material constants, k1 > 0, k2 > 0 and k3 > 0, respectively, are associated with the liquid
crystal deformations that embody the corresponding geometries. The splay-bend term multiplying k2 + k4 is a null
Lagrangian and so, it depends on boundary values only. Defects in the Oseen-Frank theory correspond to locations,
points, lines or surfaces, where n = 0, that is where the molecular order is lost, giving rise to locally disordered
structures that may have infinite energy.

In order to represent liquid crystal configurations where ordered and disordered states coexist as well as assign finite
energy to defects, we then adopt Ericksen’s model [25] of liquid crystals with variable degree of orientation. In this
model, the equilibrium state of the liquid crystal material is described by the pair (s,n) minimizing a bulk-energy
functional

Eerk[s,n] :=
1

2

∫
Ω

s2W1(n,∇n) + b|∇s|2 dx+ γ0

∫
Ω

w(s) dx, (3)

with W1 as in (2). The potential function w(s) is of class C2, defined on −1/2 < s < 1, and penalizes the phase
transition between the nematic and the isotropic phases. It is chosen so that it has a minimum at s = sa, sa being the
preferred order parameter value at a given temperature, or concentration; it has a local maximum at s = 0 indicating
the ordering preference of the DNA. We list its properties as follows [25, 40, 50]:

lim
s→1

w(s) = lim
s→−1/2

w(s) =∞, (4)

w(0) = 1, w(sa) = min
s∈[−1/2,1]

w(s) = 0, for some sa ∈ (0, 1), (5)

w′(0) = 0, w has a local maximum at s = 0. (6)

We will later take w(s) to be quadratic near s = sa = 0.8 (see Fig. 2). From property (5), it follows that the material
constant γ0 > 0 is a disordered penalty parameter, and b > 0 controls the amount of regularization induced by s. In
particular, it represents the surface energy of transition between the spool-like and disordered regions of the capsid.
A full description of the model can be found in [25] and its analysis in [41–43].

Next, we discuss the approach to imposing boundary conditions. Rather than prescribing pointwise values of the
fields (s,n) on the boundary, that is, imposing strong anchoring boundary conditions, we appeal to weak anchoring,
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which consists in penalizing the energy of departure of the boundary values from the ideal ones [51]:

Ea(s,n) := Ea,n(s,n) + Ea,s(s),

Ea,n(s,n) :=
1

2

∫
Γ

s2
[
a⊥(ν · n)2 + a‖[1− (ν · n)2]

]
dS(x),

Ea,s(s) :=
1

2

∫
Γ

aori(s− sa)2dS(x),

(7)

where ν is the oriented unit normal vector of Γ := ∂Ω. The first term a⊥ tends to align the minimizing director field n
perpendicular to ν, and the second term a‖ favors a parallel alignment. The last contribution to the energy is needed
to ensure that s does not trivially vanish on the interface, and so cause Ea,n(s,n) to vanish as well [42, 52, 53]. The
parameters a⊥, a‖, aori : Γ→ [0,∞) may vary (in general), but here we take them to be fixed constants.

In determining a configuration of a liquid crystal, one minimizes the total energy consisting of (3) added to (7). A
thorough study of existence of minimizers together with the numerical implementation of the minimizing algorithm
can be found in [41–43]. In particular, the theory allows for Ω to be of icosahedral shape, since s = 0 at the edges
where the vector fields are not defined.

Chromonic Liquid Crystals

We are concerned with hexagonal columnar phases of chromonic liquid crystals. The energy consists of the Oseen-
Frank contribution (or, the Ericksen’s model analog) together with an elastic energy of the cross section perpendicular
to the columnar director field n. The latter also effectively includes the electrostatic repulsive energy of the negatively
charged DNA strands. We then represent the total energy as

Echr = Eerk[s,n] + Eelas[∇u], n · u = 0, (8)

where u denotes the displacement vector associated with deformation of the cross section, and corresponding energy
[26, 27]:

Eelas[∇u] =
1

2

(
B|∇u+∇uT |2 + C|∇u−∇uT |2

)
, (9)

where B > 0 and C > 0 denote the bulk and shear modulus of the material, respectively. The minimization of the
chromonic energy is done subject to the constraints

divn = 0, and (curln) · n = 0. (10)

The splay of a liquid crystal is zero whenever dislocations do not occur, that is, the same number of filaments that
enter a unit area exit that cross-section. In the case of the hexagonal columnar phase, nonzero splay would allow
for deviations from the lattice structure. Twist is prohibited because of its incompatibility with the two-dimensional
lattice order in planes perpendicular to the director. However, in our approach, we relax the constraints (10) by
taking the corresponding elasticity constants k1 and k3, respectively, in the energy as very large.

We observe that the previous model does not reflect the discrete nature of a system made of filament strands. In
order to associate a minimizing set {n,m,p, s} to a local DNA configuration, given the inter-strand DNA spacing
taken as its effective diameter, d > 0, we further introduce the scalar fields ω, ϑ as solutions of the ordinary differential
equations

dω

dm
=

2π

d
,

dϑ

dp
=

2π

d
, s 6= 0. (11)

Then, the intersections of level surfaces ω = constant, ϑ = constant give the location of the DNA strands, away from
points or lines where s = 0. Furthermore, the piecewise smooth curve r = r(ζ), ζ ∈ [0, L], such that

dr

dζ
= n(r(ζ)), r(0) = r0, (12)

describes the axis of the DNA double helix. Here L > 0 represents the length of the genome and r0 its entry point in
the capsid.
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FIG. 3. The graph a schematic representation of the level surfaces ω=constant, ϑ= constant, designated as Sm and Sp,
respectively, whose intersections provide the model scaffolding that supports the DNA filament.

Representing u in terms of the local coordinates (ϑ, ω) motivates us to postulate the related and simpler elastic
energy,

Eelas[∇m,∇p] = s2
(
B|∇(m + p)|2 + C|∇(m− p)|2

)
. (13)

Prior to multiplication by the factor s2, the previous expression differs from (9) by a constant term, and neglects the
dependence of the coefficients on (ϑ, ω) keeping, instead, the original elastic moduli.

We conclude this section commenting on the solvability of the ordinary differential equations (11) and (12). As
previously noted, they only hold at points of the domain where s > 0, that is, where the DNA is well ordered. It
follows from results on regularity of minimizers of Ericksen’s energy [54, 55] that if s > 0 on the boundary of the
domain, then s = 0 can occur only on sets of Hausdorff measure at most one, that is, lines and points. Furthermore,
studies of minimization of the Oseen-Frank energy establish that n = 0 occurs in a discrete number of [56]. This
allows for the piecewise integration of equation (12 between singular points. Hence, with no further study, we can
only locally reconstruct the DNA strand from its director field n.

DNA ENCAPSIDATION

We assume that the capsid and the cavity it encloses corresponds to a bounded, axisymmetric region Ω ∈ R3

with ∂Ω representing the piecewise smooth, faceted, viral capsid. We let l0 > 0 denote the length of the axis that
connects the location of the connector with its antipodal site in the viral capsid. Assuming the DNA is tightly packed
inside the capsid, we adopt a continuum approach for representing the configuration of the DNA [39, 48]. To this
end, we let n represent the unit tangent vector of an “ensemble” of packed DNA segments. Moreover, we use the
s variable (degree-of-orientation) to represent how well ordered the DNA segments are, e.g. s = 0 indicates that
the DNA strands are oriented in all directions equally. Furthermore, the unit vectors {m,p} span the cross sections
perpendicular to the DNA axis, with its associated level curves representing segment locations.

Total energy

The model that we propose consists of the total free energy together with a list of constraints, expressed as follows:

E =Eerk[s,n] + Ea(s,n) + Eelas[∇m,∇p] (14)

n ·m = 0, m · p = 0, n · p = 0, (15)

|n| = |m| = |p| = 1. (16)
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Substitution of expressions (3), (7) and (13) into equation (16) gives the total energy of the DNA coiling system:

E [s,n,m,p,Ω] =
1

2

∫
Ω

s2
[
k1(divn)2 + k2(n · curln)2 + k3|n× curln|2

+k2[tr([∇n]2)− (divn)2]
]
dx+

1

2

∫
Ω

b|∇s|2dx+ γ0

∫
Ω

w(s) dx

+
1

2
a0

[∫
Γ

s2(ν · n)2dS(x) +

∫
Γ

(s− sa)2dS(x)

]
+

1

2

∫
Ω

[
Bs2|∇(m + p)|2 + Cs2|∇(m− p)|2

]
dx.

(17)

We start with the following choices for the parameters of the model:

k1 ≈ k2 � k3, k4 = 0, (18)

a0 := a⊥ = aori, a‖ = 0, a0 ≈ k3/Rc, (19)

b ≈ k3, B ≈ k3 ≈ C, A := B + C = αk3, (20)

where α > 0 in (20) is a scaling parameter later determined using pressure measurements. Instead of imposing the
constraints (10), the first relation in (18) reflects the fact that divn and n · curln are almost negligible for the DNA
coiling configurations. The selection of the constants (19) in the anchoring energy (7) enforces tangential (planar)
boundary conditions for n, as this is consistent with DNA spooling inside capsids. The remaining relations are
statements on the orders of magnitude of the parameters and will be further discussed in a later section. We conclude
this section by introducing the additional notation k̃i = ki +A, with A as in (20). In particular, note that

k̃3 = k3 +A. (21)

Spooling configurations

From now on, we consider axisymmetric capsids and spooling configurations. Adopting cylindrical coordinates
(r, θ, z), with the z-axis along the capsid axis and letting (er, eθ, ez) denote the corresponding orthonormal basis,
spooling DNA arrangements are characterized by p = ez. Moreover, for such configurations, it is natural to set
n = eθ, ν = er and s = sa on the boundary. Since ∇p = 0 and m = n× p, so |∇m| = |∇n|. Furthermore, applying
the identity

(n · curln)2 + |n× curln|2 + tr([∇n]2) = |∇n|2,

to the energy expression (17), we obtain

E [s,n,Ω] =
k̃3

2

∫
Ω

s2W̃1(n,∇n)dx+ γ0

∫
Ω

w(s) dx

+
1

2

∫
Ω

b|∇s|2dx

+
1

2
a0

[∫
Γ

s2(ν · n)2dS(x) +

∫
Γ

(s− sa)2dS(x)

]
,

where,

W̃1(n,∇n) = (k̃1/k̃3)(divn)2 + (k̃2/k̃3)(n · curln)2 + |n× curln|2

+ (k̃2/k̃3)[tr([∇n]2)− (divn)2].
(22)

Scaling and non-dimensionalization

Introducing a length scale L0 to be of the same order as Rc, and noting the scalings

Ω = L3
0Ω̂, Γ = L2

0Γ̂, ∂Ω0 = L2
0∂̂Ω0, ∇ =

1

L0
∇̂,
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where ̂ denotes non-dimensional quantities, (22) becomes

E [s,n] = k̃3L0Ê [s,n]

Ê [s,n] :=
1

2

∫
Ω

s2W̃1(n,∇n) dx+
b̂

2

∫
Ω

|∇s|2dx+ γ̂0

∫
Ω

w(s)dx

+
â0

2

[∫
Γ

s2(ν · n)2dS(x) +

∫
Γ

(s− sa)2dS(x)

]
,

(23)

where

b̂ =
b

k̃3

, γ̂0 =
L2

0

k̃3

γ0, k̂i =
k̃i

k̃3

, i = 1, 2, â0 =
a0L0

k̃3

. (24)

For convenience, we have dropped ̂ on all variables (the domains are now non-dimensional). Since w(s) is specified
in (4-6), the remaining parameters of the model reduce to the ratios in (24), which highlight the special role of the

bending modulus k̃3. Finally, let us recall that k̂1 and k̂2 penalize bending and twist, respectively, γ̂0 measures the
energy of the disordered core and b̂ that of the interface (or transition layers) between the spooled and disorder regions
of the capsid. The parameter â0 penalizes the departure of the DNA arrangement from planar alignment on Γ. Our
goal is to obtain minimizers of the energy (24) as

lim k̂i →∞, i = 1, 2, â0 →∞. (25)

Since our approach is numerical, condition (25) will be reinterpreted accordingly (see statement (18)).

PARAMETER ESTIMATES AND NUMERICAL SIMULATIONS

The evaluation of the bending constant k3 in (2) will provide guidance to determine the remaining parameters in
(24). As for semiflexible polymers and application to the DNA molecule, following Tzlil et al. [38] and [39], we take

k3 = KBTLpm0. (26)

The DNA cross-sectional length density, m0, is estimated by taking the ratio of the length of a DNA molecule to the
volume of the container in which it is packed. Thus, for a perfectly packed DNA molecule (i.e. no empty space in
the volume), the maximum value is m0 = 1/(π(d/2)2) = 1.85131 × 1017 m−2, where we used an average, effective
DNA diameter of d = 2.6225 nanometers from Table I. More realistically, for average bacteriophage genome (length
30.0624 micrometers) and capsid head (radius 34.11 nanometers), we get m0 = 1.809173 × 1017 m−2. Furthermore,
taking a representative value of the persistence length Lp = 54.49 nanometers, our effective bending constant, at
room temperature, is k3 = 4.058027 × 10−11 J/m. Next, we choose the length scale L0 = Rc/0.4, where 0.4 is the
non-dimensional radius of the computational capsid domain.

We observe that k̃3 = k3(1 + α) (equation 20) appears as a multiplicative constant in the energy, and its role is
adjusting the pressure. We determine its order of magnitude with respect to k3 by pressure measurements (see Section
). This is an approach to determine model parameters proposed by Kléman and Lavrentovich [27] for chromonic liquid
crystals.

Determining the parameters k̂i, i = 1, 2 and â0 satisfying the property (25) is an issue directly related to the
discretization of the problem, and so, dependent on the step length size used in the numerical algorithm. In our
calculations, we take

a0 = 100 and k̃1 = k̃2 = 10k̃3, (27)

This yields â0 = 250.
For the remaining parameters, we explore a broad range of values for b̂ and γ̂0. Specifically, we take

0.1 ≤ b̂ ≤ 5.0, 0.1 ≤ γ̂0 ≤ 20, (28)

and compare the predicted core sizes with the available virus measurements shown in Table I.
The outcome from the numerical simulations is summarized in several figures. In Figure 4, we see how the size of the

inner disordered core is affected by b̂ and γ̂0; increasing either parameter tends to shrink the radius of the disordered
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FIG. 4. The graphs show the role of the parameters b̂ and γ̂0 in the model. In both cases, the curves indicate the decrease in
core radius with increasing parameter values, as a mechanism to lower the energy of the system. We recall that b̂ represents
the surface energy of the transition layer between the spool-like and the disordered regions of the capsid, and γ̂0 corresponds
to the bulk energy of the disordered inner core.

FIG. 5. The graphs show two different profiles of the order parameter in the capsid domain. Left plot is of s evaluated along a
line through the equator of the capsid. The center of the capsid is located at 0, and the capsid radius is normalized to 1. Since
the maximum order corresponds to s = 0.8, we take the disordered threshold at s = 0.4, which gives the ratio r0/Rc ≈ 0.496.
Right plot: shows the order profile of the capsid transitioning from ordered DNA (red) to disordered (blue) as a 2-D slice
through the capsid equator.

core. In addition, increasing b̂ also creates a steeper transition layer from well-ordered packing to disordered, i.e.
changes from s = 0.8 to s = 0 happen over much shorter distances. Figure 5 shows how the internal “core radius”
was estimated for a particular choice for b̂ and γ̂0.

Figure 6 gives a 3-D visualization of DNA packing via the director field n colored by the ordering parameter s.
Recall that n only gives the (local) tangential orientation of the DNA strand, but clearly n mimics spooling of DNA
inside the capsid. Note that when s is close to zero (referring to the blue arrows in Figure 6) the orientation of n is
not well-defined. In other words, our model does not say that spooling of the DNA is maintained up to the central
axis of the capsid. The blue region should be interpreted as completely disordered.

Figure 7 shows how the capsid pressure and the core radius, vary with b̂ and γ̂0, which was generated by running
simulations for several different values of b̂ and γ̂0 and interpolating the simulation output data (namely, the pressure
and core radius). Since we do not have access to detailed experimental visualizations of actual DNA packing, we
chose α = 75 to give a reasonable fit for the virus data in Table I. The constant core radius curves show how the
same disordered core radius can be simulated for different choices of b̂ and γ̂0. In principle, one can use the value of
the pressure along the curve to fully determine the values of b̂ and γ̂0 for a particular virus. However, it would be
beneficial to have more data available to make this a more robust procedure.
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FIG. 6. Three dimensional visualization of the director field n showing a spooling configuration. Left is a side view; right is a
top view. The coloring of the arrows corresponds to the degree-of-orientation s, i.e. red indicates well ordering (spooling) of
the DNA strand, and blue is disordered.

SHAPE OPTIMIZATION

In this approach, the optimal energy of the packing configuration is the one that minimizes E in (23) with respect
to s and n. In order to compute pressures in the capsid at the minimum energy state, we perturb E with respect to
the domain Ω, i.e. take shape derivatives of the energy [57]. This is a framework for “differentiating” a functional
with respect to a “shape” variable. For example, these techniques can be used to find the shape of a wing such that
its drag is minimized [58, 59].

More specifically, given a (non-dimensional) perturbation field V that deforms Ω, the shape variation δΩÊ [s,n,Ω;V]
gives the (non-dimensional) change in energy due to a change in the volume. For example, let VΓ be a smooth vector
field such that:

VΓ = ν, on Γ, and smoothly decays to zero inside Ω. (29)

Then, the dimensional change in energy due to expanding the outer boundary Γ is k̃3δΩÊ [s,n,Ω;VΓ] which has units,
J/m, of force. Thus, the average (dimensional) pressure being exerted on the boundary of the capsid Γ is

outer pressure =
1

L2
0|Γ|

k̃3δΩÊ [s,n,Ω;VΓ], (30)

where we note that |Γ| is the non-dimensional surface area of the capsid. Note that VΓ is normalized so that |VΓ| = 1
on Γ. The particular form of the extension in (29) does not matter because ultimately the shape derivative only
depends on what happens at the boundary Γ by the Hadamard-Zolésio structure theorem [57]. The graphs of the

pressure in terms of the parameters b̂ and γ̂0 are shown in Figure 7.

CONCLUSIONS

We have constructed a model of encapsidation of viral DNA combining that of the hexagonal columnar liquid
crystals with the theory of liquid crystals with variable degree of orientation. The model is accompanied by a finite-
element based algorithm for energy minimization, with design and prediction capabilities that may prove to be a real
asset in applications. Due to the presence of the order parameter, the algorithm is able to deal with very general
faceted capsid domains, including the geometry of the packing motor features, and also allow for the presence of knots
in the DNA. The outcome of the model is a phase space for the radius of the disordered core and the pressure near
the boundary of the capsid, with the potential to aid in the design of viral DNA to meet desired specifications. The
model also allows for the exploration of parameter values, reiterating its value as a design tool.

Future extensions of this work will address the presence of ions and the dynamics of DNA ejection from the capsid.
Furthermore, although axial symmetry is appropriate for the DNA packing problem, it is not strictly required by
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FIG. 7. Plots of core radius and capsid pressure. Left plot show curves of constant normalized core radius ( r0
Rc

for different

choices of b̂ and γ̂0 overlaid on the pressure values. In the region where the core radius matches experiment, the pressure values
are also comparable to experimental values (from a minimum of about 26 atms to a maximum of about 95 atms). The right

plot is a 3-D view of the pressure. Note: α is chosen as 75, which fully determines k̃3, to give a decent fit for all four viruses in
Table I.

our model. Moreover, our continuum model can be combined with a direct model (e.g. molecular dynamics and
Monte Carlo methods) as a way to reconstruct the global DNA molecule and study its topology. The benefits here
would be faster simulation time, because the continuum model can provide a good initial configuration for the Monte
Carlo simulation, and the details of the topological and geometrical entanglement of the DNA strand could then be
explicitly determined.
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