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The collective effects of microswimmers in active suspensions result in active turbulence, a spa-
tiotemporally chaotic dynamics at mesoscale, which is characterized by the presence of vortices
and jets at scales much larger than the characteristic size of the individual active constituents.
To describe this dynamics, Navier-Stokes-based one-fluid models driven by small-scale forces have
been proposed. Here, we provide a justification of such models for the case of dense suspensions
in two dimensions (2d). We subsequently carry out an in-depth numerical study of the properties
of one-fluid models as a function of the active driving in view of possible transition scenarios from
active turbulence to large-scale pattern, referred to as condensate, formation induced by the clas-
sical inverse energy cascade in Newtonian 2d turbulence. Using a one-fluid model it was recently
shown (Linkmann et al., Phys. Rev. Lett. 122, 214503 (2019)) that two-dimensional active sus-
pensions support two non-equilibrium steady states, one with a condensate and one without, which
are separated by a subcritical transition. Here, we report further details on this transition such as
hysteresis and discuss a low-dimensional model that describes the main features of the transition
through nonlocal-in-scale coupling between the small-scale driving and the condensate.

PACS numbers: 47.52.+j; 05.40.Jc

I. INTRODUCTION

Active suspensions consist of self-propelled con-
stituents, e.g. bacteria such as Bacillus subtilis and Es-
cherichia coli [1, 2], chemically driven colloids [3] or ac-
tive nematics [4–6] that move in a solvent liquid, most of-
ten water. Their collective motion results in complex pat-
terns on many scales, and shows different phases of coher-
ence and self-organization such as swarming, cluster for-
mation, jets and vortices [2, 7–12], and, eventually, active
or bacterial turbulence [2]. The latter is a state charac-
terized by spatio-temporal chaotic dynamics reminscent
of vortex patterns in turbulent flows. The analogy is not
complete, though, since Newtonian turbulence is a mul-
tiscale phenomenon associated with and dominated by
dynamics in an inertial range of scales. Since dissipative
effects are negligible in the inertial range, the rate of en-
ergy transfer across inertial ranges is constant, and is one
of the determining features of the well-known energy cas-
cade [13]. Thus far, the states that have been described
as bacterial turbulence do not have an inertial range.

Active and Newtonian turbulence usually occur in dif-
ferent regions of parameter space. With Reynolds num-
bers Re = UL/ν based on typical velocities U , lengths
L and the viscosity ν of the liquid, one finds turbulence
occurs in pipes and other flows for Reynolds numbers
around 2000 [14–16], while the mesoscale vortices ob-
served in bacterial suspensions [2] are associated with a
Reynolds number of O(10−3−10−2), far from the inertial
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dynamics of Newtonian turbulence. However, rheologi-
cal measurements of the effective viscosity have shown
that the active motion of the constituents can reduce
the effective viscosity by about an order of magnitude
compared to the solvent viscosity [17–22]. Multiscale
states at Reynolds number around 30 have been reported
for larger microswimmers such as magnetic rotors [23].
That is, under favorable conditions active suspensions
can reach parameter ranges where inertial effects will in-
fluence the dynamics, and where a a transition from ac-
tive to inertial turbulence could be achieved.

The effects of inertia are particularly intriguing in two-
dimensional and quasi-two-dimensional suspensions, as
kinetic energy is transferred from small to large scales
in 2d turbulence, eventually resulting in the accumula-
tion of energy at the largest length scales [24–27]. This
phenomenon can be viewed in analogy to Bose-Einstein
condensation, which is why the concentration of energy
on the largest scales is called the formation of a conden-
sate.

Full models for the dynamics of active suspensions re-
quire equations for the velocity field and the swimmers,
with suitable couplings between them [28]. Since our
focus is on the inertial effects in the flow fields, it is ad-
vantageous to eliminate the bacteria and to use equa-
tions for the flow fields. Such one-fluid models of active
suspensions have recently been proposed, [10, 29] and
have already led to a number of numerical investigations
into the nonlinear dynamics of active suspensions that
have revealed new phenomena, such as nonuniversality of
spectral exponents [30], mirror-symmetry breaking [31],
or the formation of vortex lattices [32]. Hints of con-
densation and multiscaling have been also been observed
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[33, 34], but the actual formation of sizeable condensates
and the connection between 2d active and Newtonian
turbulence have not been explored systematically. Us-
ing a variant of these one-fluid models we have recently
shown that condensates can form in active suspensions,
and they do so through a subcritical transition [35]. We
here provide further results on this transition and on the
multiscale dynamics of dense active suspensions.

This paper is organised as follows. We begin with a
general discussion of continuum models for active sus-
pensions in Sec. II, including a justification of Navier-
Stokes-based one-fluid models for dense suspensions in
2d. Section III contains a description of the datasets col-
lected in direct numerical simulations (DNS), followed by
a discussion of the general features of multiscale dynam-
ics and large-scale pattern formation in one-fluid models
of active suspensions in Sec. IV. The subcritical tran-
sition to condensate formation is described in detail in
Sec. V and Sec. VI introduces a low-dimensional model
that captures the qualitative features of the transition
through a nonlocal-in-scale coupling between the conden-
sate and the driven scales. We summarize our results in
Sec. VII.

II. MODELS DESCRIBING BACTERIAL
SUSPENSIONS

Active suspensions consist of swimmers immersed in a
fluid. Models for such suspensions have to capture the
dynamics of the solvent fluid and the motion of the bac-
teria, which, in a continuum description, leads to a two-
fluid approach, where the solvent flow and the polarized
motion of the microswimmers are described by separate,
but interacting fields. In order to simplify the model,
one-fluid descriptions leading to Navier-Stokes-like equa-
tions have been proposed [10, 11, 29, 31, 36]. Such sim-
plified models are usually obtained in one of two ways:
(i) by eliminating the motion of the solvent in favor of
the bacterial motion to obtain “ bacterial flow models”
[10, 11, 36], or, (ii) by eliminating the motion of the bac-
teria in favor of the fluid flow, resulting in a “solvent flow
model” [29, 31]. In both cases the resulting velocity field
is assumed to be divergence-free, which limits the appli-
cability of these models to very dense suspensions where
fluctuations in the bacterial density can be neglected [10].
In the next subsections, we motivate a single-equation
solvent flow model in two dimensions from the general
two-fluid approach.

A. Justification of effective models in 2d

At the continuum level, an active bacterial suspension
is described by equations for the total density ρ and flow
velocity u of the suspension, the concentration c of bac-
teria and a vector field p describing bacterial motion. A
finite value of |p| also corresponds to polar orientational

order of the elongated swimmers, hence p is generally
referred to as bacterial polarization. We assume that
the suspension is incompressible, i.e., ρ̇ = 0, implying
∇ · u = 0, and that the bacterial concentration is con-
stant, resulting in ∇·p = 0. This then leaves two coupled
equations [28], given by

∂tu + u · ∇u = −∇Π +∇ · σa + ν∆u , (1)

∂tp + u · ∇p = −∇Π′(|p|, c)− λ1p · ∇p +
1

2
ω × p

+ λD · p +
1

γF
h , (2)

where Π is the pressure (divided by the total density)
which ensures incompressibility of the velocity field, σa

the active stress that couples bacteria and flow (and
that will be discussed further below), Π′ is an effective
pressure term that depends on the bacterial concentra-
tion and the polarization, ω = ∇ × u is the vorticity,
D = 1

2

[
∇u + (∇u)T

]
the rate of strain tensor, and ν

the kinematic viscosity of the solvent. The parameters
λ1 and λ capture advective and flow alignment, and γF
is a rotational viscosity.

The molecular field h can be obtained from a free en-
ergy F for a polar fluid, modelled similar to a liquid crys-
tal, as the derivative, h = −δF/δp, where

F =

∫ [
αF
2

p2 +
βF
4
p4 +

K

2
(∇p)2

]
dx , (3)

with K the liquid crystalline stiffness in a one-elastic
constant approximation and αF and βF the parameters
which determine the onset of a polarized state for αF < 0.
Note that we have neglected in both equations passive
liquid-crystalline stresses of higher order in gradients of
the polarization. A derivation of Eq. (2) can be found,
for instance, in Ref. [28].

The feedback of the active swimmers on the flow is
contained in the stress tensors σa, which results from
the active dipolar forces exerted on the solvent by the
microswimmers [37]. On length scales large compared
to the size of swimmers, it can be expressed through a
gradient expansion, with leading order term

σ
a(0)
ij = α

(
pipj −

1

3
δij |p|2

)
+O(∇) , (4)

where α is a parameter known as activity, that depends
on the concentration of microswimmers, their typical
swimming speed and the type of swimmer. The symbol
O(∇) indicates higher-order terms that contain gradients
of the polarization field. The contribution of the diagonal
term − 1

3δijp
2 can be absorbed in the pressure gradient

in eq. (1).
Note that the leading-order contribution to the active

stress given in eq. (4) has nematic rather than polar sym-
metry, as it is parity-invariant. Indeed, an active stress
with purely polar symmetry arises first in terms contain-
ing gradients [38], and is given by

σ
a(1)
ij = β (∂ipj + ∂jpi) , (5)



3

where β is another activity parameter that depends,
amongst other quantities, on the direction of the po-
larization field with respect to the swimming direction
[28, 39].

In most studies of active suspensions, the fluid flow u is
slaved to the polarization field p, resulting in the Toner-
Tu model for the dynamics of the polarization/bacterial
velocity [10]. In contrast, we here wish to eliminate p in
favor of u in order to obtain an equation for active flows,
as done for instance in Ref. [31].

In order to derive such a single-equation model, one
has to solve the equation for p and substitute the solution
into the equation for u. Even though the nonlinearities
in (2) make it difficult to obtain an analytical solution,
such an approach will generally give a functional relation
between p and u. In what follows we show how the 2d
solvent model can be obtained as the leading-order con-
tribution for the case of a linear, though not necessarily
local, relation between p and u, of the form

pi[u](x, t) = (Gij ∗ uj)(x, t) , (6)

where Gij is a kernel that depends on the details of the
system and ∗ denotes a convolution. The derivation fol-
lows similar steps as in active scalar advection in geo-
physical flows [40, 41].

In 2d, incompressibility of the fields reduces the num-
ber of degrees of freedom of each vector field from
two to one, usually given by the out-of-plane vorticities
ω(x, y) = ẑ · (∇×u(x, y)) and m(x, y) = ẑ · (∇×p(x, y))
of the respective fields, where ẑ is a unit vector in the
z-direction. Equation (6) then becomes a scalar relation,

m[ω](x, t) = (G ∗ ω)(x, t) . (7)

In a dense bacterial suspension, hydrodynamic interac-
tions are screened and the relation between m and ω is
expected to be local. We can then assume G to be a
sharply peaked function, for instance proportional to a
narrow spherically symmetric 2d Gaussian

G(x) =
A

πa
e−|x|

2/a2 , (8)

with shape parameter a > 0 and constant amplitude
A. Expanding the Fourier transform of the Gaussian
in terms of its shape parameter around zero leads to an
expansion of eq. (7) of the form

m[ω](x, t) = Aω(x, t) +A
a2

4
∆ω(x, t) +O((a2∆)2) , (9)

where ∆ is the Laplace operator. Since ∇× ωẑ = −∆u
and similarly for p and m, we obtain

p = Au(x, t) +A
a2

4
∆u(x, t) +O((a2∆)2) . (10)

Inserting Eq. (10) into Eq. (4) for the zeroth-order term

yields

σ
a(0)
ij = αA2

(
uiuj −

1

3
δiju

2

)
+ αA2 a

2

4
(ui∆uj + uj∆ui)

+ αA2 a
4

16

(
∆ui∆uj −

1

3
δij(∆u)2

)
+O((a2∆)4) ,

(11)

resulting in additional quadratic nonlinearities in Eq. (1),
some of which break Galilean invariance. The first term
in eq. (11) leads to a renormalisation of the Navier-Stokes
nonlinearity and hence to a different Reynolds number.
Since the sign of α depends on the type of swimmer with
α < 0 for pullers and α > 0 for pushers, the renormal-
isation of the Reynolds number depends on the type of
microswimmers. The second term can be subsumed into
the pressure gradient, while remaining terms which are
of higher order in the gradients contribute to a redistri-
bution of kinetic energy mostly at small scales. Since
all terms conserve the mean kinetic energy and hence do
not result in a net energy input, we neglect the additional
small-scale nonlinearities, thereby ensuring Galilean in-
variance. The energy input from the microswimmers
hence has to originate from the first-order term in the
gradient expansion of the active stresses given in Eq. (5).
Substituting Eq. (10) in Eq. (5) results in

σ
a(1)
ij = βA

(
1 +

a2

4
∆ +

a4

32
∆2

)
(∂iuj + ∂jui)

+O((a2∆)3) , (12)

where terms up to order ∆2 from Eq. (10) have been
included in order to ensure the existence of a driving
interval in scale that corresponds to the experimentally
observed mesoscale vortices induced by the bacterial mo-
tion. The structure of ∇ · σa(1) takes on the form of
the effective viscosity previously proposed by S lomka and
Dunkel [29], provided β > 0. The latter is the case if p is
chosen to point along the swimming direction and does
not depend on the type of microswimmer [39]. If we
choose p to point against the swimming direction, then
A should be negative. That is, the product βA is always
positive. In what follows we choose A > 0 such that p
points into the same direction as the solvent flow. After
the rescaling

t→ t
√

1− αA, u→ u
√

1− αA, (13)

the resulting two-dimensional one-fluid model reads

∂tu + u · ∇u = −∇Π + Γ

(
Γ0 + Γ2∆ +

Γ2
2

2
∆2

)
∆u ,

∇ · u = 0 , (14)

where

Γ =
βA√

1− αA, Γ0 = 1 +
ν

βA
, Γ2 =

a2

4
. (15)
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Equation (14) relies upon two main assumptions: (i)
u and p are divergence-free, i.e. the bacterial concentra-
tion must be constant and density fluctuations negligible;
(ii) the system must be two-dimensional, as the reduc-
tion to a one-dimensional problem resulting in Eq. (7)
is not justified otherwise. Specifically, in three dimen-
sions there is no a-priori reason to set Gij = Gδij in
Eq. (6). In summary, Eq. (14) is applicable to dense sus-
pensions of microswimmers in very thin layers, where a
2d-approximation is justified. We note that friction with
a substrate has been neglected, however, the correspond-
ing term can easily be added.

In this context, the original introduction of the sol-
vent model by S lomka and Dunkel corresponds to setting
G(x) ∼ δ(x) and using certain higher-order terms in the
gradient expansion of the active stresses. The former
amounts to assuming that the polarization and solvent
velocity fields are related only locally and the latter intro-
duces additional parameters. Physically, locally means on
scales smaller than that of the mesoscale vortices. Here,
we obtain a very similar model from a long-range rela-
tion between the fields, which is more appropriate in a
hydrodynamic context.

Similarly, the bacterial flow model introduced in
Ref. [10] can be obtained by formally solving Eq. (1) to
obtain u[p], or by neglecting u altogether. Both solvent
and bacterial flow models reproduce the experimentally
observed spatiotemporally chaotic dynamics characteris-
tic of active matter turbulence [10, 11, 31] and have been
used extensively in investigations thereof [29–34, 36, 42–
46]. They differ in the choice of fields in which the model
is expressed, with the consequence that terms originat-
ing from the free energy are not explicitly present in the
solvent model.

The solvent models resemble the Navier-Stokes equa-
tions in their structure and have the key ingredient for an
inertial range that is typical of normal turbulence: in the
absence of forcing and dissipation, the nonlinear terms in
the equation preserve the mean kinetic energy 〈|u|2〉. We
note that in general Galilean invariance is broken by ac-

tive corrections of the type αA2 a2

4 (ui∆uj + uj∆ui) com-
ing from Eq. (11) to the advective nonlinearity in Eq. (14)
that have been neglected here, as the constant Galilean
shift is neither cancelled by a contribution from another
term or removed by spatial gradients. The effects of
the active particles are thus concentrated in the effective
viscosity in Eq. (14), and we will focus on two variants
of the models and discuss similarities and differences to
results in the literature that were obtained with the bac-
terial flow model.

B. Polynomial effective viscosity

The solvent model introduced by S lomka and Dunkel
[29] has a stress tensor in Eq. (1) given by a polynomial

gradient expansion

σij =
(
Γ0 + Γ2∆ + Γ4∆2

)
(∂iuj + ∂jui) , (16)

and results in a continuous effective viscosity

ν̂(k) = Γ0 − Γ2k
2 + Γ4k

4 . (17)

where ·̂ denotes the Fourier transform. In what follows,
we will therefore refer to the combination of Eqs. (1) and
(16) as the polynomial effective viscosity (PEV) model.

If Γ2 < 0, then Eq. (17) is a combination of normal
and hyperviscosity and all terms dissipate energy. If, in
contrast, Γ2 > 0, there is a wave number interval where
ν̂(k) < 0, resulting in a linear amplification of the Fourier
modes in that wave number interval. The interplay be-
tween this instability and the Navier-Stokes nonlinearity
drives spatiotemporal dynamics that for certain values
of Γi results in the formation of mesoscale vortices and
spatial correlations, which resemble the experimental ob-
servations [31].

By completing the square, the wave number form of
the effective viscosity can be written as

ν̂(k) = Γ0 + Γ4

((
k2 − k2f

)2 − k4f ) (18)

with

k2f = Γ2/(2Γ4) (19)

the wave number of the minimum in the viscosity (which
is real only for Γ2 > 0). With the normalization of wave

numbers to kf , i.e. k̃ = k/kf , the effective viscosity can
be written

ν̂(k) = Γ0

(
1 + γ

((
k̃2 − 1

)2
− 1

))
(20)

where

γ = Γ4k
4
f /Γ0 =

Γ2
2

4Γ0Γ4
=

(Γ2/Γ0)2

4(Γ4/Γ0)
(21)

is the one remaining parameter that controls the forcing.
The scaled effective viscosity ν̂ has two parameters,

Γ0, which sets the scale for the viscosity, and γ, which
is a measure for both the amplification and the range of
wave numbers that are forced, as we will now discuss.
The effective viscosity attains its minimum at k̃2 = 1,
where

ν̂(k̃ = 1) = Γ0(1− γ) (22)

Clearly, ν̂ can become negative, and hence forcing rather
than dissipating, for γc > 1 only. The range of wavenum-
bers over which it is forcing is given by

k̃2min = 1−
√

1− 1

γ
< k̃2 < 1 +

√
1− 1

γ
= k̃2max , (23)
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FIG. 1. Effective viscosity for PEV and PCV models. (a)
PEV ν̂/Γ0 vs k/kf . (b) PCV ν̂(k)/ν0 vs k/kf . The gray-
shaded area corresponds to the interval [kmin, kmax], where
the amplification occurs.

and varies with γ. A sketch of ν̂(k) for the PEV model
is provided in Fig. 1 (a), the gray-shaded area indicat-
ing the wavenumber interval where amplification occurs,
ν̂(k) < 0. The upper end of the interval approaches 2 for
γ →∞, showing that there will be no forcing on smaller
wavelengths, whereas the lower end of the interval ap-
proaches 0, indicating that the driving band extends to
ever lower wave numbers and thus larger scales in this
limit.

Since the effective viscosity is measured in units of Γ0

and since the length scale has been fixed as Lf = π/kf

all scales in the momentum equation are set: specifically,
time is measured in units of L2

f /Γ0 and velocity in units
of Γ0/Lf . Introducing that scale, Eq. (1) contains a single
parameter γ, with the stress tensor is given by

σij =
(
1 + γ

(
(1 + ∆)2 − 1

))
(∂iuj + ∂jui) . (24)

Variations in γ should therefore give rise to different
dynamics. S lomka and Dunkel [29] discuss statistically
steady states for several values of their control param-
eters Γ0, Γ2, and Γ4, that is, in our notation for dif-
ferent values of γ and corresponding driving scales and
amplitudes. Some of these states were multiscale with
energy spectra reminiscent of fully developed 2d turbu-
lence [29, 34], and small condensates were observed for
certain parameter values [34]. One can then expect that
stronger large-scale structures may form for more intense
driving, but since γ controls not only the strength of the
forcing but also the width and the location of the driving
band, it is is difficult to see which of the effects domi-
nate. This was remedied in the model used in [35] and
described next, where amplification and driving scale can
be set independently from each other.

C. Piecewise constant viscosity

The piecewise constant viscosity (PCV) model [35] is
a discontinuous approximation to the PEV model, with
the Navier-Stokes stress tensor written in terms of an ef-
fective viscosity given as a set of step functions in Fourier
space

ν̂(k) =


ν0 > 0 for k < kmin ,

−ν1 < 0 for kmin 6 k 6 kmax ,

ν2 > 0 for k > kmax .

(25)

The values of νi are chosen such that the resulting dis-
crete form of ν̂(k) resembles the polynomial form of the
PEV model. Specifically, ν1 controls the forcing, and
ν2 > ν0 mimics the hyperviscous term in the PEV model.
A sketch of ν̂(k) for the PCV model is provided in Fig. 1
(b), the gray-shaded area indicating the wavenumber in-
terval where amplification occurs, ν̂(k) = −ν1 < 0. As
in the PEV model, ν0 sets the scale for the effective
viscosity. The PCV model can thus be described by
dimensionless parameters for amplification, ν1/ν0, and
small-scale dissipation, ν2/ν0. An effective driving scale
Lf = π/kf can be defined by the midpoint of the interval
[kmin, kmax], i.e. kf = (kmin + kmax)/2.

The PCV model approximates the functional form of
the PEV model’s effective viscosity by a piecewise con-
stant function, remaining faithful to the original PEV
model in an important point: The driving is proportional
to the velocity field and it is confined to a wavenum-
ber band. This results in driving through local-in-scale
amplification in both cases, i.e. in essentially the same
physics. That is, even though the small-scale properties
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Run id N ν1/ν0 ν2/ν0 kmin kmax Re U L Ref εLS εIN εSS

PCV-A1∗ 256 0.25 10.0 33 40 19 0.29 0.07 19 0.029 0.048 0.023

PCV-A2∗ 256 0.5 10.0 33 40 26 0.36 0.085 21 0.056 0.10 0.046

PCV-A3∗ 256 0.75 10.0 33 40 35 0.39 0.09 21 0.086 0.16 0.071

PCV-A4∗ 256 1.0 10.0 33 40 44 0.43 0.11 21 0.11 0.21 0.09

PCV-A5∗ 256 1.25 10.0 33 40 58 0.47 0.13 21 0.15 0.26 0.14

PCV-A6∗ 256 1.5 10.0 33 40 75 0.52 0.15 20 0.18 0.30 0.16

PCV-A7∗ 256 1.75 10.0 33 40 106 0.57 0.20 19 0.17 0.34 0.16

PCV-A7a 256 1.75 10.0 33 40 106 0.57 0.20 20 0.18 0.32 0.15

PCV-A8∗ 256 2.0 10.0 33 40 212 0.66 0.35 19 0.18 0.36 0.18

PCV-A8a 256 2.0 10.0 33 40 227 0.67 0.37 19 0.19 0.34 0.17

PCV-A9∗ 256 2.02 10.0 33 40 249 0.68 0.40 19 0.18 0.36 0.18

PCV-A9a 256 2.02 10.0 33 40 2686 1.64 1.79 17 0.15 0.28 0.13

PCV-A10∗ 256 2.04 10.0 33 40 296 0.70 0.46 19 0.18 0.36 0.18

PCV-A10a 256 2.04 10.0 33 40 2957 1.77 1.82 17 0.14 0.28 0.13

PCV-A11∗ 256 2.083 10.0 33 40 3347 1.95 1.87 17 0.13 0.28 0.15

PCV-A11a 256 2.083 10.0 33 40 3270 1.92 1.85 17 0.14 0.28 0.13

PCV-A12∗ 256 2.167 10.0 33 40 3708 2.13 1.90 16 0.13 0.27 0.15

PCV-A13∗ 256 2.25 10.0 33 40 3927 2.24 1.91 16 0.13 0.28 0.15

PCV-A14∗ 256 2.5 10.0 33 40 4455 2.52 1.92 15 0.12 0.27 0.15

PCV-A15∗ 256 2.625 10.0 33 40 4636 2.63 1.92 14 0.11 0.26 0.15

PCV-A16∗ 256 2.75 10.0 33 40 4851 2.75 1.92 14 0.11 0.26 0.15

PCV-A17∗ 256 2.875 10.0 33 40 5088 2.89 1.92 14 0.11 0.27 0.16

PCV-A18∗ 256 3.0 10.0 33 40 5313 3.01 1.92 14 0.11 0.28 0.17

PCV-A19∗ 256 3.25 10.0 33 40 5793 3.28 1.92 14 0.12 0.29 0.18

PCV-A20∗ 256 3.5 10.0 33 40 6241 3.54 1.92 14 0.13 0.31 0.19

PCV-A21∗ 256 3.75 10.0 33 40 6708 3.80 1.93 14 0.13 0.33 0.20

PCV-A22∗ 256 4.0 10.0 33 40 7214 4.08 1.93 14 0.14 0.35 0.22

PCV-A23∗ 256 4.25 10.0 33 40 7723 4.27 1.93 14 0.16 0.38 0.24

PCV-A24∗ 256 4.5 10.0 33 40 8230 4.65 1.93 14 0.17 0.40 0.25

PCV-A25∗ 256 4.75 10.0 33 40 8751 4.95 1.93 14 0.18 0.43 0.27

PCV-A26∗ 256 5.0 10.0 33 40 9258 5.24 1.93 14 0.19 0.46 0.29

PCV-A27 256 5.25 10.0 33 40 9690 5.51 1.92 15 0.21 0.53 0.32

PCV-A28∗ 256 5.5 10.0 33 40 10286 5.81 1.93 15 0.23 0.57 0.34

PCV-A29∗ 256 6.0 10.0 33 40 11416 6.44 1.93 15 0.27 0.65 0.39

PCV-A30∗ 256 6.5 10.0 33 40 12530 7.08 1.93 15 0.31 0.74 0.44

PCV-A31∗ 256 7.0 10.0 33 40 13677 7.77 1.93 16 0.36 0.84 0.49

PCV-B1∗ 1024 1.0 10.0 129 160 45 0.027 0.029 21 0.0001 0.00019 9 ×10−5

PCV-B2∗ 1024 2.0 10.0 129 160 226 0.041 0.094 20 0.00017 0.00033 0.00016

PCV-B3∗ 1024 5.0 10.0 129 160 132914 1.17 1.93 15 0.00018 0.00046 0.00026

TABLE I. Parameters and observables for all PCV simulations, with N denoting the number of grid points in each coordinate
of the simulation domain [0, 2π]2, ν0, ν1 and ν2, are the parameters defining the PCV-model as in Eq. (25) with ν0 = 0.0011
for PCV-A and ν0 = 1.7 × 10−5 for PCV-B. The driven intervals are specified by kmin and kmax as defined in Eq. (25) for
PCV. The Reynolds number Re is based on the integral scale L = 2/U2

∫∞
0
dk E(k)/k and the rms velocity U , and Ref is the

Reynolds number based on the effective driving scale Lf and the velocity in the driven range of scales, εLS the energy dissipation
rate in the interval [1, kmin), εIN the energy input rate in the interval [kmin, kmax], and εSS the energy dissipation rate in the
interval (kmax, 2π/(N/3)]. All observables are ensemble-averaged during the statistically stationary state, with samples taken
at intervals of one large-eddy turnover time T = L/U . The asterisk indicates data from Ref. [35].



7

Run id N I Γ2/Γ0 Γ4/Γ0 kmin kmax Re U L Ref εIN εLS εSS

PEV-1 256 0.21 0.002 7.72 × 10−7 26 43 14 0.10 0.15 5 0.002 0.0012 0.0008

PEV-2 256 0.31 0.0023 9.26 × 10−7 23 45 68 0.22 0.35 9 0.0072 0.0044 0.0028

PEV-3 256 0.93 0.0025 9.65 × 10−7 22 45 668 0.66 1.56 10 0.0155 0.0097 0.0056

PEV-64-1 512 0.00578 0.0003076 1.55 × 10−8 64 126 34 0.09 0.10 8 0.0083 0.0050 0.0033

PEV-64-2 512 0.00586 0.0003072 1.54 × 10−8 64 126 50 0.09 0.12 8 0.0086 0.0051 0.0034

PEV-64-3 512 0.00595 0.0003069 1.53 × 10−8 64 126 65 0.10 0.14 9 0.0089 0.0053 0.0036

PEV-64-4 512 0.00604 0.0003065 1.52 × 10−8 64 127 70 0.11 0.18 9 0.0093 0.0056 0.0037

PEV-64-5 512 0.00613 0.0003062 1.51 × 10−8 64 127 109 0.12 0.25 9 0.0096 0.0058 0.0039

PEV-64-7 512 0.00614 0.0003061 1.51 × 10−8 64 127 140 0.12 0.31 9 0.0097 0.0058 0.0039

PEV-64-7 512 0.00616 0.0003061 1.51 × 10−8 64 127 170 0.13 0.36 9 0.0098 0.0058 0.0039

PEV-64-8 512 0.00617 0.0003060 1.51 × 10−8 64 127 247 0.14 0.47 9 0.0098 0.0059 0.0039

PEV-64-9 512 0.00619 0.0003059 1.51 × 10−8 64 127 282 0.15 0.51 9 0.0099 0.0059 0.0039

PEV-64-10 512 0.00622 0.0003058 1.51 × 10−8 64 127 389 0.17 0.63 9 0.0100 0.0060 0.0040

PEV-64-11 512 0.00631 0.0003055 1.50 × 10−8 64 128 719 0.24 0.81 9 0.0104 0.0062 0.0042

PEV-64-12 512 0.00641 0.0003051 1.49 × 10−8 64 128 980 0.30 0.88 9 0.0108 0.0065 0.0044

TABLE II. Parameters and observables for all PEV simulations, with N denoting the number of grid points in each coordinate
of the simulation domain [0, 2π]2. The model parameters in Eq. (18) are Γ0 = 0.0011 for the PEV series and Γ0 = 0.0002725

for the PEV-64 series, Γ2/Γ0 and Γ4/Γ0 resulting in I =
∫ kmax

kmin
ν̂(k) dk, with the driven intervals specified by kmin and kmax

as defined in Eq. (23) for PEV. The Reynolds number Re is based on the integral scale L = 2/U2
∫∞
0
dk E(k)/k and the

rms velocity U , and Ref is the Reynolds number based on the effective driving scale Lf and the velocity in the driven range
of scales, εLS the energy dissipation rate in the interval [1, kmin), εIN the energy input rate in the interval [kmin, kmax], and
εSS the energy dissipation rate in the interval (kmax, 2π/(N/3)]. All observables are ensemble-averaged during the statistically
stationary state, with samples taken at intervals of one to three large-eddy turnover time T = L/U .

of the velocity fields obtained by the PCV and the origi-
nal PEV model may differ in some detail, the large-scale
and mean properties should be similar, if not the same,
as they are dominated by the nonlinearity and not by
details of how the driven interval is specified. In this
context we point out that the functional form of the ef-
fective viscosity in any one-equation model is essentially
a consequence of the choice of convolution kernel. For a
Gaussian filter one obtains PEV, using a sinc filter in con-
figuration space results in the PCV model with ν2 = ν0.
Moreover, a small increase in energy input for a fixed vis-
cosity results in a considerably wider driven interval in
the PEV-model. In experiments, this would correspond
to a significantly wider distribution of vortices for faster
microswimmers than for slower microswimmers and cor-
respondigly to much broader energy spectra in the former
case than in the latter. We are not aware of experiments
testing this, but it would be interesting to compare data
from different organisms, for instance B. subtilis versus
E. coli. Since the driven range is held fixed for the
PCV-model, it is therefore phenomenologically closer to
experiments than the PEV model.

III. DIRECT NUMERICAL SIMULATIONS

The PEV and PCV models are studied in two dimen-
sions, using data generated by numerical integration of

the momentum equation in vorticity form

∂tω̂(k) + ̂[u · ∇ω](k) = −ν̂(k)k2ω̂(k) , (26)

where ω is the only non-vanishing component of the vor-
ticity, ∇ × u(x, y) = ω(x, y)ẑ. Equation (26) is sup-
plemented with either Eq. (18) for PEV or Eq. (25) for
the PCV model. In all cases, we use the standard pseu-
dospectral technique [47] on the domain [0, 2π]2 with pe-
riodic boundary conditions and full dealiasing by trunca-
tion following the 2/3rds rule [48]. The simulations are
initialised with random Gaussian-distributed data, or, in
case of hysteresis calculations for the PCV model, with
data obtained from another run at a different value of
the control parameter.

For PCV, two series of simulations were carried out.
The first one, PCV-A, consists of a parameter scan in
ν1/ν0 with all other parameters, i.e. ν0, ν2, kmin and
kmax held fixed. That is, only the amplification is var-
ied between the simulations in each PCV-A dataset. The
three simulations of the second series, PCV-B, were done
at higher resolution, with parameters chosen such that
results can be compared with PCV-A using the scaling
properties of the Navier Stokes equations, i.e. PCV-B
corresponds to PCV-A in a larger simulation domain.
Parameters and observables of all runs are summarised
in table I. The PEV model is investigated for three test
cases at lower resolution and subsequently through a se-
ries of simulations with fixed scale separation between
the domain size and the beginning of the driven inter-
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val. Parameters and observables for the PEV model are
summarised in table II. All simulations reach a statis-
tically stationary state, where the total energy per unit
volume fluctutates about a mean value, and are subse-
quently continued for at least 2000 large eddy turnover
times. Prior to that, the system evolves through a tran-
sient non-stationary stage. Owing to the absence of a
large-scale dissipation mechanism, this can take a long
time for certain parameter regimes. During the statisti-
cally stationary state, the velocity fields were sampled in
intervals of one large-eddy turnover time.

IV. MODEL DYNAMICS

We begin our study of the properties of the models by
tracking the time evolution of the total kinetic energy per
unit volume, E(t), given by the difference between input
and dissipation,

dE

dt
= εIN(t)− (εLS(t) + εSS(t)) , (27)

where the input εIN, the large-scale dissipation εLS and
the small-scale dissipation εSS are obtained by integrat-
ing the effective viscosity over the respective wavenumber
ranges, i.e. calculated as

εIN(t) =

∫ kmax

kmin

dk

∫
dk̂ ν̂(k)k2|û(k, t)|2 , (28)

εLS(t) =

∫ kmin

0

dk

∫
dk̂ ν̂(k)k2|û(k, t)|2 , (29)

εSS(t) =

∫ ∞
kmax

dk

∫
dk̂ ν̂(k)k2|û(k, t)|2 , (30)

with k̂ = k/k a unit vector in direction of k. During sta-
tistically stationary evolution, mean energy input must
equal mean energy dissipation, εIN = ε = εLS + εSS.
The characteristics of the non-stationary evolution de-
pends on the presence of an inverse energy transfer. If
an inverse cascade is present, as in fully developed 2d tur-
bulence, it can be expected that E(t) grows linearly in
time as long as εLS is negligible. This is a consequence of
the fact that the dynamics at the small scales are much
faster than at large scales leading to εIN ' const and
εSS ' const, and one obtains

E(t) ' (εIN − εSS)t , (31)

until εLS becomes sufficiently large. This equation holds
as long as εLS ≈ 2ν0E(t)L(t)−2 is negligible compared
to εIN − εSS ≈ 2ν1EINL

−2
f − εSS. Neglecting εSS, one

must have εIN � εLS resulting in (ν1/ν0)EINL
−2
f �

E(t)L(t)−2, where L(t) = π/k(t) denotes the length
scale corresponding to the maximum of E(k, t). That
is, Eq. (31) describes the dynamics to a good approxima-
tion on time scales t� ((ν1/ν0)EINL

−2
f ))−1/2. For later

times, when fluctuations on the largest available scale are
excited, i.e. when L(t) = Lbox, Eq. (27) results in

dE

dt
= εIN−εSS−εLS(t) ≈ εIN−εSS−2ν0E(t)L−2box , (32)

such that E(t) saturates exponentially

E(t) ≈ εIN − εSS
2ν0L

−2
b

− e−t/τ , (33)

on the viscous time scale τ = 1/(2ν0L
−2
box) [49].

The time evolution of E(t) is shown in Fig. 2 for rep-
resentative cases. Panel (a) contains the results for the
runs PCV-B1, PCV-B2 and PCV-B3 with amplification
factors ν1/ν0 = 1, ν1/ν0 = 2 and ν1/ν0 = 5, respec-
tively. Panel (b) shows the corresponding results for PEV
with parameters Γ2/Γ0 = 0.0025, Γ2/Γ0 = 0.0023, and
Γ2/Γ0 = 0.002, with Γ4 chosen such that the forcing re-
mains centered around kf = 36.

The behavior of E(t) is qualitatively similar for the
two models and differs between the respective example
cases. The two cases with low amplification, that is,
ν1/ν0 = 1 and ν1/ν0 = 2 for PCV and Γ2/Γ0 = 0.002
and Γ2/Γ0 = 0.0023 for PEV become statistically sta-
tionary and fluctuate around relatively low mean values
of E. In contrast, for the cases ν1/ν0 = 5 for PCV and
Γ2/Γ0 = 0.0025 for PEV, the kinetic energy grows at
first linearly, which is characteristic of a non-stationary
inverse energy cascade in 2d turbulence [50]. This is fol-
lowed by statistically stationary evolution, where E(t)
fluctuates about mean values which are an order of mag-
nitude larger than for the aforementioned cases. In ab-
sence of a large-scale friction term, once an inverse energy
transfer is established, statistical stationarity can only be
realized through the development of a condensate at the
largest scales.

Compared with the energy levels of the PCV cases
shown in Fig. 2 (a), the energy levels of the PEV runs
shown in Fig. 2 (b) are much lower. As can be seen
from the values listed in table I, the driven interval is
much wider in PEV than it is in PCV, such that more
nonlinear interactions are taking place within and close
to the driven interval. That is, the nonlinear transfer
is more efficient in redistributing energy across scales in
PEV than it is in PCV. Furthermore, the effective vis-
cosity is smaller in PEV than in PCV close to the driven
interval, that is, less energy is dissipated there. The con-
sequence of the two effects is that in PEV less energy
input is necessary to reach statistically stationary states
with multiscale dynamics and, eventually, with a con-
densate. This can also be seen by comparing the energy
input rates listed in table I.

A. Emergence of large-scale structures

The formation of successively larger structures and the
eventual formation of a condensate with increasing am-
plification can be seen in visualisations of the velocity
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FIG. 2. (Color online) Time evolution of the total kinetic
energy per unit volume for three example cases for PCV (a)
and PEV (b). The energy has been divided by a factor of 20
for the PCV case ν1/ν0 = 5 and by a factor of 5 for the PEV
case Γ2/Γ0 = 0.0025 in order to improve the readability of
the figure.

field, as given in [35]. Here, we provide visualisations of
ω for the three PCV cases in Fig. 3. The vorticity fields
for ν1/ν0 = 1 and ν1/ν0 = 2 are similar, with the vor-
tices in the latter case slightly stronger and a bit larger.
Finally, for ν1/ν0 = 5 a condensate manifests itself in
form of two counter-rotating vortices as in classical 2d
turbulence [26, 50].

The emergence of large-scale organization and coher-
ence can be quantified through the calculation of equal-
time correlation functions. Owing to isotropy, it is suffi-
cient to consider the two-point longitudinal correlator

CLL(r) = 〈uL(x + r)uL(x)〉 , (34)

where r = |r|, and uL = u · r/r is the velocity com-
ponent along the displacement vector r, and the angled
brackets denote a combined spatial and temporal aver-
age. Longitudinal correlation functions have been calcu-
lated through the spectral expansions of the respective
velocity fields for PCV and PEV, with results shown in
Fig. 4, where PCV and PEV data are contained in the
panels (a) and (b), respectively. Clear correlations up to
the size of the system can be identified for ν1/ν0 = 5 and
Γ2/Γ0 = 0.0025, while CLL decreases much faster in r for
the cases without a condensate, ν1/ν0 = 1, ν1/ν0 = 2,
Γ2/Γ0 = 0.002 and Γ2/Γ0 = 0.0023. In all cases, anticor-
relations are present. For the weakly forced cases shown
in black and blue (dark gray) in Fig. 4 these are barely
visible in comparison to the condensate.

The differences in correlation can also be quantified
with the integral scale

L ≡ 1

CLL(0)

∫ ∞
0

dr CLL(r) , (35)

listed in table I: There is at least an O(10) difference
between the respective values of L for PCV-B3 and the
two cases with less amplification, PCV-B1 and PCV-B2,
and similarly for PEV.

V. TRANSITION

The transition between the two cases ν1/ν0 = 1 and
ν1/ν0 = 2 without a condensate and ν1/ν0 = 5 with a
condensate is discontinuous, as shown in [35]. This dis-
continuous transition between spatiotemporal chaos and
classical 2d-turbulence suggests that the two states are
separated by a subcritical bifurcation. Accordingly, we
expect to find a bistable scenario with the possibility of
coexisting states in a parameter range around the tran-
sition, and eventually also hysteresis. As observable we
take the energy at the largest scale, E1, which will be
considered as a function of the amplification factor and
the energy input. E1 is calculated in terms of the energy
spectrum

E(k) ≡
〈

1

2

∫
dk̂ |û(k)|2

〉
t

, (36)

where
∫
dk̂ indicates an average over all angles in k-space

with prescribed |k| = k and 〈·〉t denotes a time average
during statistically steady evolution. E1 is then given
by E1 = E(k)|k=1. Following our analysis in Ref. [35],
Fig. 5 presents E1 as a function of ν1/ν0 close to the
critical point. Two main features of the transition can
be identified in the figure. First, E1 increases suddenly
at the critical value ν1/ν0 = 2.00 ± 0.02, as observed in
Ref. [35]. Second, the system shows hysteretic behavior:
The red (gray) curve consists of data points obtained
for decreasing ν1/ν0, while the black curve corresponds
to states obtained for increasing ν1/ν0. The resulting
hysteresis loop is clearly visible.
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FIG. 3. (Color online) Visualisation of the vorticity field ω(x, y)ẑ for PCV cases ν1/ν0 = 1 (a), ν1/ν0 = 2 (b) and ν1/ν0 = 5
(c) using samples taken during the statistically stationary state.

Apart from the presence of hysteresis shown here, the
expected bistable scenario is realised in the statistically
stationary total energy balance,

ε = εIN ' 2ν0
(2π)2

L2
f

EIN , (37)

where

EIN =

∫ kmax

kmin

dk E(k) , (38)

with an upper and a lower branch of ε as a function of EIN

corresponding to classical 2d turbulence with an emerg-
ing condensate and spatiotemporal chaos at the forcing
scale, respectively, [35]. The two branches were found
to be connected by an unstable S-shaped region. The
existence of two branches connected by an S-shaped re-
gion is also visible in the phase-space projection relating
the energy at the largest scale to the energy input, i.e.
for E1 as a function of εIN as shown in Fig. 6 (a). The
lower branch corresponds to injection rates obtained for
ν1/ν0 < ν1,crit/ν0, where E1 is negligible and the inverse
transfer is damped by dissipation at intermediate scales
before reaching the largest scale in the system. On the
upper branch that describes states with a sizeable con-
densate, we observe a linear relation between E1 and εIN,
as can be expected if most energy is dissipated in the con-
densate

εIN = ε ' 2ν0E1k
2
1∆k , (39)

where k1 = 1 is the lowest wavenumber in the domain,
and ∆k = 1 the width of the wavenumber shell centered
at k1.

The S-shaped region in Fig. 6 (a) can only occur if
εIN is a non-monotonous function of the amplification

factor. This is indeed the case as can be seen in Fig. 6
(b), where a sudden decrease in εIN occurs at ν1,crit/ν0,
followed by an interval in ν1/ν0 where εIN varies very lit-
tle. Eventually, for states with a condensate εIN increases
linearly with ν1/ν0. The nature of the transition is thus
related to non-monotonous behavior of the energy input
(and therefore the dissipation) as a function of the con-
trol parameter, which can only occur if the energy input
depends on the velocity field. In particular, for Gaussian-
distributed and δ-in-time correlated forcing εIN itself is
the control parameter and a scenario as described here
is unlikely to occur. This observation suggests that the
type of transition depends on the type of forcing, that is,
it is non-universal.

As explained in Sec. II B, the structure of the PEV
model precludes a parameter study with fixed driving
scale and energy input range, as variations in the energy
input or the amplification factor Γ2 invariably lead to
a variation in the width of the forcing band. One can
either fix the scale separation between the domain size
and the driven range of scales by fixing kmin, with the
consequence that kmax and location kf of the maximum of
ν̂(k) vary, or one fixes kf and the scale separation varies
with energy input or amplification factor. That is, a
parameter scan cannot result in like-for-like comparisons
between simulations as the location of a critical point
most likely depends on the location and width of the
driven interval. In order to carry out at least a systematic
investigation into the PEV model, we introduce a new
control parameter

I =

∫ kmax

kmin

ν̂(k) dk . (40)

For the PCV model, I is proportional to the amplifica-
tion factor ν1, as the width of the driven interval is held
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FIG. 4. (Color online) Longitudinal correlation functions. (a)
PCV for different values of ν1/ν0. (b) PEV for different values
of Γ2/Γ0. The color coding and the values for ν1/ν0 and for
Γ2/Γ0 correspond to data shown in Fig. 2.

constant. As such, using I as a control parameter comes
closest to a like-for-like comparison with the parameter
study for the PCV-model.

The PEV parameter study was carried out on 2562 and
5122 lattice points, and we could not find hysteresis as
shown in Fig. 7 using the series PEV-64 summarised in
table II. However, we found transiently co-existing sta-
tistically stationary states with different values of the ki-
netic energy at the largest scale in the system, E1. These
intermediate states can remain for about 2000 large-eddy
turnover times as shown for an exemplary calculation in
Fig. 8(a). To observe the eventual collapse the simula-
tions have to be continued to more than 8000 large-eddy
turnover times as shown in Fig. 8(b). For comparison
with experimental conditions we identify Lf with the typ-
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FIG. 5. E1 as a function of ν1/ν0. The black curve corre-
sponds to flow states obtained by increasing ν1/ν0 and the
red (gray) curve to flow states obtained by decreasing ν1/ν0.
A hysteresis loop is visible in the region 2.00 6 ν1/ν0 6 2.04.

ical size of a mesoscale vortex and measure velocities in
µm/s as in Ref. [35], resulting run times of ca. 30 min-
utes for the intermediate states and 7 hours to eventually
observe the single, final flow state. The latter may be-
come difficult to observe in experimental conditions, as
the microswimmers will eventually slow down owing to
oxygen depletion of their environment.

5energy input is given by linear amplification.
To compare to experimental data and between the two

models, we define a Reynolds number based on the ef-
fective driving scale, Lf and the velocity at the driven
scales

Ref =

√
EINLf

ν̃
, (41)

where ν̃ is the Newtonian viscosity, i.e. ν̃ = ν0 for
PCV and ν̃ = Γ0 for PEV. This Reynolds number cor-
responds to the Reynolds number associated with the
mesoscale vortices observed in experiments. Values of
Ref for all simulations are given in table I. The transi-
tion occurs at Ref ' 20 for PCV and at Ref ' 10 for
PEV, the exact value may depend on simulation details
such at the width of the driving range and the level of
small-scale dissipation. However, the main point is that
both models transition at Reynolds number of O(10). In
comparison, the experimentally observed Reynolds num-
bers are about O(10−2), based on characteristic vortex
sizes of 100µm, with a characteristic speed of 100µm/s
for B. subtilis [2], and the kinematic viscosity of water
νH2O = 10−6(µm)2/s.

A. Spectral scaling

Energy spectra for PCV and PEV are shown Figs. 9 (a)
and (b), respectively. The dotted lines in panel (a) cor-
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FIG. 6. (Color online) (a) E1 as a function of εIN. (b) εIN as a
function of ν1/ν0. The red (light gray), blue (dark gray) and
black dots correspond to the PCV cases discussed in Sec. IV.
The horizontal lines in (a) and the vertical lines (b) show
the standard error on εIN, which was calculated by taking
samples at intervals of one large-eddy turnover time during
statistically steady evolution.

respond to series PCV-A, and the solid lines to rescaled
PCV-B data as in Ref [35]. The transition can be located
clearly in the spectra as E1 increases by three orders
of magnitude from the third to the fourth dotted line.
The PEV energy spectra presented in Fig. 9 (b) corre-
spond to Γ2/Γ0 = 0.0025 (red), Γ2/Γ0 = 0.0023 (blue)
and Γ2/Γ0 = 0.002 (black), with the forcing centered
around kf = 36 as in the PCV model. The results are
similar to those for the PCV model shown Fig. 9 (a) in
terms of spectral scaling and the formation of the conden-
sate. However, the condensate appears more gradually in
PEV than it does in PCV and the energy in the driven
range is a monotonic function in PEV while being non-
monotonic in PCV. Energy spectra with an extended
scaling range and a small accumulation of energy at the
smallest wave number have also been observed in the bac-
terial flow model [33]. There, the critical amplification
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FIG. 7. (Color online) E1 as a function of I for series PEV-
64. The black curve corresponds to flow states obtained by
increasing I and the red (gray) curve to flow states obtained
by decreasing I.

rate at which the condensate occurs will depend on the
relaxation term −αFp that originates from the functional
derivative of the free energy given in Eq. (3). Indeed, the
existence of a critical value of αF > 0, below which no en-
ergy accumulation occurs, has been reported in Ref. [30].
Similarly, condensate formation in Newtonian turbulence
can be suppressed in presence of sufficiently strong linear
friction [51]. In view of the transition scenarios, a gen-
eral quantification of the effect of large-scale dissipation
would be of interest.

At low amplification, equipartition scaling E(k) ∝ k
is observed for PEV and PCV, as indicated by the black
curves in Fig. 9. In contrast, the low-wavenumber form
of E(k) is non-universal for the bacterial flow model even
at very low amplification [30]. This difference also origi-
nates from the presence of the relaxation term −αFp in
the bacterial flow model, in Ref. [30] the scaling exponent
of E(k) at k < kmin is found to depend on αF . In New-
tonian turbulence, deviations from Kolmogorov-scaling
of E(k) also depend on details of large-scale dissipation
such as the strength of a linear friction term or the use
of hypoviscosity [51].

Further observations can be made from the data shown
in Fig. 9. The spectral exponent is larger than the Kol-
mogorov value of −5/3 even in presence of an inverse
energy transfer, resulting in shallower spectra. This can
have several reasons. For simulations with a small con-
densate such as for the PEV dataset with Γ2/Γ0 = 0.0025
shown in red (light gray) in Fig. 9 (b), energy dissipation
is not negligible in the wavenumber range between the
condensate and the driven interval, and Kolmogorov’s
hypotheses do not apply. For simulations with a sizeable
condensate such as PCV-B3 shown in red (light gray)
in Fig. 9 (a), the condensate itself alters the dynamics
in the inertial range. In presence of a condensate the
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spectral scaling is known to become steeper [52], with
E(k) ∝ k−3 for the entire wavenumber range k < kmin.
Removing the coherent part of the velocity field results
in shallower scaling E(k) ∝ k−1 [52]. Intermediate states
with spectra similar to PCV-B3 have also been obtained,
see Fig. 3A in Ref. [52].

B. Nonlocal transfers

Since the driving in both models depends on the
amount of energy in the driven range, a reduction in
the energy input with increasing amplification requires
a reduction in EIN. One way by which this could hap-
pen is through an enhanced nonlinear transfer out of the
driven wave number range. The reduction in EIN oc-
curs at the critical point, which suggests that the con-
densate may couple directly to the driven scales, leading
to a non-local spectral energy transfer from the driven
wave number interval into the condensate. In order to
investigate whether this is the case, the energy trans-
fer spectrum was decomposed into shell-to-shell transfers
[30, 53, 54] between linearly spaced spherical shells cen-
tered at wavenumbers k and q

T (k, q) =

=

〈∫
dk̂

∫
dq̂

∫
dp û∗k · (ûp · iq)ûqδ(k + p− q)

〉
t

,

(42)

where k̂ and q̂ are unit vectors. Here, the focus is
on the existence of a coupling between the condensate
and the driven scales, hence linear shell-spacing is suf-
ficient. More quantitative statements concerning the

relative weight of different couplings within the over-
all transfer requires logarithmic spacing [55]. Figure 10
shows the non-dimensional energy transfer into the lowest
wavenumber shell, T (k, q)/(εINL

2
f ) for k = 1, for the two

example cases PCV-A8 (without condensate) and PCV-
A26 (with condensate). In the first case, T (k = 1, q) ≈ 0
for all q, that is, there is no net non-local energy transfer
from the driven scales to the largest scales. In contrast,
in the second case, T (k = 1, q) has a clear maximum
around q = kmax = 40, hence energy is transferred from
the driven scales into the condensate bypassing the in-
termediate scales. The data for PCV-A26 also shows a
forward transfer from the k = 1 shell into the q = 2 shell,
as T (k = 1, q) has a distinctive minimum at q = 2 and is
negative.

VI. FOUR-SCALE MODEL

Some of the qualitative features of the transition can
be captured in a four-scale model. The main motivation
for the construction of which is to try to understand if
a non-local coupling between the driven scales and the
condensate reproduces the observations from the DNS
parameter scan. From the shell-to-shell transfers calcu-
lated for two example cases discussed in the previous
section, we know that energy is transferred nonlocally
between the condensate and the driven scales, however,
we cannot deduce if and how such nonlocal couplings are
responsible for the phenomenology of the transition.

Let ELS be the energy content at the intermediate
wavenumbers 1 < k < kmin) and ESS the energy con-
tent at k > kmax. Then one can consider the interaction
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FIG. 9. (Color online) Energy spectra. (a) PCV with for
different values of ν1/ν0. The solid lines show the rescaled
PCV-B cases ν1/ν0 = 1 (black) , ν1/ν0 = 2 (blue) and
ν1/ν0 = 5 (red), and the dotted lines PCV-A data. (b)
PEV with Γ2/Γ0 = 0.0025 (red), Γ2/Γ0 = 0.0023 (blue) and
Γ2/Γ0 = 0.002 (black). The gray-shaded areas indicate the
respective driving ranges.

of the four quantities E1, EIN, ELS and ESS

Ė1 =− 2ν0k
2
1E1 + c3E

1/2
1 ELS

+ c2θ(E1 − E1,0)(E1 − E1,0)1/2EIN , (43)

˙ELS =− 2ν0k
2
LSELS + c1E

1/2
LS EIN − c3E1/2

1 ELS , (44)

˙EIN =2ν1k
2
INEIN − c1E1/2

LS EIN − c4E1/2
SS EIN

− c2θ(E1 − E1,0)(E1 − E1,0)1/2EIN , (45)

ĖSS =− 2ν2k
2
SSESS + c4E

1/2
SS EIN , (46)

where θ is the Heaviside step function, ci > 0 for i =
1, . . . , 4 parametrise the coupling terms and k1 = 1, kLS,
kIN and kSS are effective wavenumbers in the correspond-
ing ranges. In terms of energy transfers, the coupling
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FIG. 10. (Color online) PCV shell-to-shell transfer function
T (k, q)/(εINL

2
f ) for k = 1 and 1 6 q 6 50. Blue (dark gray):

ν1/ν0 = 2, without condensate. Red (light gray): ν1/ν0 = 5,
with condensate at k = 1.

terms represent

EIN −→ ELS : c1E
1/2
LS EIN , (47)

EIN −→ E1 : c2θ(E1 − E1,0)(E1 − E1,0)1/2EIN , (48)

ELS −→ E1 : c3E
1/2
1 ELS , (49)

EIN −→ ESS : c4E
1/2
SS EIN , (50)

where the coupling between EIN and E1 is modelled such
that a nonlocal energy transfer from the driven wavenum-
ber range into the largest resolved scales only takes place
once a condensate is emerging. The coupling parameters
ci can be obtained from DNS data through calculations of
shell-to-shell nonlinear transfers. Once they are known,
a parameter scan in ν1 can be carried out for different
values of the threshold energy E1,0 in order to compare
the results from the model with the DNS data. However,
before doing so, we derive predictions from the model
equations for two asymptotic cases:

(i) presence of a condensate, E1 � E1,0, correspond-
ing to the upper branch in Fig. 6,

(ii) absence of a condensate E1 < E1,0, corresponding
to the lower branch in Fig. 6.

In what follows the small-scale dissipation is neglected,
as this enables us to focus on the main points. We will
come back to an analysis of the full model in Sec. VI A.

1. case (i): E1 � E1,0

For E1 � E1,0 we approximate the coupling term be-
tween EIN and E1 as

c2θ(E1 − E1,0)(E1 − E1,0)1/2EIN ' c2E1/2
1 EIN , (51)
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and we neglect the coupling term c3E
1/2
1 ELS that de-

scribes a local energy transfer from the intermediate
scales into the condensate. The latter is introduced
to model the nonlocal contribution to the inverse en-
ergy transfer in presence of a condensate as discussed
in Sec. V B. Equations (43)-(45) then simplify to

˙EIN = 2ν1k
2
INEIN − c1E1/2

LS EIN − c2E1/2
1 EIN , (52)

˙ELS = −2ν0k
2
LSELS + c1E

1/2
LS EIN , (53)

Ė1 = −2ν0k
2
1E1 + c2E

1/2
1 EIN , (54)

which result in the following expressions for EIN, ELS

and E1 in steady state

2ν1k
2
INEIN = c1E

1/2
LS EIN + c2E

1/2
1 EIN

=⇒ c1E
1/2
LS + c2E

1/2
1 = −2ν1k

2
IN , (55)

2ν0k
2
LSELS = c1E

1/2
LS EIN

=⇒ ELS =

(
c1

2ν0k2LS
EIN

)2

, (56)

2ν0k
2
1E1 = c2E

1/2
1 EIN

=⇒ E1 =

(
c2

2ν0k21
EIN

)2

. (57)

Solving for EIN as a function of ν1, one obtains

2ν1k
2
IN = c1E

1/2
LS + c2E

1/2
1 =

c21
2k2LS

+
c22
2k21

ν0
EIN

=⇒ EIN = −4
ν1ν0k

2
IN

c21
k2LS

+
c22
k21

, (58)

that is, EIN ∼ ν1 and E1 ∼ ν21 , in qualitative agreement
with the data presented in Fig. 3 of Ref. [35] for
ν1 > ν1,crit, respectively.

2. case (ii): E1 < E1,0

In this case, there is no nonlocal coupling between E1

and EIN, hence Eqs. (43)-(45) become

˙EIN = 2ν1k
2
INEIN − c1E1/2

LS EIN , (59)

˙ELS = −2ν0k
2
LSELS + c1E

1/2
LS EIN − c3E1/2

1 ELS , (60)

Ė1 = −2ν0k
2
1E1 + c3E

1/2
1 ELS , (61)

which leads the the following expressions in steady state

2ν1k
2
INEIN = c1E

1/2
LS EIN

=⇒ ELS =

(
2ν1k

2
IN

c1

)2

, (62)

2ν0k
2
LSELS = c1E

1/2
LS EIN − c3E1/2

1 ELS

=⇒ EIN =
1

c1

(
2ν0k

2
LS + c3E

1/2
1

)
E

1/2
LS ,

(63)

2ν0k
2
1E1 = c3E

1/2
1 ELS

=⇒ E1 =

(
c3

2ν0k21
ELS

)2

. (64)

Solving for EIN as a function of ν1, one obtains

EIN = 4
ν1ν0
c21

k2IN

(
k2LS +

(
c3ν1k

2
IN

c1ν0k1

)2
)
, (65)

while E1 ∼ ν41 .

Comparing the energy content in the driven wavenumber
range between cases (i) and (ii) given in Eqs. (58) and
(65), respectively, we find

E
ε+
IN = 4

ν1ν0k
2
IN

c21
k2LS

+
c22
k21

< 4
ν1ν0
c21

k2IN

(
k2LS +

(
c3ν1k

2
IN

c1ν0k1

)2
)

= E
ε−
IN . (66)

We point out that this comparison is only justified close
to the critical point, as in principle the different cases
imply different ranges of ν1: case (i) is applicable for
ν1 > ν1,crit and case (ii) for ν1 < ν1,crit. However, in
the vicinity of ν1,crit, Eq. (66) predicts a sudden drop in
EIN and therefore of εIN = 2ν1k

2
INEIN as a function of

ν1, which is indeed observed in the DNS data as shown
in Fig. 6 (b). In summary, the asymptotics of the model
predicts qualitative features of the transition which are in
agreement with the DNS results. For further quantitative
results, we evaluate the model numerically.

A. Parameter scan for ν1

The results of the previous sections demonstrate that
the four-scale model is able to qualitatively reproduce the
features of flow states above and below the critical value
of ν1. In order to obtain the properties of the transition to
a condensate in the model system, we now proceed with a
parameter scan. The full model given by eqs. (43)-(46) is
integrated numerically for each value of ν1. The values of
the coefficients ci, for 1 6 i 6 4 have been chosen based
on the values of shell-to-shell transfers [30, 53] from DNS
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data above and below the critical point,

c1 =
T (k = kLS, p = kIN, q ' kI)√

ELSEIN

= 0.037 , (67)

c2 =
T (k = k1, p = kIN, q ' kIN)√

E1EIN

= 0.043 , (68)

c3 =
T (k = k1, p = kLS, q ' kLS)√

E1ELS

= 0.0031 , (69)

c4 =
T (k = kSS, p = kIN, q ' kI)√

ESSEIN

= 0.84 , (70)

where k1 = 1, kLS = 5, kIN = 12 and kSS = 20. The
qualitative behaviour of the model, which we discuss in
what follows, does not depend on the value of E1,0 or on
the values of c1, . . . , c4 as long as all ci 6= 0. A change
in parameters would locate the transition at a different
value of ν1. Here, we choose a cutoff value E1,0 = 0.05,
which results in a transition in the interval 0 < ν1 < 1.

A sharp transition must occur in the four-scale model
as the dynamics change at the threshold value E1,0 whose
qualitative features are remarkably similar to the tran-
sition in the full system. Figure 11 presents the results
of the parameter scan for E1 (panels (a) and (c)) and
εIN (panels (b) and (d)) as functions of ν1 (panels (a)
and (b)) and EIN (panels (c) and (d)). As in the full
system, E1 shows a sudden jump at a critical value of ν1
and thereafter increases quadratically in ν1, while EIN

drops suddenly as predicted for the asymptotic cases in
Secs. VI 1 and VI 2.
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FIG. 11. E1 (left) and εIN (right) as functions of ν1 (top row)
and EIN (bottom row) calculated from a parameter scan of
eqs. (43)-(46) and for E1,0 = 0.05.

Furthermore, different states of the model system may
be realized at the same value of ν1, as can be seen Fig. 11
(b) and (d), where E1 and ε are presented as functions of
EIN. The sharp transition is present in form of a discon-
tinuity in the data along a critical line, and for both E1

and ε we observe S-shaped curves with upper and lower

branches and an unstable region in between. This is qual-
itatively similar to the behavior of the full system, as can
be seen by comparison with Fig. 6 (a), which presents the
corresponding DNS data for E1(ν1/ν0) and with Fig. 3
of Ref. [35] that presents ε(ν1/ν0). We point out that the
model system is not able to track the second, continuous,
transition from absolute equilibrium to viscously damped
nonlinear transfers described in Ref. [35], which occurs in
the full system at the continuous inflection point of the
lower branch ε−. Such an inflection point is not present
in the corresponding model data presented in Fig. 11 (d).
This is not surprising as the four-scale model is by con-
struction not able to produce equipartition of energy be-
tween all degrees of freedom at k < kmin.

In summary, the model system adequately reproduces
the qualitative features of the transition. More precisely,
we can (i) understand the nonmonotonic behaviour of
the energy content at the driven scales, (ii) understand
the scaling of E1 with ν1 on the upper branch, and (iii)
clearly distinguish the transition to condensate forma-
tion from the onset of an inverse energy transfer through
postulating a threshold value for E1. The transition is
present in the model by construction, where the model
dynamics become non-local if a threshold energy at the
largest scale is reached. As such, we suggest that the
transition in the full system also happens through a sim-
ilar nonlocal coupling scenario: Energy increases at the
largest scales through the classical inverse energy cascade
and once a threshold energy is crossed, these emerging
large-scale fluctuations couple directly to the energy in-
jection range and a condensate forms.

VII. CONCLUSIONS

Active suspensions can be described by a class of one-
fluid models that resemble the Navier-Stokes equation
supplemented by active driving provided by small-scale
instabilities originating from active stresses exerted on
the fluid by the microswimmers. Here, we provided
a justification of the one-fluid approach for the two-
dimensional case by relating the solvent’s velocity field
non-locally to the coarse-grained polarization field of the
active constituents. The resulting model is very similar
in structure to solvent models postulated on phenomeno-
logical grounds [29, 31]. The justification relies on two
main assumptions: The system must be two-dimensional
at least to a good approximation and the bacterial con-
centration must remain constant. That is, it is applicable
to dense suspensions in thin layers.

Numerical simulations of a variant of these models
showed that a sharp transition occurs between the for-
mation of a steady-state condensate at the largest length
scale in the system and a steady-state inverse transfer
which is damped by viscous dissipation before reaching
the condensate [35]. The in-depth investigation carried
out here supplements the results of Ref. [35], the sys-
tem is bistable and shows hysteresis. That is, 2d active
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matter turbulence and 2d hydrodynamic turbulence with
a condensate are two non-equilibrium steady states that
can coexist in certain parameter ranges and that are con-
nected through a subcritical transition.

The condensate was found to couple directly to the
velocity field fluctuations at the driven scales. This ob-
servation led to the introduction of a low-dimensional
model that includes such a direct nonlinear coupling once
a threshold energy at the largest scales is reached. An-
alytical and numerical evaluations of the model resulted
in a good qualitative agreement with DNS results con-
cerning the main features of the transition. As such, we
suggest that the nature of the transition is related to
correlations between small- and large-scale velocity fluc-
tuations.

Concerning the nature of the transition, we point out
that in systems where the energy input depends on the
amount of energy at the driving scales, a reduction in
input occurs at the critical point. The latter would not
be the case for Gaussian-distributed and δ-in-time cor-
related random forces as the time-averaged energy input
is known a priori. In that case, preliminary results sug-
gest the occurrence of a supercritical transition (work in
progress). This suggests that the transition to developed
2d-turbulence is highly non-universal: Depending on the
type of forcing there may be no transition, or it may be
sub- or supercritical. Similar situations occur in rotating
flows [56–58]. Subcritical transitions also occur thin fluid
layers as a function of the aspect ratio [59].

Several aspects of our results merit further inves-
tigation. First and foremost, it would be of inter-
est to study transitional behavior experimentally. The
Reynolds number necessary for the transition that we
found here is at least an order of magnitude larger than
those describing mesoscale vortices in dense bacterial sus-
pensions. Hence a further increase of swimming speed, a
decrease in viscosity or a larger driving scale are required
to trigger the transition. All three possibilities present
considerable difficulty. The most promising approach
may be through the use of non-biological microswimmers
such as Janus particles, camphor boats or magnetic ro-
tors. Second, the effect of friction with a substrate, which
is present not only in experiments of active suspensions
but also in the Newtonian case, on the location of the
critical point needs to be quantified.
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