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We propose a kinetic gelation model of polymer growth with two monomeric types that have
distinct functionalities (reaction sites), and can polymerize using different reaction types. The
heterotypic aggregation of two monomer types is modeled using a moment generating function
approach by tracking the temporal evolution of a closed system of moment equations up until
gelation. We investigate several scenarios of polymerization with two distinct monomers that differ
in the types of reactions that can occur. We determine numerical and analytical conditions for
finite time blow-up (the emergence of an oligomer of infinite size) that depend on initial conditions,
reaction rates, and number of reaction sites per monomer.

I. INTRODUCTION

General condensation processes have been extensively
studied for several decades, and many review papers and
books have examined polymerization with gelation [1, 2].
Polymerization models with only a single monomer type
have previously been studied using statistical [3, 4], ki-
netic [5–8], and probabilistic [9, 10] approaches that aim
to describe polymerization based on the famous Smolu-
chowski equation [11]. In the statistical literature, gela-
tion is defined to be the blow-up of the weight-average
molecular weight of polymers and is interpreted as a tran-
sition of the polymer solution to a gel. It is defined sim-
ilarly in the kinetic gelation literature and the critical
time at which blow-up occurs is called the gel time tgel.

In this paper, we examine the behavior of a system of
two types of monomer, type A and type B with three
possible reactions: A − A,A − B, and B − B. We are
motivated by our interest in fibrin polymerization dur-
ing blood clotting. In that process, soluble fibrinogen
molecules in the blood plasma are converted into fibrin
monomers, which then polymerize to form a gel that is
a major structural component of a blood clot [12]. We
have previously modeled aspects of fibrin polymerization
[13, 14], but in these models, we did not account for the
fact that fibrinogen can bind with fibrin but not directly
with other fibrinogen molecules. Oligomers of mixtures of
fibrinogen and fibrin have been observed experimentally
[12, 15–17], and these experiments suggest that this ad-
ditional type of reaction affects the kinetics of the overall
fibrin gelation process. With the ultimate goal of model-
ing the fibrin-fibrinogen system, here we look at a simpli-
fied model, in the belief that our study of it will usefully
inform our analysis of the actual biological system.
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Others have considered polymerization with mixtures
of two monomer types. Goldstein and Perelson [18] con-
sidered a two-monomer polymerization system at equilib-
rium, allowing for binding and unbinding. The authors
derived conditions for gelation and discussed how their
model applies to experimental results involving basophils
and histamine release. A kinetic polymerization system
consisting of two distinct monomeric species A and B was
introduced by Lushnikov in [19], and subsequent results
from this system include oligomer composition distribu-
tions and finding exact sol-gel transition times [20, 21].

The Smoluchowski equation for the two monomer con-
densation system can be written generally as

dcm,n
dt

=
∑

k+p=m

∑
l+q=n

K(k, l; p, q)ck,l(t)cp,q(t)

−
∑
k,l

K(k, l;m,n)cm,n(t)ck,l(t), (1)

where cp,q denotes the concentration of oligomers with p
monomers of type A and q monomers of type B. Here,
the coagulation kernel K(k, l; p, q) is the reaction rate
between a (k, l)−mer, containing k monomers of type A
and l type B monomers, and an (p, q)−mer. In his work,
Lushnikov took K(k, l;m,n) to be constant [19] or the
product of the masses of the coalescing particles [20, 21].
He also assumed that only heterotypic reactions occur,
so reaction sites of the same type do not interact [19].

In the current paper, we assume that reactions between
different oligomers occur based on every free binding site
having equal probability of reacting with each available
binding site on a different oligomer. We also look at
situations in which binding sites can participate in mul-
tiple types of reactions, both homotypic and heterotypic
reactions with rates that can be different for different
types of reactions. With these assumptions, our coagu-
lation kernel depends on the types of reactions allowed,
and on the number and type of free binding sites avail-
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able and so is very different from those considered earlier
[11, 18, 19, 22].

In this paper, we present a kinetic gelation model with
a kernel that allows for reactions of different types among
monomers of types A and B with reaction rates that de-
pend on the concentrations of available reactive sites of
each type on the oligomers. The reaction rates are influ-
enced by the functionality (number of reaction sites) of
each type of monomer. We vary the composition of the
initial mixture of monomers, the monomeric functional-
ity, and the rate constants for the different types of re-
actions and determine reaction conditions (i.e, combina-
tions of initial composition, functionalities, and reaction
rates) that lead to gelation. We explore how the gel time
changes, or no longer exists, as the reaction conditions
are varied.

Our model is a generalization of the kinetic gelation
model presented by Ziff and Stell [5, 6] to study reac-
tions involving a single type of monomer. The Ziff model
tracks concentrations ck of oligomers made up of k identi-
cal monomers (k-mers) each with functionality f using an
infinite system of ordinary differential equations for ck,
k = 1, 2, 3, . . . . Binding sites on one oligomer can bind
with sites on other oligomers to form larger molecules.
In this setting, gelation occurs when

∑
k k

2ck → ∞,
which happens for any nonzero initial concentration of
monomer if and only if f > 2.

We extend the modeling approach from [5] to a poly-
merization system that involves oligomers comprised of
monomers of two types of monomer, A and B, with fA re-
action sites of type A and fB reaction sites of type B, re-
spectively. An oligomer Cijk consists of i total monomers
with j free reaction sites of type A and k free reaction
sites of type B. For example, the monomers of types A
and B are denoted C1,fA,0 and C1,0,fB , respectively.

The model allows for three types of reactions: those
between A sites on two different oligomers, B sites on
two different oligomers, and an A site on one oligomer
with a B site on another oligomer. Reaction sites both
on the same oligomer are not allowed to react. The rates
at which reactions of each type occur depend on the con-
centrations of free reactive sites of the type involved in
that particular reaction. The reactions lead to an infi-
nite set of ordinary differential equations that track the
evolution of the concentrations of oligomers of type Cijk,
denoted cijk.

Following [5, 6], we introduce a moment generating
function g, derive a partial differential equation for g from
the infinite set of ODEs for the concentrations cijk , and
then use g to derive a set of ordinary differential equa-
tions for various moments of the oligomer distribution.
As we show below, a closed system of equations involv-
ing the zeroth, first, and second moments is obtained.
From these moments we derive expressions for the to-
tal concentration of monomers and the average oligomer
size, among other interesting physical quantities, and use
the small system of ODEs satisfied by the low-moments
to study if and when gelation occurs.

II. GENERAL TWO MONOMER
POLYMERIZATION

We consider an aggregation system which involves two
monomer types: type A monomers, each with fA reac-
tion sites, and type B monomers, each with fB reaction
sites. Three possible reactions are considered: Binding
of a type A site to another type A site, binding of a type
A site to a type B site, and binding of a type B site
to another type B site. In all cases, the two reacting
sites must be on different oligomers, that is, no loops or
cycles are allowed to form. The three biomolecular reac-
tions convert two oligomers into a single larger oligomer
as shown in Eqs. (2) – (4). As indicated, the respective
reactions have (second-order) rate constants kAA, kAB ,
and kBB .

Ci1,j1,k1 + Ci2,j2,k2
kAA−−−→ Ci1+i2,j1+j2−2,k1+k2 , (2)

Ci1,j1,k1 + Ci2,j2,k2
kAB−−−→ Ci1+i2,j1+j2−1,k1+k2−1, (3)

Ci1,j1,k1 + Ci2,j2,k2
kBB−−−→ Ci1+i2,j1+j2,k1+k2−2. (4)

Taking into account the three possible reactions, we
assume that the oligomer concentrations cijk(t) satisfy
the following system of ordinary differential equations:

dcijk
dt

=
kAA

2


∑

i1+i2=i
j1+j2=j+2
k1+k2=k

j1j2ci1j1k1ci2j2k2

− kAAjcijkRA
︸ ︷︷ ︸

A-A reactions

+kAB


∑

i1+i2=i
j1+j2=j+1
k1+k2=k+1

j1k2ci1j1k1ci2j2k2

− kAB(kcijkRA + jcijkRB)

︸ ︷︷ ︸
A-B reactions

+
kBB

2


∑

i1+i2=i
j1+j2=j

k1+k2=k+2

k1k2ci1j1k1ci2j2k2

− kBBkcijkRB
︸ ︷︷ ︸

B-B reactions

.

(5)

In this equation, RA and RB denote the total concentra-
tions of free type A reaction sites and free type B reaction
sites, respectively:

RA =
∑
i,j,k

jcijk, (6)
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A bind to A A bind to B B bind to B
Scenario 1 X
Scenario 2 X X
Scenario 3 X X X

TABLE I: Reactions involving monomers of type A and
B allowed in each scenario.

and

RB =
∑
i,j,k

kcijk. (7)

In Eq. (5), the first two terms on the right-hand side
describe A − A reactions, the next three terms describe
A − B reactions, and the final two terms describe B −
B reactions. There are more terms describing A − B
reactions because two oligomers can form an A−B bond
in two different ways.

There are a number of other quantities of physical in-
terest that we would like to track. These include the total
concentration of monomer

M =
∑
i,j,k

icijk, (8)

and the average number of total monomers in an oligomer
or cluster, the average cluster size, defined by

C̄ =
1

M

∑
i,j,k

i2cijk. (9)

To explain why this expression is called the average
cluster size, we rewrite it as

C̄ =
∑
i,j,k

i
( icijk
M

)
. (10)

Noting that
∑
ijk

( icijk
M

)
= 1, we see that the expres-

sion in parentheses can be interpreted as the probability
that a randomly selected monomer will be part of an i-
mer, so C̄ is the average cluster size. We say that gelation
occurs at time tgel if

lim
t→t−gel

C̄ →∞. (11)

We interpret this event as the appearance of an infinite
sized cluster.

To aid in the analysis of Eqs. (5), we introduce a
generating function similar to Ziff and Stell,

g(t, x, y, z) =
∑
i,j,k

xiyjzkcijk(t). (12)

Using this definition and Eqs. (5), it is straightforward
to show that g satisfies the partial differential equation

∂g

∂t
=
kAA

2

(
∂g

∂y

)2

− kAAy
∂g

∂y
RA + kAB

(
∂g

∂y

)(
∂g

∂z

)
−kAB

(
y
∂g

∂y
RB + z

∂g

∂z
RA

)
+
kBB

2

(
∂g

∂z

)2

−kBBz
∂g

∂z
RB .

(13)

Using the generating function g, we define moments
Mijk by the expressions

Mijk =
∂i+j+kg

∂xi ∂yj ∂zk

∣∣∣∣
x=1,y=1,z=1

. (14)

In terms of these moments, RA = M010, RB = M001,
M = M100, and

C̄ =
M200 +M100

M100
. (15)

Using Eqs. (13) and (14), we can derive ordinary dif-
ferential equations for the low moments. Setting x = y =
z = 1 in Eq. (13),

dM000

dt
= −kAA

2
R2
A − kABRARB −

kBB
2
R2
B . (16)

Differentiating all terms in Eq. (13) with respect to y
and then setting x = y = z = 1 in the result gives the
equation

dRA
dt

=
dM010

dt
= −kAAR2

A − kABRARB , (17)

while differentiating Eq. (13) with respect to z and set-
ting x = y = z = 1 in the result yields

dRB
dt

=
dM001

dt
= −kBBR2

B − kABRARB . (18)

Similarly, differentiating Eq. (13) with respect to x and
setting x = y = z = 1 in the result yields the equation

dM

dt
=
dM100

dt
= 0, (19)

which ensures conservation of total monomer mass. By
computing the appropriate higher partial derivatives of
Eq. (13) and setting x = y = z = 1, we find differential
equations for the second moments

dM110

dt
= kAA(M020 −RA)M110

+kAB [M110(M011 −RB) +M101M020]+kBBM101M011,
(20)
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dM011

dt
= kAA(M020 −RA)M011

+ kAB
[
M2

011 +M020M002 −M011(RA +RB)
]

+ kBB(M002 −RB)M011, (21)

dM101

dt
= kAAM110M011

+ kAB [(M011 −RA)M101 +M110M002]

+ kBB(M002 −RB)M101, (22)

dM200

dt
= kAAM

2
110 + 2kABM110M101 + kBBM

2
101, (23)

dM020

dt
= kAA [(M020 − 2RA)M020]

+ 2kAB(M011 −RB)M020 + kBBM
2
011, (24)

dM002

dt
= kAAM

2
011 + 2kAB(M011 −RA)M002

+ kBB(M002 − 2RB)M002. (25)

From the differential equations for the non-negative
quantities M000, RA, and RB , we see that these quanti-
ties are bounded functions of time. Recall that we de-
fined the gelation to occur at time tgel if C̄(t) → ∞
as t → t−gel. We see that gelation occurs if and only if

M200 →∞ at finite time tgel. From Eq. (23) we see that
for M200 to become unbounded in finite time, at least
one of M011, M020, or M002 must become unbounded in
finite time. Hence, we are interested in determining con-
ditions under which one or more of M011, M020, or M002

blow-up in finite time. Note that the equations for RA,
RB , M011, M020, and M002 form a closed system. We
study the behavior of this system for the initial conditions
RA(0) = fAc1fA0(0), RB(0) = fBc10fB (0), M011(0) = 0,
M020(0) = (fA− 1)RA(0), and M002(0) = (fB − 1)RB(0)
corresponding to initial concentrations c1fA0 and c10fB
of type A and type B monomers, respectively.

For the remainder of this paper, we consider non-
dimensionalized versions of Eqs. (17) – (18), (21), (24)
– (25). Let RT (0) = RA(0) + RB(0) denote the total
initial concentration of free reaction sites. We define
the nondimensional time τ as τ = t(kABRT (0)), and
nondimensional moments mijk = Mijk/RT (0). We de-
fine nondimensional the A−A and B −B binding rates
as κAA = kAA/kAB and κBB = kBB/kAB , and a nondi-
mensional initial composition variable

φ =
RA(0)

RT (0)
. (26)

The nondimensional ODEs are

drA
dτ

= −κAAr2A − rArB , (27)

drB
dτ

= −rArB − κBBr2B , (28)

dm011

dτ
= κAA(m020 − rA)m011

+m2
011 +m020m002 −m011(rA + rB)

+ κBB(m002 − rB)m011, (29)

dm020

dτ
= κAA(m020 − 2rA)m020

+ 2(m011 − rB)m020 + κBBm
2
011, (30)

dm002

dτ
= κAAm

2
011 + 2(m011 − rA)m002

+ κBB(m002 − 2rB)m002, (31)

AA

BB

�

1
Scenario 1 

Scenario 2 

Scenario 3

AA = 1
BB = 1

FIG. 1: Schematic of parameter space explored.
Scenario 1 corresponds to the vertical φ-axis (black) up
to 1. Scenario 2 involves exploring the (κAA, φ)-plane
(yellow) for 0 ≤ φ ≤ 1. The orange plane (Scenario 3)
explores (κAA, κBB) parameter space for 0 ≤ φ ≤ 1. A
special case of Scenario 3 is shown as the grey arrow,

when κAA = κBB = 1.

with initial conditions

m020(0) = (fA − 1)rA(0), m002(0) = (fB − 1)rB(0),
(32)

rA(0) = φ, rB(0) = 1− φ, m011(0) = 0. (33)

Throughout the paper, we investigate Eqs. (27) – (31)
with different values for the initial conditions and with
different reaction rates to determine if and when gelation
occurs. Figure 1 illustrates the region of (κAA, κBB , φ)
space that we explore. We first consider the the case in
which we set κAA = 0 and κBB = 0 which we refer to
as Scenario 1 corresponding to a portion of the φ-axis
in Figure 1 (also see Table I). For this case, we derive
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analytically inequalities that φ must satisfy in order for
a gel to form and an analytical formula for the gel time.

We then allow κAA to be nonzero but keep κBB = 0 in
Scenario 2, corresponding to the red plane in Figure 1. In
this case, we present numerical results on gel occurrence
and gel times, using a numerical method described in the
next section. Finally, we allow both reaction rates to be
nonzero in Scenario 3. We present numerical results for
the general case in which κAA 6= 0 and κBB 6= 0 (the blue
plane in Figure 1, and analytical results for the special
case κAA = κBB = 1 (grey arrow in Fig. 1).

For some conditions, we derive analytic results. For
others, we solve the system numerically until finite-time
blow-up occurs using a numerical method described in
the next section.

III. RESULTS: SCENARIO 1 (κAA = κBB = 0)

In a polymerization system with one monomer type
with functionality f , gelation is guaranteed to occur in
finite time

tziffgel =
1

kf(f − 2)c1(0)
, (34)

where free sites react at rate k and c1(0) denotes the ini-
tial concentration of monomers [5]. For our two monomer
polymerization system, we first consider the scenario
where the only reaction allowed is the heterotypic bind-
ing of A sites to B sites, thus κAA = κBB = 0. Under
these conditions, Eqs. (27) – (31) reduce to

drA
dτ

= −rArB , (35)

drB
dτ

= −rArB , (36)

dm011

dτ
= m020m002 −m011(rA + rB), (37)

dm020

dτ
= 2(m011 − rB)m020, (38)

dm002

dτ
= 2(m011 − rA)m002. (39)

We derive conditions on φ necessary for gelation to
occur in the scenario. Let w = m011−rB+

√
m020m002+

γ0
2 , where

γ0 =
RB(0)−RA(0)

RT (0)
= 1− 2φ. (40)

From the definition of gelation, w will blow-up in finite
time if and only at least one of m011,m020, and m002

blow-up. Note if m011 is bounded then by the form of
Eqs. (38) and (39), m020 and m002 cannot go to zero in
finite time. Then

dw

dτ
= w2 − γ20

4
, (41)

and

w(0) =
√

(fA − 1)(fB − 1)φ (1− φ)− 1

2
. (42)

Note that Eq. (41) is separable and

w(τ) =
γ0
2

(
1 +Deτγ0

1−Deτγ0

)
, (43)

where

D =

∣∣∣∣2w(0)− γ0
2w(0) + γ0

∣∣∣∣ . (44)

To find the analytic gel time, we set the denominator of
Eq. (43) equal to zero and find

τ
(1)
gel =

ln (2w(0) + γ0)− ln (2w(0)− γ0)

γ0
. (45)

Note that τ
(1)
gel is defined only if both 2w(0) + γ0 > 0 and

2w(0)− γ0 > 0, which implies

1

(fA − 1)(fB − 1) + 1
< φ <

(fA − 1)(fB − 1)

(fA − 1)(fB − 1) + 1
.

(46)
The bounds in Eq. (46) require either fA > 2 or

fB > 2, which is the same requirement needed for the
system to gel in [5]. In order to gel in finite time, it
must also be true that fA > 1, fB > 1. If a monomer
has functionality less than 2, one can intuitively consider
that monomer to be an ‘inhibitor’ of the system, where
it binds to an available free site and removes it from the
system. However, if both monomers have functionality
greater than 2 there still exists an upper and lower in φ
for gelation to occur. Since type A monomers can bind
only to type B monomers, the gelation properties of the
polymerization system depend not only on the function-
alities but also on the relative initial concentrations of
free reaction sites of the two types. Figure 2a shows how
the gel time given in Eq. (45) varies with φ, the frac-
tion of initial reaction sites that are type A, for various
combinations of functionalities.

Reflecting the bounds in Eq. (46), we see that there
are combinations of functionalities and initial conditions
for which gelation (i.e., finite-time blow up of C̄) does
not occur in the case in which only heterogeneous A−B
binding occurs. For each pair of functionalities, gelation
does not occur if there is excess of either monomer types.
For example, if fA = 3 and fB = 2, gelation happens only
for 1/3 < φ < 2/3. If either reaction site type initially
comprises more than 2/3 of the total initial reaction sites,
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0 0.2 0.4 0.6 0.8 1
10

-1

10
0

10
1

10
2

(a)

0 0.2 0.4 0.6 0.8 1
10

-1

10
0

10
1

10
2

(b)

FIG. 2: Scenario 1 (κAA = κBB = 0): (a) Analytical gel time τ
(1)
gel and (b) numerical gel time τnumgel gel time as

functions of φ and for various functionality combinations: fA = 3 (orange), fA = 4 (yellow), fB = 2 (dashed),
fB = 3 (dot-dashed), fB = 4 (dotted). Vertical lines correspond to lower and upper bounds found in Eq. (46).

gelation does not occur. For larger functionalities, the
interval of φ values for which gelation occurs becomes
larger, as expected, but for each functionality pair, the
interval has a left-end greater than 0 and a right-end less

than 1. In addition, for a given value of φ, τ
(1)
gel decreases

implying that gelation occurs earlier.
For the other scenarios listed in Table I, we are unable

to find analytic bounds on φ that ensure gelation nor an
analytic formula for the gel time, and so we evaluate the
time evolution of the moment system Eqs. (27) – (31)
numerically. We define ‘numerical blow up’ to occur if
the sum of the moments m020, m002, and m011 becomes
larger than 107, and we define the ‘numerical gel time’
to be the time at which this occurs, denoted as τnumgel .

The moment equations are solved up to τend = 106 if
numerical blow up does not occur, and in that case we
set τgel = τend. Figure 2b shows the results of using this
numerical approach to determining gelation properties in
Scenario 1. Comparing the results with the analytic ones
in Figure 2a, we see excellent agreement, thus validating
the use of this numerical approach in Scenarios 2 and 3.

IV. RESULTS: SCENARIO 2 (κBB = 0)

In this section we set κAA > 0 while keeping κBB = 0
in order to explore the behavior of the moment equations
in the case that A − A binding is allowed in addition to
the A − B binding considered in Scenario 1. Typical
oligomers for various parameter ranges are shown in Fig.
3.

Since introducing the additional type of binding
changes the structure of the moment equations, the gel
time given in Eq. (45) is no longer applicable. Instead,

we present numerical results obtained with the numeri-
cal finite-time blow up approach described at the end of
Section III. The nondimensional moment equations for
Scenario 2 are Eqs. (27) – (31) with κBB = 0:

drA
dτ

= −κAAr2A − rArB , (47)

drB
dτ

= −rArB , (48)

dm011

dτ
= κAA(m020 − rA)m011 +m2

011

+m020m002 −m011(rA + rB), (49)

dm020

dτ
= κAA [(m020 − 2rA)m020] + 2(m011 − rB)m020,

(50)

dm002

dτ
= κAAm

2
011 + 2(m011 − rA)m002. (51)

Figure 4 shows how the numerical gel time varies with
φ for various pairs of functionalities when κAA = 1 and
κBB = 0. As before, line colors black, blue, and red cor-
respond to fA = 2, fA = 3, and fA = 4, respectively, and
the dashed, dot-dashed, and dotted line styles represent
fB = 2, fB = 3, and fBB = 4, respectively. For the cases
in which fA > 2, as φ → 1, the computed gel time ap-
proaches that found in [5] for gelation with a single type
of monomer. When φ = 1, there is only type A monomer
in our system. For fA = 2, the numerical gel time ap-
proaches infinity, indicating that no gel forms, consistent
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with the necessary condition that monomer functionality
be larger than 2 in the single monomer type situation [5].
For each of the functionality pairs depicted in Figure 4,
there is a lower bound such that when φ is lower than
this bound, gelation does not occur. The lower bounds
are close to but not the same as those found in Scenario
1, e.g., for fA = 3 and fB = 2, the approximate lower
bound here is φ = 0.3193, while that in Scenario 1 is
φ = 1

3 .

Type B

Type A

(a)

Type B

Type A

(b)

Type B

Type A

(c)

FIG. 3: Typical oligomers for various parameter
combinations for Scenario 2, with fA = 3, fB = 2. (a)
κAA >> 1, φ ≈ 1. (b) κAA << 1, φ << 1. (c) κAA ≈ 1,

φ intermediate.

Figure 5 illustrates how numerical gel time changes
with the reaction rate κAA and the initial available bind-
ing composition φ. In order to demonstrate what would
occur if a monomer that can gel on its own was added
to a system that cannot gel, we let fA = 3 and fB = 2.
This choice is also motivated by the polymerization of
fibrin and fibrin-fibrinogen interactions. The white re-
gion in Fig. 5 corresponds to parameter values that have
no finite time blow-up and the colored area corresponds
to parameter values that lead to the formation of a gel.
Note that when κAA = 0 (corresponding to the x-axis), a
lower and upper bound for gelation in φ exists, given in
Eq. (46). The upper bound in φ exists only for κAA = 0.
Assuming fA > 2, type A monomers can bind to other
type A monomers for even small κAA, which eventually
lead to the formation of a gel. A relative deficiency in
type B reaction sites (φ ≈ 1) does not inhibit gelation in
this case.

We compare the theoretical gel time from Ziff [5] with
the numerical gel time for Scenario 2 to determine if
adding an additional monomer and reaction type hinders
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FIG. 4: Scenario 2 (κBB = 0): Numerical gel time as a
function of φ for κAA = 1 and various functionality

combinations: fA = 2 (black), fA = 3 (orange), fA = 4
(yellow), fB = 1 (solid), fB = 2 (dashed), fB = 3

(dot-dashed), fB = 4 (dotted).
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FIG. 5: Scenario 2 (κBB = 0): Numerical gel time as a
function of φ and κAA. The functionalities are fixed
(fA = 3, fB = 2). The color bar indicates when finite

time blow-up occurred.

or helps gelation. Let τziffgel be the theoretical Ziff gel

time. Figure 6 shows τnumgel curves (solid curves) for vari-
ous κAA values, corresponding to horizontal slices of Fig.

5, and τziffgel gel times (dashed curves) with one monomer,

functionality f = 3, polymerizing [5]. For large κAA (or-
ange), τnumgel is monotonically decreasing in φ while for

small κAA (yellow), τnumgel is non-monotonic in φ. For

φ = 1, τnumgel = τziffgel .

Numerical gel times for large κAA are longer than the
theoretical Ziff gel time for φ < 1, indicating that for
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large κAA, adding an additional monomer and reaction
causes the system to more slowly. In Fig. 6, for each
κAA value, there is a lower bound for φ, below which
the numerical gel time, τnumgel , indicates that no gelation

has occurred. For κAA small (red) then for large and

intermediate values of φ, τnumgel < τziffgel implying that
the A−B reactions speed up gelation. For low φ values,

τnumgel > τziffgel implying that the A − B reactions hinder
gelation, or prevent it all together. Hence, compared to
gelation in a pure type A system, the presence of type
B monomers and A − B reactions can either hinder or
accelerate gelation when κAA is small.
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FIG. 6: Scenario 2 (κBB = 0): τnumgel (solid curves) as a

function of φ with varying κAA (fA = 3, fB = 2) with

τziffgel , for f = 3 functionality [5]. Yellow curves indicate
κAA < 1 and orange curves indicate κAA ≥ 1. From

bottom to top, solid curves are for κAA = 10, 8, 4, 2, 1,
0.5, 0.1, 0.01, 0.001, and 0.

In Figure 5, there is a clear boundary, or separatrix, in-
dicated in black, separating values of (φ, κAA) for which
a gel forms or for which a gel does not form. We show in
Figure 7 how the location of the boundary curve changes
as the functionalities of fA and fB are altered. For the
(fA, fB) combination for which gelation would occur in
a pure type A system (fA ≥ 3), the minimum level of φ
needed for gelation decreases as κAA increases, i.e. gela-
tion occurs for a wider range of initial compositions. For
fA = 2, fB = 3, the lower bound on φ increases as κAA
increases, so gelation occurs for a narrower range of initial
compositions. We also see that fixing one functionality
(fA or fB), the range of compositions allowing gelation
increases as the other functionality is increased.

V. RESULTS: SCENARIO 3 (ALL REACTIONS
ALLOWED)

The final scenario discussed is that in which κAA and
κBB are both nonzero so type A − A, type A − B, and
type B − B reactions can all occur. We investigate two
cases, the first in which κAA = κBB = 1 so all reaction
rates are equal, or the general case where κAA and κBB
can be any nonnegative value. Thus, we investigate the
original nondimensional moment equations Eqs. (27) –
(31).

A. Reaction rates equal (κAA = κBB = 1)

We assume that the three types of reactions occur at
the same rate; thus, κAA = κBB = 1 in Eqs. (27)
– (31). Since the reaction rates are all equal, the re-
activities of monomer types A and B depend only on
their functionalities, fA and fB , respectively. Letting
v(t) = m020 + m002 + 2m011 − rA − rB , it follows from
Eqs. (27) – (31), that

dv

dτ
= v2. (52)

Solving this equation yields

v(τ) =
v(0)

1− v(0)τ
. (53)

where v(0) = (fA−2)rA(0)+(fB−2)rB(0). A gel appears
if v →∞, which occurs at time

τ
(3)
gel =

1

(fA − 2)rA(0) + (fB − 2)rB(0)
, (54)

provided this quantity is positive. If fA = fB = f , then
rA(0) = rB(0) = f c̃(0) where c̃(0) = c1,fA,0+c1,fB ,0 is the
total initial concentrations of the two types of monomers
in the system. Using these in Eq. (54), we obtain

τziffgel =
1

f(f − 2)c̃(0)
, (55)

which is the gelation time from the Ziff-Stell model [5].
Note in particular that if fA = fB = 2, a gel does not
form. We next investigate the effect of varying fA and

fB on τ
(3)
gel given in Eq. (54). We again let φ = rA(0),

and write the expression in Eq. (54) as

τ
(3)
gel =

1

fB − 2 + (fA − fB)φ
. (56)

Figure 8 shows how τ
(3)
gel varies with φ for several fA,

fB combinations. For each pair of fA, fB values, with

fA > fB , τ
(3)
gel decreases as φ increases to 1, while τ

(3)
gel

increases as φ increases to 1 if fA < fB . No gel forms
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FIG. 7: Scenario 2 (κBB = 0): Gel-no gel boundaries similar to Fig. 5 for fixed fA (a) and fB (b) functionality. To
the left of each curve, gelation does not occur and to the right of the curve, gelation occurs for given (φ, κAA).

for fA = fB = 2 (not shown) or for φ = 0 and fB = 2.
When fB = 1, Eq. (56) becomes

τ
(3)
gel =

1

(fA − 1)φ− 1
. (57)

Since τ
(3)
gel < 0 is impossible, we must have that

φ >
1

fA − 1
(58)

for gelation to occur in this case.

From Fig. 8 we see that τ
(3)
gel depends on both monomer

functionalities. If fA 6= fB , then an increase in either
value results in faster gelation. For example, with fA = 3,

fB = 2, and φ = 0.5, τ
(3)
gel ≈ 2, but for the same φ value

and fA = 4, fB = 2, τ
(3)
gel ≈ 1. The solid curves in Fig.

8 (fB = 1) reflect the gel times when the inequality in
Eq. (58) (vertical) must hold. From Equation (55), if
fA = 2 or fB = 2 and the other functionality is greater

than 2, τ
(3)
gel does not depend on monomer A or monomer

B, respectively, and τ
(3)
gel = τziffgel . The situation corre-

sponds to the dashed curves and the black curves in Fig.
8. If fA = fB then type A and type B monomers are
indistinguishable since all reaction rates are equal, thus
the gel time does not depend on φ (flat curves in Fig. 8).
This particular gel time is equivalent to that from Eq.
(55) for c̃(0) = 1.

It is clear that the gel time depends on the initial com-
position variable φ. Figure 8 illustrates that for any func-
tionality combination in which fA > 2, as φ increases to

1, τ
(3)
gel approaches the gel time τziffgel from Eq. (55) for the

single monomer system with functionality fA and initial
concentration c̃(0) = 1 [5]. For functionality combina-
tions in which gelation can occur for 0 ≤ φ ≤ 1, gel time

curves begin at the τziffgel for functionality fB and end at

τziffgel time for fA. For example, when fA = 4, fB = 3

(yellow, dot-dashed curve), at φ = 0 the gel time corre-

sponds to τziffgel with functionality fB = 3 and at φ = 1

the gel time is equal to τziffgel with functionality fA = 4.
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FIG. 8: Analytical gel time τ
(3)
gel as a function of φ with

various functionality combinations: fA = 2 (black),
fA = 3 (orange), fA = 4 (yellow), fB = 1 (solid),

fB = 2 (dashed), fB = 3 (dot-dashed), fB = 4 (dotted).

Flat curves (fA = fB) are equivalent to τziffgel .
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B. General case

We next investigate Scenario 3 with reaction rates κAA
and κBB set to arbitrary positive values. No analytic
formula for the gel time is available, so we solve Eqs. (27)
– (31) numerically until finite-time blow up occurs using
the method described for Scenario 1. With all reaction
rates positive, a gel forms in finite time if fA > 2 or

fB > 2. Figure 9 shows τ
(3)
gel as a function of κAA and κBB

for fA = 4, fB = 3, and φ = 0.2. Note that the maximum
gel time is order 10, indicating that a gel always forms
quickly (relative to gel times found in Scenarios 1 and 2)
and the slowest gel formation occurs when both κAA and

κBB are small. For τ
(3)
gel plots

Figure 10 shows how the gel time depends on φ with
κAA = 10−1 and κBB = 10−4. The figure also shows

τziffgel for functionality f = 3 and rate constant k = 10−4

and for functionality f = 4 and rate constant k = 10−1,

as well as the gel time τ
(1)
gel from Scenario 1 (when κAA =

κBB = 0). Note that a gel forms for both φ = 0 and

φ = 1, and that τnumgel equals the τziffgel value. In these

cases f = 3, k = 10−4 and f = 4, k = 10−1, respectively.

The sizes of κAA and κBB influence how close the nu-
merical gel time for Scenario 3B is to the analytical gel
time for Scenario 1. Since κAA is far from zero, the blue
curve does not hug the dashed curve in Fig. 10. With
κBB = 10−4, the numerical gel time for Scenario 3 agrees
with the Scenario 1 gel time for intermediate φ. Since
there are more free B sites and κBB is relatively closer
to zero, we see good agreement for 1

3 < φ < 1
2 . As φ in-

creases, this agreement no longer holds as there are more
A sites available and κAA is far from zero.

We next look at the specific case fA = 3 and fB = 2,
in which monomer B on its own cannot form a gel, and
determine the conditions under which a gel can form in
the two monomer system. Figure 11 shows τnumgel as a

function of κAA and κBB for φ = 0.2. Point (a) shows
the (approximate) parameter values for Scenario 1, and
point (c) shows the parameter values for Scenario 3A,
and point (b) shows the parameter values for Scenario
2 with κAA = 1. To understand how τnumgel changes as
parameter value variations move the system between the
different scenarios listed in Table 1, we perform sets of
simulations using parameter values from points along the
numbered paths in Figure 10. For each parameter point,
the gel time τnumgel is computed as a function of the initial
composition variable φ.

Gel time vs. φ curves from points along the transition
paths 1 to 6 are shown in Figure 12. Figure 12a illustrates
the transition between Scenarios 1 and 2 along path 1
where κBB = 0 and κAA increases from 0 to 1, and be-
tween Scenarios 2 and 3 along path 2 where κAA = 1 and
κBB increases from 0 to 1. The solid black curve shows
τnumgel (φ) for Scenario 1 in which κBB = 0 and κAA = 0

showing that gelation occurs only for 1/3 < φ < 2/3 in
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FIG. 9: Scenario 3 (κAA 6= κBB): Numerical gel time
for fA = 4, fB = 3. Heatmap of gel times as a function
of κAA, κBB for φ = 0.3, τend = 106. Black data point
corresponds to parameter values found in Figure 10.
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FIG. 10: Scenario 3 (κAA 6= κBB): Numerical gel time
as a function of φ for κAA = 10−1, κBB = 10−4 for

fA = 4, fB = 3. Vertical lines indicate gelation bounds
from Scenario 1. Black curves indicate theoretical Ziff

times for f = 4 and f = 3.

this case. As κAA increases from 0 to 1 along path 1,
the dashed red curves show how gel time decreases sub-
stantially for φ > 2/3, moderately for 1/3 < φ < 2/3,
and how the lower bound on gel formation moves in-
creasing but always small steps to the left. The limiting
solid red curve for κAA = 1 and κBB = 0 for Scenario
2 shows that the lower bound from Scenario 1 persists
at a slightly smaller value for Scenario 2. The dashed
blue curves show how the gel time decreases for φ < 1/3
for parameter values along path 2 as the system moves
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between Scenario 2 and Scenario 3A.

Similar curves are shown in Figures 12b. Again, the
solid black curve refers to τnumgel (φ) for Scenario 1. The
dashed red curves indicate how the gel time changes as
κAA increases from 0 to 1 along path 3. The upper bound
for gelation moves to the left, while the lower bound
decreases considerably for φ < 1/3 and moderately for
1/3 < φ < 2/3. The solid red curve for κBB = 1, κAA = 0
illustrates that the upper bound persists, although for a
smaller value of φ than in Scenario 1. Gel times along
path 4 are indicated by dashed blue lines, where gel times
decrease for φ > 2/3, and as κBB approaches 1, we obtain
the gel time found in Scenario 3A (solid blue).

Figure 12c shows how gel times change along paths
4 and 5. The dashed red curves reveal how gel time
changes as we set κAA = 0 and vary 1 < κBB < 105.
Note that in the limit when κBB >> 1, no gelation can
occur since the functionality of monomer B is two. As
κBB decreases from 105, the upper φ bound for gelation
increases substantially to the same red curve found in
Fig. 12b. Path 4 curves shown in Fig. 12c are identical
to those in Fig. 12b and show how gel times approach
Scenario 3A as we increase κAA to 1.

Path 6 illustrates how the gel times transition from
κAA = 0, κBB = 105 (solid black) to κAA = 1, κBB =
105. As κAA is varied and increases towards 1, the system
gels more quickly (dashed grey). When κAA = 1, κBB =

105, the dashed grey curve lies on top of the τziffgel curve.
Since fB = 2, increasing κBB > 1 does not change the
gel time of the system.
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FIG. 11: Gel times for polymerization system with
fA = 3, fB = 2, varying reaction rates, and φ = 0.2. (a),

(b), (c) on plot marks Scenario 1, Scenario 2, and
theoretical Ziff times for φ = 0.2, respectively.

Transitions from scenarios are marked 1. through 6.

VI. DISCUSSION

We have presented a two-monomer polymerization sys-
tem with a coagulation kernel based on the number of
available binding sites and on the types of reactions
each binding site can participate in. We assumed no
intramolecular reactions thus no cycles can form on
oligomers. Several authors have proposed polymeriza-
tion systems with intramolecular reactions involving one
[7, 23, 24] or two [25] monomer species, and find that
cycle formation affect the sol-gel transition time.

Without allowing cycles, the reactions we allow the
system to participate in are incorporated into a kinetic
gelation model that is comprised of an infinite set of con-
centrations cijk, one for each oligomer with a specific
total number of oligomers, free reaction sites of type A
and free reaction sites of type B. Using an approach
similar to that of Ziff and Stell in [5], we found a closed
system of low order moment equations that can be an-
alyzed up until gelation with varying possible reaction
rates, monomer functionalities, and initial concentration
of available reaction sites.

When all reaction rates are equal, we derived an an-
alytical gelation time that was numerically validated by
solving the closed system until finite-time blow-up oc-
curs. The analytical gel time depended on the functional-
ity of each monomer type and on the initial concentration
of free binding sites available. A gel formed in all cases
except when at least one of the monomer functionalities
is equal to 1. If a given monomer has only one binding
site, it binds to a free binding site and occupies it, thus
removing a free site from the system. If initially there
is monomer with fB = 1 in excess, no gel forms. There-
fore, there exists a lower bound on φ, the ratio of initial
concentration of free type A binding sites to the total
initial binding site concentration, for finite-time blow-up
for only one functionality value fB = 1.

We numerically investigated the polymerization sys-
tem where no B − B reactions occur. For each fA, fB
combination, gelation does not occur for small φ val-
ues so a minimum φ exists for gelation to occur. As
fA and fB increases, this threshold in φ decreases so less
A monomers are required to gel.

For a system in which only heterogeneous reactions
can occur (kAA = kBB = 0), if there are too few reaction
sites of type A, gelation cannot occur since B cannot re-
act with B. Similarly, if there are too many reactions
sites of type A, gelation cannot occur. An analytical gel
time was obtained for this scenario, and upper and lower
bound sin φ on gelation was found and confirmed using
numerical simulations. The case allowing only hetero-
geneous reactions has been investigated previously using
a probabilistic approach based on branching processes
[9, 10], where the authors obtain similar results for the
case fB = 2.

Based on the results presented, it is clear that gelation
depends not only on the amount of monomer initially
present, but also on the functionality of each monomer
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in the polymerization system. In the multicomponent
gelation literature, previous work has studied systems
that react according to the mass of monomers present
in oligomer, and does not include the functionality of

monomers. Gelation is not possible if both monomers
have only two free reaction sites, so it is critical to incor-
porate monomeric functionality into any mathematical
model.
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FIG. 12: Curves of numerical gel time as a function of φ for fA = 3, fB = 2 with dashed curves showing transitions
as κAA and κBB vary along paths 1 – 6 in Figure 11.
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