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In experiments on Membrane Protein Polyhedral Nanoparticles (MPPNs) [T. Basta et al., Proc.
Natl. Acad. Sci. U.S.A. 111, 670 (2014)] it has been observed that membrane proteins and lipids can
self-assemble into closed lipid bilayer vesicles with a polyhedral arrangement of membrane proteins.
In particular, MPPNs formed from the mechanosensitive channel of small conductance (MscS) were
found to have the symmetry of the snub cube—a chiral, Archimedean solid—with one MscS protein
located at each one of the 24 vertices of the snub cube. It is currently unknown whether MPPNs
with heterogeneous protein composition maintain a high degree of symmetry. Inspired by previous
work on viral capsid symmetry, we employ here computational modeling to study the symmetry
of MPPNs with heterogeneous protein size. We focus on MPPNs formed from MscS proteins,
which can exist in closed or open conformational states with distinct sizes. We find that, as an
increasing number of closed-state MscS proteins transitions to the open conformational state of
MscS, the minimum-energy MscS arrangement in MPPNs follows a strikingly regular pattern, with
the dominant MPPN symmetry always being provided by the snub cube. Our results suggest that
MPPNs with heterogeneous protein size can be highly symmetric, with a well-defined polyhedral
ordering of membrane proteins of different sizes.

PACS numbers: 87.16.D-, 87.17.-d

I. INTRODUCTION

Self-assembly of proteins into ordered two-dimensional
(2D) structures provides a general design principle for bi-
ological systems [1–5]. Prominent examples of regular 2D
protein assemblies are viral capsid shells [4–8] and mem-
brane protein lattices in cell membranes [9–13]. Such
2D protein assemblies can, for instance, serve as protec-
tive barriers [7] and allow cooperative signaling [14]. The
symmetry of viral capsids is affected crucially by topolog-
ical constraints arising from the spherical surface shape
[1, 4–8]. In contrast, the basic architecture of membrane
protein lattices can often be understood from local in-
teractions between proteins [15–21]. Membrane protein
polyhedral nanoparticles (MPPNs) [22] provide an inter-
esting example of a system that combines some of the
key physical principles governing viral capsid and mem-
brane protein lattice symmetry. MPPNs are closed lipid
bilayer vesicles composed of lipids and membrane pro-
teins. Experiments on MPPNs [22, 23] formed from the
mechanosensitive channel of small conductance (MscS)
[24] found a dominant MPPN diameter ≈ 20 nm at the
bilayer midplane, with each MPPN containing 24 MscS
proteins arranged at the vertices of a snub cube. MPPNs
are thus—akin to membrane protein lattices—composed
of membrane proteins embedded in a lipid bilayer but
show—akin to viral capsids—polyhedral symmetry.

Experiments on MPPNs have so far [22, 23] focused
on MPPNs with homogeneous protein composition. A
mean-field model of MPPN self-assembly and shape
[25, 26] successfully predicts how the observed symmetry
and size of MPPNs with homogeneous protein composi-
tion emerge from the interplay of protein-induced lipid
bilayer deformations, topological defects in protein pack-

ing, and thermal effects. Intriguingly, the closed sur-
face of MPPNs permits chemical or voltage gradients
across the MPPN membrane, which could allow trap-
ping of membrane proteins in distinct, physiologically
relevant conformational states [22]. Such transitions in
protein conformational state are generally accompanied
by changes in protein size: for instance, mechanosensi-
tive ion channels often have a larger size, when viewed
perpendicularly to the cell membrane, in the open than
the closed state [27]. Provided MPPNs with heteroge-
neous protein size show an ordered arrangement of pro-
teins, MPPNs could be employed to elucidate membrane
protein structures stabilized by transmembrane gradients
[22]. It is, however, unknown how heterogeneity in pro-
tein size affects MPPN symmetry. The purpose of this
article is to explore the symmetry of MPPNs with hetero-
geneous protein size. We thereby use as our benchmark
previous experiments on MPPNs containing 24 MscS pro-
teins [22, 23], but allow for open-state as well as closed-
state MscS [28–30] with a fixed total number of proteins
in MPPNs.

In MPPNs with heterogeneous protein size not all pro-
teins are equivalent. We therefore do not use a mean-field
approach to study MPPNs with heterogeneous protein
size. Previous work in physical virology has shown that
the symmetry of viral capsids can be captured through
a minimal molecular model in which individual cap-
sid subunits are represented by Lennard-Jones particles
[4, 7, 31, 32]. For a given number of proteins per MPPN,
a similar approach can also be used to successfully pre-
dict the symmetry of MPPNs with homogeneous protein
size [25]. Here we generalize this approach to model the
symmetry of MPPNs with heterogeneous protein size. In
Sec. II we provide a detailed description of our modeling
approach, the simulated annealing Monte Carlo (MC)
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simulations we employ to obtain energetically favorable
MPPN configurations, and the methods used here for
quantifying MPPN symmetry. In Sec. III we survey the
minimum-energy protein configurations in MPPNs with
heterogeneous protein size. Based on previous experi-
ments on MPPNs composed of MscS proteins [22, 23], we
thereby focus on MPPNs with 24 proteins corresponding
to closed-state or open-state MscS proteins [28–30]. We
find that, as an increasing number of closed-state MscS
transitions to the open state, the minimum-energy MscS
arrangement in MPPNs follows a strikingly regular pat-
tern, with the dominant MPPN symmetry always being
provided by the snub cube. Finally, in Sec. IV we provide
a summary and conclusions of the work described here.

II. MODELING MPPN SYMMETRY

Proceeding in analogy to previous work on viral cap-
sid symmetry [4, 31], MPPN symmetry can be described
through a simple particle-based model [25] in which lipids
and MscS proteins are represented by differently-sized
disks on the surface of a sphere. In this section, we
first review this previous model of MPPN symmetry
[25], which we term the lipid-protein (LP) model (see
Sec. II A). In Sec. II B we formulate the composite par-
ticle (CP) model of MPPN symmetry, which is the pri-
mary focus of this article and which provides a simpli-
fied, coarse-grained representation of the LP model. In
the CP model, each membrane protein and its surround-
ing lipid environment are represented by a single disk on
the surface of a sphere. We use simulated annealing MC
simulations [33, 34] to find the minimum-energy states
implied by the LP and CP models. We summarize the
pertinent computational methods in Sec. II C. Finally, in
Sec. II D we describe the mathematical approaches used
here to quantify MPPN symmetry. Throughout this ar-
ticle, we denote the total number of MscS proteins per
MPPN by N and the number of open-state MscS proteins
per MPPN by no, such that the number of closed-state
MscS proteins per MPPN is given by N − no.

A. Lipid-protein (LP) model

As described previously [25], MPPN symmetry can
be captured by a minimal molecular model—the LP
model—in which proteins and lipids are represented by
distinct particles moving on the surface of a sphere. We
take this spherical surface to correspond to the outer
membrane leaflet of MPPNs [see Figs. 1(a) and 1(b)] and
denote its radius by R. In the LP model, lipids interact
with other lipids as well as proteins through Lennard-
Jones potentials,

V
(LP)
i,j (r) = εk

[( r̄i,j
r

)12

− 2
( r̄i,j
r

)6
]
, (1)

Figure 1. Minimum-energy MPPN configurations obtained
from simulated annealing MC simulations of the LP model in
Sec. II A with (a) 24 closed-state MscS proteins and (b) one
MscS in the open state and 23 closed-state MscS. The small
and large disks represent the lipids in a diC14:0 lipid bilayer
[35] and MscS proteins [29, 30], respectively, with closed-state
MscS corresponding to the large gray disks and open-state
MscS to the large yellow disk. The closed-state MscS, open-
state MscS, and lipid disk sizes are given by rc, ro, and rl,
respectively (see Sec. II A). (c,d) Minimum-energy MPPN
configurations obtained as in panels (a) and (b), respectively,
but using the coarse-grained CP model in Sec. II B. Parti-
cles corresponding to closed-state and open-state MscS are
illustrated by blue and red disks, respectively. For ease of
visualization, the radii of these disks were decreased by some
fixed scale factor relative to the disk radii implied by r′o and
r′c (see Sec. II B). The green lines in panels (a–d) are obtained
by connecting the centers of neighboring proteins. (e) 3D (left
panel) and net (right panel) representations of a snub cube.

where we use the notation (i, j) = (l, l), (l, c), and (l, o)
to denote interactions between lipids, lipids and closed-
state MscS, and lipids and open-state MscS, respectively,
the index k = 1, 2 denotes lipid-lipid and lipid-protein in-
teractions, r is the Euclidean particle separation in three-
dimensional (3D) space, and the r̄i,j denote the energet-
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ically most favorable particle separations implied by the
Lennard-Jones potentials in Eq. (1). MscS proteins are
not expected to aggregate in the absence of lipids, and
are therefore assumed here [25] to interact with other
MscS proteins only through hardcore steric constraints
so that all MscS-MscS separations r > rm,n, where the
indices (m,n) = (c, c), (c, o), and (o, o) denote pairs of
closed-state, closed-state and open-state, and open-state
MscS, respectively.

The parameters εk in Eq. (1) set the energy scale
of lipid-lipid and lipid-protein interactions, and can be
viewed as the energy penalty for exposing lipids or
membrane proteins to an aqueous environment. Ex-
periments and previous calculations [36–38] suggest [25]
ε1 ≈ 10 kBT and ε2 ≈ 20 kBT for the diC14:0 lipids and
MscS proteins used in experiments on MPPNs [22, 23],
where kB is Boltzmann’s constant and T is the room
temperature. We employ these values of εk through-
out this article. It was found previously [25, 39] that
the minimum-energy MPPN configurations implied by
the LP model are robust with respect to the values of
εk. Approximating the shapes of lipids and proteins by
disks that are tangent to the spherical MPPN surface,
the values of r̄i,j in Eq. (1) can be estimated from the
lipid radius rl, the closed-state MscS radius rc, and the
open-state MscS radius ro. Assuming that, in their ener-
getically most favorable configuration, lipid and protein
disks touch each other but do not overlap, we have

r̄i,j = 2R sin

[
1

2

(
arctan

ri
R

+ arctan
rj
R

)]
. (2)

Experiments on the diC14:0 lipids used for MPPNs
formed from MscS [22, 23] give rl ≈ 0.45 nm [35]
while structural studies of MscS yield rc ≈ 4.0 nm and
ro ≈ 4.5 nm [29, 30] for the outer membrane leaflet of
MPPNs, respectively.

In experiments on MPPNs formed from 24 MscS pro-
teins, each MPPN was found to be composed of ap-
proximately 1700 lipids [22], which corresponds to ap-
proximately 1200 lipids in the outer membrane leaflet of
MPPNs [39, 40]. To be consistent with these previous
experiments on MPPNs [22, 23], we therefore use here
a fixed lipid-protein ratio 1200 : 24. Note that lipids
are much more abundant in MPPNs than proteins. As
a result, while the protein configuration in MPPNs is of
primary interest, MC simulations of the LP model de-
vote considerable computational resources to updating
the lipid configuration, which can make it computation-
ally challenging to escape from local energy minima in
the particle configuration. This issue becomes particu-
larly significant for MPPNs with heterogeneous protein
composition. In Sec. II B we thus develop a simplified
model of MPPN symmetry.

B. Composite particle (CP) model

The LP model successfully predicts the dominant sym-
metry of MPPNs composed solely of closed-state MscS
proteins [25]. However, as pointed out in Sec. II A, the
explicit representation of lipids in the LP model leads to
difficulties when simulating MPPNs with heterogeneous
protein size. Indeed, most of the degrees of freedom in
the LP model correspond to lipid positions, which are not
of primary interest. In both the LP model [25] and ex-
periments [22], MscS proteins tend to be surrounded by
an annulus of lipids. This motivates us to formulate the
CP model, which provides a simplified, coarse-grained de-
scription of MPPN symmetry. In the CP model, we take
each particle on the MPPN surface to be composed of one
protein surrounded by an annulus of lipids [see Figs. 1(c)
and 1(d)]. Similarly as in Sec. II A, we let these particles
interact with each other via Lennard-Jones potentials,

V
(CP)
i,j (r) = ε

[(
r̄′i,j
r

)12

− 2

(
r̄′i,j
r

)6
]
, (3)

where the parameter ε sets the energy scale of particle
interactions and, in analogy to Sec. II A, we use the no-
tation (i, j) = (c, c), (c, o), and (o, o) to denote inter-
actions between particles corresponding to two closed-
state MscS, one closed- and one open-state MscS, and
two open-state MscS, respectively. We take here each
MscS protein to be surrounded by one layer of lipids. The
values of r̄′i,j in Eq. (3) are then fixed via an expression
analogous to Eq. (2), but using the effective particle radii
r′c = rc+2rl ≈ 4.9 nm and r′o = ro+2rl ≈ 5.4 nm instead
of rl, rc, or ro in Eq. (2). We use here ε = 20 kBT for the
energy scale in Eq. (3), but the minimum-energy MPPN
configurations implied by the CP model are independent
of the value of ε. From a practical standpoint, the central
advantage of the CP model over the LP model is that the
CP model focuses on the protein configuration, which is
what defines the MPPN symmetry, and does not allow
for any additional degrees of freedom.

C. Simulated annealing MC simulations

For a given set of values of (N,no), we employ simu-
lated annealing MC simulations [33, 41] with linear cool-
ing to numerically determine the minimum-energy con-
figurations associated with the LP and CP models de-
scribed in Secs. II A and II B [25]. For the LP model
with no = 0 we generate the initial conditions for our
MC simulations from a random, uniform distribution of
lipids and proteins on the MPPN surface with no overlap
of proteins. For the CP model with no = 0 we employ a
uniform, random distribution of CPs with no constraints
on the relative particle positions.

In our simulated annealing MC simulations [33, 41] of
the LP and CP models we randomly pick, in each MC
step, one of the particles on the MPPN surface as the
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target particle for this MC step. In particular, in the LP
model we first randomly decide whether to update the
position of a lipid or protein particle (with probabilities
0.8 and 0.2, respectively) and then pick with equal prob-
ability a lipid or protein particle among all lipid or pro-
tein particles on the MPPN surface. In the CP model we
choose the target particle with equal probability among
all particles. Next, we generate a unit vector with its
initial point at the MPPN center and a target point that
is chosen randomly from a uniform angular distribution.
We update the MPPN configuration by rotating the tar-
get particle about the axis defined by this unit vector
through an angular step size δθ = 0.005 rad. The MC
move is accepted with probability

p = min
(

1, e−∆G/kBTsys

)
, (4)

where Tsys is the system temperature and ∆G is the dif-
ference in MPPN energy between the MPPN configura-
tions after and before the attempted MC move. The max-
imum strength of the interaction potentials in Eqs. (1)
and (3) is set by ε2 and ε. As discussed in Secs. II A
and II B, we use here ε2 = ε = 20 kBT . In our simu-
lated annealing MC simulations of the LP and CP mod-
els we therefore evolve, for the first 105 MC steps, the
MPPN configurations using a system temperature that
is increased twenty-fold compared to the room temper-
ature, Tsys = 20T , so as to allow thermal fluctuations
to compete with the Lennard-Jones interactions consid-
ered here. To access minimum-energy MPPN configura-
tions we then linearly decrease Tsys from Tsys = 20T to
Tsys = 0 over 105 additional MC steps. Finally, we let
the system evolve for 104 further MC steps with Tsys = 0,
accepting only MC steps that result in a lower-energy
MPPN configuration.

Figure 2 illustrates the MC cooling procedure outlined
above for the CP model. In particular, Fig. 2 shows
the total MPPN energy as a function of MC steps for
five representative MC simulations of the CP model at
(N,no) = (24, 2). As illustrated in Fig. 2, our MC tra-
jectories show a rapid transition from the random initial
conditions to energetically more favorable protein config-
urations. Over the first 105 MC steps, we find large fluc-
tuations in the MPPN energy, with substantial overlap in
the energy fluctuations for the five representative MC tra-
jectories shown in Fig. 2. This illustrates that Tsys = 20T
is large enough for the system to explore different ener-
getically favorable protein configurations irrespective of
the initial conditions used. Once the linear cooling pro-
cess is started (after 105 MC steps), the MC trajectories
converge to the same minimum-energy MPPN configu-
ration with, within numerical accuracy, the same MPPN
energy. This convergence of different MC trajectories il-
lustrates that our cooling process is slow enough to allow
distinct MC trajectories to “find” the same energy min-
imum.

For both the LP and CP models, we repeat the above
simulated annealing MC procedure for a range of MPPN

Figure 2. Illustrative MC trajectories of the CP model for five
independent MC simulations showing the total MPPN energy
calculated from Eq. (3) versus number of MC steps. We set
(N,no) = (24, 2), start from random initial conditions, and
use our standard MC simulation procedure for the CP model
including swapping moves (see Sec. II C). The inset shows the
MPPN energy associated with the random initial conditions
used for the five independent MC simulations. In the main
panel, the curves leading to the first data point shown overlap
for the five independent MC trajectories.

radii R to find the optimal MPPN radius R∗ minimizing
the MPPN energy. The value of R∗ depends on (N,no)
as well as the model under consideration. For the LP
model with N = 24 we find, in agreement with previous
work [25, 39], R∗ ≈ 12.3 nm for no = 0 and R∗ ≈ 12.4 nm
for no = 1 with a snub cube symmetry of protein centers
[see Figs. 1(a) and 1(b)]. To obtain R∗ in the CP model
for N = 24 and no ≥ 1 we carry out simulated annealing
MC simulations first with the value of R = R∗ found
for no − 1, and then increase R to determine R∗ with a
resolution of 0.01 nm. For no = 0 we start our search for
R∗ at R = 11 nm. We thus find the optimal MPPN radii
12.06 nm / R∗ / 13.29 nm for 0 ≤ no ≤ 24. A simple
way to rationalize this increase in R∗ with no is to regard
the ratio of MPPN surface area to the area occupied by
the disks representing closed-state and open-state MscS
proteins as being approximately constant, which implies

(N − no + 1)πr′2c + (no − 1)πr′2o

4π [R∗(no − 1)]
2

≈ (N − no)πr′2c + noπr
′2
o

4π [R∗(no)]
2 (5)

for R∗ = R∗(no − 1) and R∗ = R∗(no). Using the
value R∗(0) = 12.06 nm found in our simulated anneal-
ing MC simulations, Eq. (5) allows us to recursively es-
timate R∗(no) for 1 ≤ no ≤ 24. Note that, as shown in

Fig. 3, Eq. (5) implies that (R∗)
2
, which is proportional

to the MPPN surface area, depends approximately lin-
early on no. Equation (5) yields the optimal MPPN radii
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Figure 3. Square of the optimal MPPN radius, (R∗)2, versus
number of open-state MscS proteins, n0, for N = 24 obtained
from simulated annealing MC simulations of the CP model
and the estimate in Eq. (5). For the MC simulations we used
our standard MC simulation procedure including swapping
moves (see Sec. II C).

12.11 nm / R∗ / 13.29 nm for 1 ≤ no ≤ 24, which is
in approximate agreement with the range of R∗(no) ob-
tained through our simulated annealing MC simulations
(Fig. 3). Proceeding as for N = 24, we find R∗ ≈ 7.84 nm
and R∗ ≈ 8.6 nm for the CP and LP models with
(N,no) = (12, 0), and R∗ ≈ 14.07 nm and R∗ ≈ 15.0 nm
for the CP and LP models with (N,no) = (32, 0), respec-
tively (see Sec. III). For both the LP and CP models, we
estimated R∗ on the basis of 50 independent simulated
annealing MC simulations for each MPPN radius consid-
ered, for which we used different random seeds. To de-
termine the lowest-energy MPPN configuration implied
by the LP model, we selected from the resulting set of
50 MPPN configurations at R = R∗ the MPPN configu-
ration with the lowest energy. To determine the lowest-
energy MPPN configuration implied by the CP model,
we carried out 200 further simulated annealing MC sim-
ulations at R = R∗, and selected from the resulting set
of 250 MPPN configurations at R = R∗ the MPPN con-
figuration with the lowest energy.

For simulations of the LP and CP models with no = 1
we use as initial conditions the lowest-energy MPPN con-
figurations obtained at no = 0 and randomly replace one
closed-state MscS protein by an open-state MscS pro-
tein. When using the CP model to simulate MPPNs
with no > 1 we take MscS proteins to gate sequentially,
i.e., we use as the initial conditions for MPPNs with
(N,no) and no > 1 the minimum-energy configurations
found for (N,no−1) and randomly replace a closed-state
MscS protein with an open-state MscS protein. Our sim-
ulations suggest that similar results for the minimum-
energy MPPN configurations are obtained if one does not
make this assumption. Here a technical difficulty arises
in that the simulated annealing MC procedure described

above fails to robustly identify the minimum-energy ar-
rangements of open-state MscS in MPPNs with no > 1.
To illustrate this issue we consider (N,no) = (24, 2), in
which case the arrangement of open-state MscS can be
characterized by the angle α between the vectors point-
ing from the MPPN center to the particles representing
open-state MscS [see inset in Fig. 4(a)]. The minimum-
energy MPPN configuration corresponds to a snub cube
arrangement of protein centers with the two open-state
MscS being located across the diagonal of one of the
square faces of the snub cube. This configuration corre-
sponds to α ≈ 1.12 rad [see Figs. 1(e) and 4(a)]. Plotting
the values of α associated with the final MPPN config-
urations obtained in our simulated annealing MC sim-
ulations, αfinal, versus the values of α associated with
the initial MPPN configurations, αinit, we find that our
simulated annealing MC simulations are, in general, un-
able to overcome the energy barriers for interchanging
closed-state and open-state MscS and, hence, fail to yield
the minimum-energy MPPN configuration [see Figs. 4(a)
and 4(b)].

To address the computational issue described above
and illustrated in Figs. 4(a) and 4(b), we augment our
simulated annealing MC simulations to allow for “swap-
ping moves,” in which the positions of closed-state and
open-state MscS are randomly interchanged. In partic-
ular, we allow the “newly gated” MscS protein to ran-
domly swap its position with a randomly selected closed-
state MscS protein every 2×103 MC steps. The swapping
move is accepted with a probability of the same form as
in Eq. (4), but with ∆G being given by the difference in
MPPN energy between the MPPN configurations after
and before the attempted swapping move. If this MC
move is not accepted, we let the system evolve as if it
was accepted and, after 100 further MC steps, again ap-
ply Eq. (4), where ∆G is now calculated with respect to
this evolved MPPN configuration. If, after this second
attempt, the swapping move is still rejected, we revert
the MPPN configuration to its state immediately prior
to the attempted swapping move, and attempt the next
swapping move after 2× 103 further MC steps.

The motivation behind the “staggered” swapping pro-
cedure described above is that, since open-state MscS
proteins have a larger size than closed-state MscS pro-
teins, swapping of closed-state and open-state MscS pro-
teins tends to strongly increase the MPPN energy un-
less the MPPN configuration is allowed to relax follow-
ing the swapping move. Spurious rejection of swapping
moves is thus avoided, speeding up our MC procedure.
Our choice to evolve the system over 100 MC steps fol-
lowing an attempted swapping move does not have any
deeper significance and, indeed, no such relaxation steps
are needed if the number of independent MC simulations
is large enough. We find that our results concerning
energetically optimal MPPN configurations in Sec. III
are robust with respect to the number of MC relaxation
steps used. Figure 4(c) shows that, upon implementa-
tion of the swapping procedure, our simulated annealing
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Figure 4. CP model with (N,no) = (24, 2). (a) Total MPPN
energy versus angular separation of open-state MscS in the
final MPPN configuration, α = αfinal (see inset), and (b)
αfinal versus corresponding initial angular separation of open-
state MscS, α = αinit. The results in panels (a) and (b) were
obtained through simulated annealing MC simulations with
no swapping moves (see Sec. II C). (c) αfinal versus αinit as in
panel (b) and using the same initial conditions as in panel (b)
but allowing for swapping moves. The dashed vertical and
horizontal lines show the values of α associated with perfect
snub cube symmetry. The solid lines in panels (b) and (c)
indicate αfinal = αinit. Each cross symbol represents the result
of one simulated annealing MC simulation. The insets show
enlarged versions of the indicated regions in the plots.

MC simulations robustly identify the minimum-energy
arrangement of open-state MscS proteins irrespective of
the initial conditions used, and only in rare instances fail
to produce the energetically preferred value of αfinal.

Our simulations suggest that if one allows any open-
state MscS protein—rather than just the newly opened
MscS protein—to engage in swapping moves one obtains
similar results for the minimum-energy MPPN configura-
tions as with the sequential gating procedure used here.
We find, however, that if any open-state MscS protein is
allowed to engage in swapping moves a given simulated
annealing MC simulation is less likely to successfully
identify the energetically preferred MPPN configuration,
making the sequential gating procedure employed here
more efficient from a computational perspective. Fur-
thermore, our simulations indicate that if one uses as the
“initial” MPPN state (N,no) = (24, 24)—rather than
(N,no) = (24, 0)—and sequentially closes open-state
MscS proteins—rather than opens closed-state MscS
proteins—one obtains similar minimum-energy MPPN
configurations as those described here (see Sec. III).

D. Quantifying MPPN symmetry

The most straightforward approach for quantifying the
symmetry of the MPPN configurations obtained through
our simulated annealing MC simulations of the LP and
CP models is to fit the protein centers to polyhedral ver-
tices. In particular, we proceed as in experiments on
MPPNs [22] and previous simulations of the LP model
[25] and compare the protein arrangements in MPPNs
with the symmetries implied by the 132 convex polyhedra
with regular faces [42]: the Platonic (P), Archimedean
(A), Catalan (C), and Johnson (J) solids. We denote
the Platonic, Archimedean, and Catalan solids using the
Conway polyhedron notation [43], and the Johnson solids
using the indexing scheme developed in Ref. [44]. For
each simulated MPPN configuration we quantify the fits
to the aforementioned 132 polyhedral symmetries by cal-
culating the fit error

E =

N∑
i=1

(~vi − ~v0i)
2 , (6)

where the vectors ~vi point from the MPPN center to
the positions of the protein centers on the MPPN sur-
face obtained in our simulated annealing MC simulations,
and the vectors ~v0i denote the corresponding positions
of the closest fitted polyhedron vertices. The latter are
obtained [22, 45] by freely moving, rotating, and rescal-
ing the polyhedron models until E is minimized for each
polyhedral symmetry considered. Note that this fitting
procedure yields for each MscS particle a closest poly-
hedron vertex. If the number of polyhedron vertices is
smaller than N , each polyhedron vertex is associated
with multiple MscS particles. In contrast, if the num-
ber of polyhedron vertices is greater than N , the fitting
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procedure used here determines the subset of polyhedron
vertices yielding the best fit to the MscS positions. We
also note that in our simulated annealing MC simula-
tions the preference of the minimum-energy MPPN con-
figuration for one chiral polyhedral symmetry over its
mirror-symmetric configuration results from the random
numbers and initial conditions used [25], and is therefore
not a model prediction.

In addition to Eq. (6), we characterize MPPN symme-
try through bond-orientational order (BOO) parameters.
BOO parameters have been employed to quantify local
ordering in liquids and glasses [46–48] and, more recently,
have been used to characterize the symmetry of protein
shells [4]. BOO parameters are rotational invariants and,
for MPPNs, can be constructed from the spherical har-
monics of the protein positions on the MPPN surface. In
particular, we employ here the BOO parameters Ql [46],

Ql =

(
4π

2l + 1

l∑
m=−l

|Qlm|2
)1/2

, (7)

where

Qlm =
1

N

N∑
i=1

Ylm(~vi), (8)

in which, as in Eq. (6), the vectors ~vi point from the
MPPN center to the centers of the proteins on the MPPN
surface obtained in our simulated annealing MC simula-
tions, and the Ylm(~vi) denote the corresponding spherical
harmonics. We take here l in Eqs. (7) and (8) to be even
so that Ql is independent of the direction of a particular
bond [46].

In Sec. III C we employ the BOO parameters Ql in
Eq. (7) to quantify how closely the MPPN configurations
implied by the CP model resemble a snub cube [Fig. 1(e)].
To this end, we first use Eq. (7) to calculate Ql for a per-
fect snub cube for even l starting from l = 0. We denote
the values of Ql associated with a perfect snub cube by

Q
(sc)
l . We note that these values of Q

(sc)
l are independent

of the chirality of the snub cube. The relative difference
between the Ql associated with a simulated MPPN con-

figuration and Q
(sc)
l can then be expressed in the form

Q̂l =

∣∣∣∣∣1− Ql

Q
(sc)
l

∣∣∣∣∣ . (9)

We find that for even l > 0 the first non-zero Q
(sc)
l occurs

at l = 4, and Q
(sc)
l = 0.0525 and 0.0412 for l = 4 and

l = 6. In Sec. III C we use Q̂4 and Q̂6 to characterize the
symmetry of MPPNs with N = 24.

III. MINIMUM-ENERGY MPPN
CONFIGURATIONS

In this section we discuss the results of our simulated
annealing MC simulations of the LP and CP models of

MPPN symmetry. We first compare the MPPN symme-
tries predicted by the LP and CP models (see Sec. III A).
We then use the CP model to survey the minimum-
energy MscS configurations in MPPNs with N = 24 and
0 6 no 6 24. We thereby first consider qualitative fea-
tures of the protein arrangement in MPPNs with het-
erogeneous protein size (see Sec. III B) and then quantify
the symmetry of MPPNs with heterogeneous protein size
(see Sec. III C).

A. Comparison of LP and CP models

As discussed in Sec. II, we consider here two models
of MPPN symmetry: the LP model (see Sec. II A) and
the CP model (see Sec. II B). The LP model separately
accounts for the lipids and proteins in MPPNs. In con-
trast, the CP model focuses on the protein configurations
in MPPNs and does not explicitly consider the arrange-
ment of lipids in MPPNs. Table I shows the polyhedral
symmetries obtained through simulated annealing MC
simulations of the LP and CP models (see Sec. II C) for
N = 12, 24, and 32 with no = 0. We fitted the simu-
lated MPPN configurations to polyhedral symmetries as
described in Sec. II D. For both the LP and CP models
we find the minimum-energy MPPNs to have the sym-
metry of the icosahedron for N = 12 [see Fig. 5(a)], the
snub cube for N = 24 [see Fig. 1(e)], and the pentakis
dodecahedron for N = 32 [see Fig. 5(b)]. For N = 12
and N = 32, the LP and CP models give different results
for the 2nd-best polyhedral fits to the minimum-energy
MPPNs, but identical results for N = 24.

The icosahedron is a Platonic solid with 12 vertices,

Best polyhedral fit 2nd-best polyhedral fit

N Model Symmetry E [nm2] Symmetry E [nm2]

12 CP I 1.50 × 10−2 J60 6.07 × 10

12 LP I 4.18 tO 1.21 × 10

24 CP sC (dextro) 4.70 × 10−2 gD (laevo) 3.62 × 10

24 LP sC (dextro) 2.96 × 10 gD (laevo) 6.60 × 10

32 CP kD 1.06 × 10 jD 1.95 × 10

32 LP kD 7.27 × 10 mD 7.78 × 10

Table I. Symmetries and associated fit errors E in Eq. (6) of
the best two polyhedral fits to the minimum-energy MPPN
configurations implied by the LP and CP models of MPPN
symmetry for N = 12, 24, and 32 with no = 0. All re-
sults were obtained through simulated annealing MC simula-
tions (see Sec. II C). We denote [43, 44] the icosahedron by I,
the snub cube by sC, the pentakis dodecahedron by kD, the
metabiaugmented dodecahedron by J60, the truncated octa-
hedron by tO, the pentagonal hexecontahedron by gD, the
rhombic triacontahedron by jD, and the disdyakis triaconta-
hedron by mD. We proceeded as described in Sec. II D when
searching for optimal polyhedral fits. The polyhedral chiral-
ities result from the random numbers and initial conditions
used and are not model predictions.
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Figure 5. 3D representations of (a) the icosahedron (I) and
(b) the pentakis dodecahedron (kD) in Table I.

while the pentakis dodecahedron is a lower-symmetric
Catalan solid with 32 vertices. Experiments on MPPNs
formed from MscS [22, 23] yielded MPPNs with N = 24
and snub cube symmetry as the dominant MPPN sym-
metry, which we also find through our simulated anneal-
ing MC simulations of the LP and CP models. We note
that the snub cube is a chiral polyhedron. The right-
handed (dextro) and left-handed (laevo) chiralities of the
snub cube can be constructed by translating outward the
faces of a cube, and rotating them clockwise (dextro) or
counter-clockwise (laevo) as viewed from the polyhedron
center until the polyhedral shell can be closed up with
equilateral triangles. As noted in Sec. II D, the preference
of the minimum-energy MPPN configuration for one chi-
ral polyhedral symmetry over its mirror-symmetric con-
figuration results from the random numbers and initial
conditions used [25] for our simulated annealing MC sim-
ulations, and is therefore not a model prediction.

The polyhedra in Table I that provide the best fits to
the simulated MPPN configurations all have N vertices.
Interestingly, the 2nd-best polyhedral fits in Table I do
not necessarily correspond to polyhedra with the same
number of vertices as the number of proteins in MPPNs.
For instance, the 2nd-best polyhedral fits in Table I for
(N,no) = (12, 0) are provided by the metabiaugmented
dodecahedron (J60) and the truncated octahedron (tO),
which have 22 and 24 vertices, respectively, and not by
the truncated tetrahedron or the cuboctahedron, which
both have 12 vertices. While we considered in Table I
MPPNs with N = 12, 24, and 32, we find similar agree-
ment of the dominant symmetries predicted by the LP
and CP models for other values of N . Furthermore, we
checked whether the LP and CP models yield identical
results for the dominant MPPN symmetry for MPPNs
with heterogeneous protein size. In particular, we find
that the LP and CP models both yield the snub cube as
the dominant symmetry of MPPNs with (N,no) = (24, 1)
[Figs. 1(b) and 1(d)]. As discussed in Secs. II A and II B,
the CP model is conceptually simpler than the LP model
and avoids some of the computational difficulties associ-
ated with finding the minimum-energy MPPN configura-

tions in the LP model. In the remainder of this article
we therefore focus on the CP model.

B. Protein arrangement in MPPNs with
heterogeneous protein size

To determine the minimum-energy arrangement of
MscS proteins in MPPNs [22, 23] with heterogeneous
MscS size, we carried out simulated annealing MC sim-
ulations of the CP model for N = 24 and 0 6 no 6 24.
Independent of the value of no considered, we find that
the minimum-energy MPPNs have the symmetry of a
snub cube with one (closed-state or open-state) MscS
protein being located at each one of the 24 vertices of
the snub cube (see also Sec. III C). We find that, as no
is increased from no = 0, the minimum-energy MscS ar-
rangement in MPPNs follows a strikingly regular pattern
(see Figs. 6 and 7). To specify, at each no, the minimum-
energy MscS arrangement obtained in our simulated an-
nealing MC simulations, we label in Figs. 6 and 7 the
vertices of the snub cube by no to denote the position of
the nth

o open-state MscS protein. If there is more than
one equivalent choice for the position of the nth

o open-
state MscS protein we introduce a subscript specifying
the degree of degeneracy. In Fig. 6 we show the pat-
tern of open-state MscS proteins found in our simulated
annealing MC simulations. In Fig. 7 we provide 3D il-
lustrations of selected MPPN configurations in Fig. 6,
and in Fig. 8 we show some of the MPPN configurations
corresponding to Fig. 6.

To understand the protein arrangement in MPPNs
with N = 24 and heterogeneous protein size it is in-
structive to briefly recall the symmetry properties of
the (undeformed) snub cube [49]. The snub cube is an
Archimedean solid with 24 vertices and 38 faces corre-
sponding to six squares, none of which share a vertex,
and 32 equilateral triangles [Fig 1(e)]. All vertices in
the snub cube are equivalent. The six square faces of
the snub cube are associated with six four-fold rotational
symmetry axes. Eight of the 32 triangular faces of the
snub cube are associated with three-fold rotational sym-
metry axes, while 24 of the 32 triangular faces of the
snub cube are associated with two-fold rotational sym-
metry axes. Figure 7(a) provides an illustration of the
symmetry properties of the snub cube.

For no = 1, the single open-state MscS protein can
equivalently occupy each one of the 24 vertices of the
snub cube. We therefore have a 24-fold degeneracy in
the position of the first open-state MscS protein (Fig. 6).
In contrast, once the position of the first open-state MscS
protein has been set, the energetically most favorable po-
sition of the 2nd open-state MscS protein is fixed (Fig. 6):
The 2nd open-state MscS protein is arranged so that it
is located diagonally across the square-shaped face of the
snub cube from the first open-state MscS protein [see
Fig. 8(a)]. In other words, the two open-state MscS pro-
teins form a next-nearest-neighbor pair across a square
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Figure 6. Minimum-energy protein arrangements in MPPNs
implied by the CP model of MPPN symmetry for N = 24.
The numbers labeling the vertices denote the positions of the
nth
o open-state MscS protein, with subscripts denoting the de-

gree of degeneracy in placing the nth
o open-state MscS protein.

We omit this subscript if the position of the nth
o open-state

MscS protein is uniquely determined by the protein arrange-
ment in MPPNs with (no−1) open-state MscS proteins. The
degeneracy in placing open-state MscS proteins follows from
the symmetry of the snub cube. The faces are colored ac-
cording to their symmetry properties with red (gray), yellow
(light gray), and blue (dark gray) colors indicating two-fold,
three-fold, and four-fold symmetry axes, respectively (see also
Fig. 7).

face of the snub cube. As a result, the symmetry axis
associated with this square face is changed from a four-
fold symmetry axis (for a perfect snub cube) to an axis
with approximate two-fold rotational symmetry. The 3rd

open-state MscS protein forms a nearest-neighbor pair
across a triangular face of the snub cube with either one
of the two other open-state MscS proteins so as to trace
out a “zig-zag” pattern (Fig. 6). The two equivalent
nearest-neighbor “bonds” associated with the 3rd open-
state MscS protein intersect two-fold symmetry axes of
the snub cube [see Fig. 7(b)]. The 4th open-state MscS
protein is again located diagonally across a square face
of the snub cube from an open-state MscS protein [see
Fig. 8(b)]. Hence, its position is uniquely determined by
the position of the 3rd open-state MscS protein (Fig. 6).

The aforementioned zig-zag pattern of alternating
next-nearest-neighbor bonds of open-state MscS proteins
across the square faces of the snub cube and nearest-
neighbor bonds intersecting two-fold symmetry axes of
the snub cube continues for 0 ≤ no 6 8 (Fig. 6). At
no = 8, the eight open-state MscS proteins thus con-
nect up to form a closed loop [see Fig. 7(c)]. As a re-
sult, two square faces of the snub cube, located at oppo-
site sides of the snub cube, are left devoid of any open-
state MscS proteins [see the lower panel in Fig. 8(c)]. At
no = 9, one of the eight vertices associated with these

Figure 7. 3D illustrations of selected minimum-energy protein
arrangements in Fig. 6 for (a) no = 0 or no = 24 (undeformed
snub cube), (b) no = 3, (c) no = 12, and (d) no = 16. Follow-
ing the labeling scheme in Fig. 6, the faces of the snub cube
are colored according to their symmetry properties. In panel
(a), the locations of some of the two-, three-, and four-fold
symmetry axes of the snub cube are indicated by arrow, tri-
angle, and square symbols, respectively, with the symmetry
axes perpendicularly intersecting these symbols at their geo-
metric centers. In panels (b), (c), and (d), vertices of the snub
cube occupied by open-state MscS proteins are indicated by
disks. In panel (b), the two geometrically equivalent choices
for placing the 3rd open-state MscS protein are labeled as 3
and 3′, respectively. In panels (c) and (d) we highlight the po-
sitions of the open-state MscS proteins occupying the “front”
and “back” square faces of the snub cube through increased
disk sizes with no labels (see main text), and label the posi-
tions of selected open-state MscS proteins with no > 8 by no.
In panel (c), the closed zig-zag loop formed by the first eight
open-state MscS proteins is indicated by small (orange) disks,
while large (green) disks indicate the nearest-neighbor pairs
formed by the 9th to 12th open-state MscS proteins with the
open-state MscS proteins occupying the front and back square
faces of the snub cube. In panel (d), the white lines show the
closed zig-zag loop of closed-state MscS proteins formed at
no = 16. Portions of the loops in panels (c) and (d) located
at the back of the snub cube are indicated by dashed curves.

two square faces is occupied by the 9th open-state MscS
protein, resulting in a degeneracy of eight for placing the
9th open-state MscS protein (Fig. 6). Note that the 9th

open-state MscS protein forms a nearest-neighbor pair
with some other open-state MscS protein located across
a polyhedral ridge separating triangular faces associated
with two- and three-fold symmetry axes [Fig. 7(c)].

The 10th open-state MscS protein forms a next-
nearest-neighbor bond across a square face of the snub
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Figure 8. 3D representations of the minimum-energy MPPN configurations implied by the CP model of MPPN symmetry for
N = 24 and (a) no = 2, (b) no = 4, (c) no = 8, (d) no = 12, and (e) no = 16 (see also Fig. 6). As in Fig. 1(d), closed-state and
open-state MscS proteins are represented by small (blue) and large (red) disks, respectively, with the radii of these disks being
decreased by some fixed scale factor relative to the disk radii implied by r′o and r′c. For clarity, polyhedral ridges enclosing
(distorted) square faces of the snub cube are shown in bright green (light gray), while polyhedral ridges associated only with
triangular faces of the snub cube are shown in dark green (dark gray).

cube with the 9th open-state MscS protein and, hence,
has a position that is uniquely determined by the posi-
tion of the 9th open-state MscS protein (Fig. 6). The
polyhedral geometry of the snub cube mandates that,
similarly as the 9th open-state MscS protein, the 10th

open-state MscS protein forms a nearest-neighbor bond
with some other open-state MscS protein located across
a polyhedral ridge separating triangular faces with two-
and three-fold symmetry axes [Fig. 7(c)]. As a result, the
square face of the snub cube containing the 9th and 10th

open-state MscS proteins connects two square faces of
the snub cube, each containing two open-state MscS pro-
teins, that are part of the zig-zag loop formed at no = 8.
Following Fig. 7(c), we denote the latter two faces as the
“front” and “back” faces of the zig-zag loop formed at
no = 8, respectively.

At no = 11, the last remaining square face of the snub
cube containing only closed-state MscS proteins starts
to be occupied by open-state MscS proteins [Figs. 6 and
7(c)]. Two vertices on that square face are—via open-
state MscS proteins that are part of the front and back
faces of the zig-zag loop of open-state MscS proteins
formed at no = 8 in Fig. 7(c)—next-next-nearest neigh-
bors of the 9th and 10th open-state MscS proteins. We
find that either one of these two vertices is occupied
by the 11th open-state MscS protein. Hence, there is
a two-fold degeneracy in the position of the 11th open-
state MscS protein. The 12th open-state MscS protein
is again located diagonally across a square face of the
snub cube from an open-state MscS protein, and its po-
sition is therefore uniquely determined by the position
of the 11th open-state MscS protein [Figs. 6 and 7(c)].
Thus, the square face occupied by open-state MscS pro-

teins at no = 11 and no = 12 connects, similarly as the
square face containing the 9th and 10th open-state MscS
proteins, the front and back faces of the zig-zag loop of
open-state MscS proteins formed at no = 8 in Fig. 7(c).
At no = 12, all square faces of the snub cube contain
two open-state MscS proteins, which form next-nearest-
neighbor pairs across the diagonals of the square faces
[see Figs. 7(c) and 8(d)].

As no is increased beyond no = 12, open-state MscS
proteins start to form nearest-neighbor bonds on the
square faces of the snub cube. We find that first the front
and back faces of the zig-zag loop of open-state MscS
proteins formed at no = 8 in Fig. 7(c) are fully occupied
by open-state MscS proteins. In particular, at no = 13,
there are four geometrically equivalent choices for the
location of the 13th open-state MscS protein, resulting
in a four-fold degeneracy for placing the 13th open-state
MscS protein (Fig. 6). The 14th open-state MscS pro-
tein is located diagonally across a square face of the snub
cube from an open-state MscS protein, and its position
is therefore uniquely determined by the position of the
13th open-state MscS protein (Fig. 6). Similarly, we have
a two-fold degeneracy in the protein position at no = 15,
with the position of the 16th open-state MscS protein
being determined uniquely by the position of the 15th

open-state MscS protein (Fig. 6).

Note that, at no = 16, there are four geometrically
equivalent square faces of the snub cube containing two
closed-state MscS proteins each. Connecting the vertices
associated with these closed-state MscS proteins, we ob-
tain a closed zig-zag loop with similar geometric prop-
erties as the loop of open-state MscS proteins found at
no = 8 [see Fig. 7(d)]. As no is increased beyond no = 16,
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the vertices of this loop are occupied by open-state MscS
proteins following a pattern that is analogous to that
obtained for 0 ≤ no ≤ 8 (Fig. 6). We find an eight-
fold degeneracy in the protein position at no = 17 and
two-fold degeneracies in the protein position at no = 19,
21, and 23, respectively, with the positions of open-state
MscS proteins at even no being determined uniquely by
the positions of open-state MscS proteins at odd no. At
no = 24, all vertices of the snub cube are occupied by
open-state MscS proteins.

C. Quantifying the symmetry of MPPNs with
heterogeneous protein size

In this section we employ the mathematical approaches
described in Sec. II D to quantify the symmetry of
MPPNs with heterogeneous protein size. To determine
how closely the protein configurations in MPPNs follow
polyhedral symmetry, it is convenient to introduce, based
on the fit error E in Eq. (6), the dimensionless root-mean-
square fit error

σ̂ =
1

λ

√
E

N
(10)

with λ = 10−2r′c as the characteristic length scale. In
Table II we list σ̂ in Eq. (10) for the best two polyhe-
dral fits for MPPNs with N = 24 and 0 6 no 6 24. We
calculated these values of σ̂ from the minimum-energy
MPPN configurations obtained in our simulated anneal-
ing MC simulations of the CP model. As already noted
in Sec. III B we find that, independent of the value of
no considered, the best polyhedral fits in Table II always
correspond to snub cube (sC) symmetry.

Figure 9 shows σ̂ in Table II versus no for the best
polyhedral fits. We also provide in Fig. 9 the range in
σ̂ associated with the ten lowest-energy MPPN configu-
rations obtained, at each no, in our simulated annealing
MC simulations, as well as the average σ̂ associated with
these ten lowest-energy MPPN configurations. Each one
of these ten lowest-energy MPPN configurations corre-
sponds to one independent MC trajectory. At each no,
the best polyhedral fits to the ten lowest-energy MPPN
configurations in Fig. 9 all correspond to snub cube sym-
metry. Note from Fig. 9 that the root-mean-square fit
error in Eq. (10) is smallest for MPPNs with homoge-
neous protein composition (no = 0 and no = 24). Simi-
larly, comparison of fits of the simulated MPPN configu-
rations to the snub cube with fits to competing polyhe-
dral symmetries shows that the snub cube symmetry is
most dominant for homogeneous or nearly homogeneous
protein compositions (see Table II).

Starting from no = 0, the increase in σ̂ with no in
Fig. 9 and Table II can be understood by noting that
for MPPNs with heterogeneous protein composition the
polyhedral symmetry must deform so as to accommodate
proteins of different size. For instance, the square faces

Best polyhedral fit 2nd-best polyhedral fit

no Symmetry σ̂ Symmetry σ̂/10

0 sC (dextro) 1.13 gD (laevo) 3.06

1 sC (laevo) 3.16 eC 3.66

2 sC (dextro) 5.52 gD (laevo) 3.31

3 sC (laevo) 7.21 gD (dextro) 3.22

4 sC (dextro) 8.31 gD (dextro) 3.24

5 sC (laevo) 8.93 gD (dextro) 3.34

6 sC (laevo) 1.08 × 10 gD (dextro) 3.04

7 sC (dextro) 1.21 × 10 gD (laevo) 3.03

8 sC (dextro) 1.44 × 10 sC (laevo) 3.15

9 sC (laevo) 1.37 × 10 sC (dextro) 3.25

10 sC (laevo) 1.29 × 10 gD (laevo) 3.67

11 sC (laevo) 1.24 × 10 gD (laevo) 3.35

12 sC (laevo) 1.20 × 10 sC (dextro) 3.58

13 sC (dextro) 1.23 × 10 J45 (dextro) 3.56

14 sC (laevo) 1.30 × 10 gD (dextro) 3.4

15 sC (dextro) 1.30 × 10 gD (laevo) 3.14

16 sC (laevo) 1.29 × 10 J45 (laevo) 3.52

17 sC (dextro) 1.18 × 10 gD (laevo) 3.21

18 sC (laevo) 1.07 × 10 gD (dextro) 3.15

19 sC (dextro) 9.23 gD (laevo) 3.24

20 sC (laevo) 8.23 gD (laevo) 3.49

21 sC (dextro) 7.04 gD (dextro) 3.48

22 sC (laevo) 6.16 gD (dextro) 3.42

23 sC (laevo) 3.47 gD (dextro) 3.75

24 sC (dextro) 1.08 gD (dextro) 3.54

Table II. Symmetries and associated root-mean-square fit er-
rors σ̂ in Eq. (10) of the best two polyhedral fits to the
minimum-energy MPPN configurations implied by the CP
model of MPPN symmetry for N = 24 and the indicated
values of no. All results were obtained through simulated
annealing MC simulations (see Sec. II C). We use the same
notation for polyhedral symmetries as in Table I [43, 44] with,
in particular, gD corresponding to the pentagonal hexeconta-
hedron, and denote the rhombicuboctahedron by eC and the
gyroelongated square bicupola by J45. We proceeded as de-
scribed in Sec. II D when searching for optimal polyhedral fits.
The polyhedral chiralities result from the random numbers
and initial conditions used and are not model predictions.

of the snub cube in Fig. 8 containing a mixture of closed-
state and open-state MscS proteins are seen to deviate
from a perfect square. We find a maximum in σ̂ in Fig. 9
at no = 8. As already noted in Sec. III B, no = 8 yields an
MPPN configuration with four deformed square faces of
the snub cube forming a closed loop, which “flattens” the
polyhedron and increases the fit error [Figs. 6 and 8(c)].
An analogous protein configuration is obtained at no =
16 [Figs. 6 and 8(e)], which may explain the large values
of σ̂ found in our simulations in the vicinity of no = 16.
A (weak) local minimum occurs in Fig. 9 at no = 12.
As noted in Sec. III B, at no = 12 all square faces of
the snub cube are composed of two closed-state and two
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Figure 9. Root-mean-square fit errors σ̂ in Eq. (10) of the best
polyhedral fit (snub cube symmetry) to the minimum-energy
MPPN configurations implied by the CP model of MPPN
symmetry for N = 24 versus number of open-state MscS pro-
teins, no [blue (dark gray) data points]. For each no, we also
show the range in σ̂ associated with the ten lowest-energy
MPPN configurations obtained in our simulated annealing
MC simulations, which all correspond to snub cube symme-
try. This range in σ̂ is indicated by bars, with the red (light
gray) data points showing the average σ̂ for the ten lowest-
energy MPPN configurations obtained in our simulated an-
nealing MC simulations. See also Table II.

open-state MscS proteins arranged in the same pattern
[Figs. 6 and 8(d)], which may explain the relatively small
value of σ̂ at no = 12.

In addition to the dimensionless root-mean-square fit
error in Eq. (10), the BOO parameters Ql in Eq. (7)
provide a mathematical approach for quantifying MPPN
symmetry. In the case of the snub cube, the first two non-
zero values of the BOO parameters Ql occur at l = 4 and
l = 6 (see Sec. II D). In Figs. 10(a) and 10(b) we plot

Q̂l in Eq. (9), which corresponds to the relative difference
between the values of Ql associated with a (perfect) snub
cube and the minimum-energy MPPN configurations im-
plied by the CP model, for 0 6 no 6 24 and l = 4 and

l = 6, respectively. The parameters Q̂4,6 do not depend
on the chirality of the snub cube. For completeness, we

also show in Fig. 10 the range in Q̂4,6 associated with
the ten lowest-energy MPPN configurations obtained, at
each no, in our simulated annealing MC simulations, as

well as the corresponding average values of Q̂4,6. With

the definition of Q̂l in Eq. (9), smaller values of Q̂l indi-
cate a closer resemblance of the protein arrangement in
MPPNs to a snub cube. Consistent with the results in
Fig. 9, Fig. 10 shows local peaks at no = 8 and no = 16,
as well as a local minimum at no = 12. Similarly as for
Fig. 9, these features of Fig. 10 can be understood by
noting that the protein arrangements found for no = 8
and no = 16 correspond to deformed square faces of the

Figure 10. Relative difference in BOO parameters between a
snub cube and the MPPN configurations implied by the CP

model, Q̂l, versus number of open-state MscS, no, at (a) order
l = 4 and (b) order l = 6 in Eq. (9). For each no, we show

the range in Q̂l associated with the ten lowest-energy MPPN
configurations obtained in our simulated annealing MC sim-
ulations, which all correspond to snub cube symmetry. This

range in Q̂l is indicated by bars, with the red (light gray)

data points showing the average Q̂l for the ten lowest-energy
MPPN configurations and the blue (dark gray) data points

showing the Q̂l associated with the minimum-energy MPPN
configurations. The plots in panels (a) and (b) are obtained
from the data for low-energy MPPN configurations also used
in Fig. 9.

snub cube forming closed loops [Figs. 6, 8(c), and 8(e)],
while for no = 12 all square faces of the snub cube are oc-
cupied by two closed-state and two open-state MscS pro-

teins [Figs. 6 and 8(d)]. Note that the Q̂4-versus-no curve
in Fig. 10(a) shows two peaks at no = 8 and no = 16 of

approximately equal height. In contrast, the Q̂6-versus-
no curve in Fig. 10(b) shows a more pronounced peak
at no = 8 than at no = 16. At a qualitative level, the

Q̂6-versus-no curve in Fig. 10(b) thus resembles the σ̂-
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versus-no curve in Fig. 9.

IV. SUMMARY AND CONCLUSIONS

We have used here computational modeling to explore
the symmetry of MPPNs with heterogeneous protein
size. Our computational modeling approach is closely
related to previous models describing the symmetry of
viral capsids [4, 7, 31, 32]. Although, from an experi-
mental perspective, MPPNs and viral capsids are quite
distinct—with proteins in MPPNs being embedded in a
lipid bilayer environment but viral capsids being com-
posed solely of proteins—our results suggest that MPPN
symmetry and viral capsid symmetry are governed by
similar physical principles [25]. Analogous modeling ap-
proaches may also be applicable to other kinds of systems
forming polyhedral shells [1–5]. Motivated by previous
experimental studies of MPPNs [22, 23], we have focused
here on MPPNs composed of 24 closed-state or open-
state MscS proteins [28–30]. However, our modeling ap-
proach is easily generalized to other types of MPPNs.

An important distinction between previous studies of
protein shells [1, 4, 5, 7, 31, 32] and the model of MPPN
symmetry developed here is that, in the former case, a
key question concerns the symmetry of protein shells as a
function of the number of protein subunits. In contrast,
a central question for MPPNs is how the protein arrange-
ment in MPPNs changes after some proteins in MPPNs
transition to a different conformational state following,
for instance, osmotic shock, while leaving the membrane
intact [22, 23]. We have therefore focused here on MPPNs
containing a fixed number of proteins. In the spirit of
previous work on the symmetry of closed protein shells
[4, 7, 31, 32], we have employed highly idealized models
of MPPN symmetry. Our modeling approach could be
extended in various ways to allow more detailed predic-
tions. For instance, we assumed here similar interactions
between closed-state and open-state MscS proteins, with
the only difference in their interaction potentials stem-
ming from the distinct sizes of closed-state and open-
state MscS proteins [28–30]. In general, different confor-
mational states of a given membrane protein or distinct
kinds of membrane proteins may show distinct interac-
tions in MPPNs. Furthermore, we assumed here that the
particles representing membrane proteins (and lipids) are
confined to the surface of a sphere. While this assump-
tion is justified for the observed MPPNs formed from
MscS proteins [22, 23], it may not hold in general. For
instance, for large enough protein numbers MPPNs may,
in analogy to protein shells [50, 51], buckle into faceted
shapes.

A key outcome of our study is that MPPNs with het-
erogeneous protein size can be highly symmetric, with
a well-defined polyhedral (snub cube) ordering of mem-
brane proteins of different sizes. MPPNs have been pro-
posed [22] as a means for the structural analysis of mem-
brane proteins in the presence of physiologically relevant

transmembrane gradients. Such transmembrane gradi-
ents are expected to result in heterogeneous protein size,
with different proteins being trapped in different confor-
mational states, while leaving the membrane intact. Our
finding that MPPNs with heterogeneous protein size can
be highly symmetric suggests that it may be feasible to
utilize MPPNs for structural studies [22, 52] even if not
all membrane proteins in MPPNs are trapped in the same
conformational state. In particular, for MPPNs formed
from 24 MscS proteins [22, 23] we predict that the first
eight gated (open-state) MscS proteins form a closed zig-
zag loop, resulting in two square faces of the snub cube
that are devoid of any open-state MscS proteins (Figs. 6–
8). For more than eight open-state MscS proteins, these
two square faces are gradually filled with open-state MscS
proteins until, for twelve open-state MscS proteins, all
square faces of the snub are occupied by two open-state
MscS proteins located diagonally across the square faces
of the snub cube. As the number of open-state MscS
proteins is increased further, the square faces of the snub
cube that connect—via bonds between open-state MscS
proteins—the square faces of the snub cube that were
not part of the original closed zig-zag loop of open-state
MscS proteins are filled with open-state MscS proteins
until, for more than sixteen open-state MscS proteins,
the remaining vertices of the snub cube are populated by
open-state MscS proteins.

In addition to their potential use for structural studies,
MPPNs have also been proposed as a novel vehicle for
targeted drug delivery with precisely controlled release
mechanisms [22]. To this end, it is desirable to arrive
at a quantitative understanding of the physical mecha-
nisms governing MPPN self-assembly, shape, and stabil-
ity for arbitrary protein compositions. The self-assembly,
symmetry, and size of MPPNs with homogeneous protein
composition [22, 23] can be understood based on a simple
mean-field model combining protein-induced lipid bilayer
deformations, topological defects in protein packing, and
thermal effects [25, 26]. This mean-field approach can-
not be directly applied to MPPNs with heterogeneous
protein composition, because in MPPNs with heteroge-
neous protein composition not all proteins are equivalent.
However, the well-defined and regular protein arrange-
ments in MPPNs with heterogeneous protein size found
here suggest that it may be practicable to generalize the
theory of MPPNs [25, 26] to allow for heterogeneous pro-
tein compositions. Such a generalized theory of MPPNs
may allow prediction of how MPPN self-assembly must
be directed to produce MPPNs with given release mech-
anisms [22].
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