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Gene drives offer unprecedented control over the fate of natural ecosystems by leveraging non-
Mendelian inheritance mechanisms to proliferate synthetic genes across wild populations. However,
these benefits are offset by a need to avoid the potentially disastrous consequences of unintended
ecological interactions. The efficacy of many gene-editing drives has been brought into question due
to predictions that they will inevitably be thwarted by the emergence of drive-resistant mutations,
but these predictions derive largely from models of large or infinite populations that cannot be driven
to extinction faster than mutations can fixate. To address this issue, we characterize the impact
of a simple, meiotic gene drive on a small, homeostatic population whose genotypic composition
may vary due to the stochasticity inherent in natural mating events (e.g., partner choice, number of
offspring) or the genetic inheritance process (e.g., mutation rate, gene drive fitness). To determine
whether the ultimate genotypic fate of such a population is sensitive to such stochastic fluctuations,
we compare the results of two dynamical models: a deterministic model that attempts to predict how
the genetics of an average population evolve over successive generations, and an agent-based model
that examines how stable these predictions are to fluctuations. We find that, even on average, our
stochastic model makes qualitatively distinct predictions from those of the deterministic model, and
we identify the source of these discrepancies as a dynamic instability that arises at short times, when
genetic diversity is maximized as a consequence of the gene drive’s rapid proliferation. While we
ultimately conclude that extinction can only beat out the fixation of drive-resistant mutations over
a limited region of parameter space, the reason for this is more complex than previously understood,
which could open new avenues for engineered gene drives to circumvent this weakness.

I. INTRODUCTION

It has often been said that “history is written by the
victors,” and nowhere is that more true than in the state
of nature itself, where natural selection drives unfavor-
able genetic alleles and the organisms that possess them
to extinction, leaving behind only the genotypic win-
ners to inscribe the chronicle of their species’ survival–
their genome–in the universal language of paired nucleic
acids. Gene drive technologies have armed synthetic bi-
ologists with the capability of subverting this paradigm
by enabling alleles with a significant phenotypic fitness
cost to selectively propagate across a population [1]. Al-
though many mechanisms of gene drive action have been
reported [2], most involve insertion of a “drive” allele
on one diploid chromosome that can trigger a wild-type
allele on the corresponding gene of the paired chromo-
some to be excised and replaced with a copy of the drive.
Whenever this cut-and-replace mechanism succeeds, the
drive is preferentially passed down to all offspring instead
of half, as expected with Mendelian inheritance.

New gene-editing methods, such as those that appro-
priate bacterial DNA sequences known as clustered reg-
ularly interspaced short palindromic repeats (CRISPR)
[3, 4], now permit mankind to choose which organisms
live and which die, a power fraught with ethical quan-
daries [5–7]. Synthetic gene drives have been hypothe-
sized as a means for annihilating pests and controlling the
spread of invasive species [8–11]; but the release of genet-
ically modified organisms into the wild is, at present, an
irreversible action that could have dire ecological and en-

vironmental consequences, especially if the drive were to
escape beyond the targeted population or species. Some
progress has been made in addressing these risks [12, 13],
but as long as such dangers exist, predictive modeling
will remain the principal tool for assessing the impact of
a gene drive release on the long-term fate of wild animal
populations.

Although many mathematical and computational
models have already been developed to study the spread
of gene drives, they are generally insufficient for under-
standing how the changing distribution of alleles within a
population of organisms will impact the size of the group
over time. The most common modeling approach, which
we also adopt, has been to study the generational dynam-
ics of genotypic frequencies within a well-mixed popula-
tion whose genome has been reduced to only those genes
relevant to the action of the drive. Most such models im-
plicitly assume that populations are either fixed [14, 15]
or formally infinite [11, 16], but both assumptions pre-
clude the possibility of the population being pushed to
extinction by a drive with a high fitness cost.

Furthermore, a constantly large or infinite population
all but guarantees the emergence and eventual fixation
of mutated alleles with no inherent fitness cost that are
immune to the action of the drive. This is despite the
fact that the processes producing such alleles, such as
the nonhomologous end-joining of cut DNA strands, can
be extremely rare events that may not even emerge in a
small to moderate population before the gene drive itself
can either fixate or extinguish the population entirely.
Other models that account for variable populations have
been reported, but they model population fluctuations
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in terms that are specific to a single species of interest
[17, 18].

We address these shortcomings with a deterministic
model that quantifies the expected response of a finite,
homeostatic animal population to the introduction of a
simple, meiotic gene drive [19, 20]. Note that although
“meiotic drive” is a general term for any mechanism that
manipulates meiosis to enhance the likelihood of one al-
lele being inherited over another[21–24], we use the vari-
ation “meiotic gene drive” to restrict our considerations
to synthetic, gene-editing constructs like those based on
CRISPR. To model the population as homeostatic, we
set its death rate proportional to its size, which leads
to stable population dynamics that always tend toward
a steady state in which deaths balance births. We also
employ integer rounding to ensure that mutations do not
inevitably fixate in the population through the gradual
and unphysical accumulation of fractional animals. Us-
ing this model, we demonstrate how the presumed fitness
cost of the drive allele and the frequency of drive-resistant
mutations both influence the long-time fate of the pop-
ulation, resulting in a broad range of allelic outcomes,
including population extinction.

For a small to moderate-sized population, long-time
genotypic outcomes may be sensitive to stochastic fluc-
tuations in mating and inheritance rates, so we test the
robustness of our deterministic model’s predictions by
simulating the generational dynamics of an agent-based
population model whose behavior, averaged over many
replicate trajectories, is designed to agree with the deter-
ministic results when the dynamics are stable to fluctua-
tions. While this equivalence holds reasonably well in the
absence of mutations, it is generally destroyed by even a
modest non-zero mutation rate, and the fascinating di-
versity in long-term outcomes predicted by the determin-
istic model is lost as well. Instead, the agent-based model
predicts the long-time fixation of drive-resistant muta-
tions across the vast majority of the relevant parameter
space, which we trace to a tipping point that emerges in
our populations at short times due to the interplay be-
tween population and inheritance dynamics. Near this
tipping point, rare events like mutations become more
likely due to the genetically diverse composition of the
population. Interestingly, the occurrence of only one or
two individuals with mutated alleles can be sufficient to
tip the dynamics towards a disparate genetic fate.

II. THE MODELS

Our deterministic and stochastic models both initialize
with a population of N(0) diploid, sexually reproducing
organisms whose genotypes are characterized by two rel-
evant genes. The first is a sex gene, which we assume
has an X and Y allele so that an organism possessing
an XY pair is male and one possessing an XX pair is
female. Since mating can only occur between a male and
female organism, standard Mendelian inheritance guar-

antees that, on average, half of all offspring will be male
and the other half female. The second relevant gene is
the one targeted by our hypothetical gene drive. This
gene is assumed to have only a single wild-type allele,
which we denote W , and an engineered drive variant, D.

We assume the drive can only activate during the pro-
cess of meiosis, when haploid gametes are produced. If
an organism possesses one wild-type allele and one drive
allele, then there is a homing probability h that the drive
triggers the cutting of the wild-type DNA strand and
attempts to replace the W allele with another D al-
lele. When this occurs, there is a second probability m
that the cut DNA is repaired improperly through non-
homologous end joining, resulting in the creation of a mu-
tated allele that is immune to further action of the gene
drive. For simplicity, we label all such mutated alleles
as M . As a result of these considerations, the gamete of
a wild-type-drive heterozygote will possess the W allele
with probability (1− h)/2, the M allele with probability
hm/2, and the D allele with probability [1+h−hm]/2. In
deriving these probabilities, we have neglected the pos-
sibility of segregation distortion [25, 26]; any deviations
from Mendelian inhertiance are due solely to the action
of the gene drive.

For each sex, s ∈ {XY,XX}, there are thus six rel-
evant genotypes g ∈ {WW,DD,MM,WD,WM,DM}
whose inheritance dynamics must be considered. Only
the gametes of the WD genotype will have a non-
Mendelian allelic distribution. We define ns,g(t) to be the
number of organisms after t generations that have sex s
and genotype g, and we define N(t) as the total number
of organisms after t generations, with the requirement
that

N(t) =
∑
s,g

ns,g(t). (1)

In both models, the population dynamics obey the fol-
lowing general master equation:

ns,g(t+ 1) = ns,g(t) + bs,g(t)− ds,g(t), (2)

where bs,g(t) is the number of new organisms with sex
s and genotype g born during the tth generation and
ds,g(t) is the number that die. The differences between
our analytic and computational approach lie principally
in how these two quantities are modeled.

A. The Deterministic Model

Our analyic model assumes that the inheritance dy-
namics of a homeostatically stable population consist of
small, stochastic fluctuations about some steady state.
When a small initial fraction of gene-drive-innoculated
organisms is introduced into this wild population, the
size and genotypic makeup of the population will shift
towards a new steady state, and we assume that this
transition occurs relatively predictably, with stochastic-
ity accounting only for minor fluctuations about some
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average trajectory that our model will attempt to char-
acterize. Because the gene drive under consideration im-
pacts both sexes equally, and because we have assumed
Mendelian sex inheritance, we will further assume that
nXX,g(t) = nXY,g(t) ≡ ng(t)/2 for all g and t. Even
if an initial sex imbalance existed, the former two con-
siderations ensure its transience in the population. The
number of births per generation in our analytic model
can thus be expressed independently of sex as:

bg(t) =
∑
g1,g2

2

⌊
ωBfg1fg2p(g|g1, g2)ng1(t)ng2(t)

4N(t)

⌋
. (3)

The meaning of each quantity to the right of the equal
sign will be considered in turn.

First, the parameter ωB represents the average number
of organisms that a female births each generation. This
parameter can be thought of as the average number of
times a female mates in a generation multiplied by the
average number of offspring produced per coupling. We
shall assume that every newly born organism is sexually
active in the generation following its birth, subsuming the
maturation time scale of an organism in our definition of
generation.

The parameter fg ∈ [0, 1] is the fitness of an organism
with genotype g. The lower the fitness coefficient, the
more significant the phenotypic penalty the allele g in-
flicts on an organism’s ability to reproduce. For simplic-
ity, we assume that only organisms that are homozygous
in the drive allele suffer such a penalty, so fg = 1 unless
g = DD. The number of organisms birthed by couples
with one drive homozygous parent is thus reduced by a
factor of fDD < 1, and that produced by two such parents
is reduced by a factor of f2DD.

The function p(g|g1, g2) is the conditional probability
that an offspring of genotype g is born, given it had par-
ents of genotypes g1 and g2. As an example, consider the
probability p(DM |WD,WD). The probability of one
parent passing down a drive allele while the other passes
down a mutated allele is hm[1 + h − hm]/4. Since both
parents can pass down either allele in this case, the total
probability of two wild-type-drive heterozygotes giving
birth to an offspring with genotype DM is double this:
p(DM |WD,WD) = hm[1 + h− hm]/2.

The remaining factors in Eq. (3) can be accounted for
as follows. First, we assume that each female chooses
a single mate each generation and that her choice is
equally likely to be any male, i.e., the population is gen-
erationally monogamous and panmictic. Since we have
already assumed a sexually symmetric population, this
makes the probability of a female with genotype g1 choos-
ing a male with genotype g2 during generation t equal to
ng2(t)/N(t). Since there are ng1(t)/2 such females in that
generation, the expected number of pairings between or-
ganisms with genotypes g1 and g2 is just the product
[ng1(t)ng2(t)]/[2N(t)]. Note that which sex we associate
with g1 is arbitrary, since both g1 and g2 are summed
over.

The floor function is taken so that no fractional or-
ganisms are born and the accumulation of unlikely geno-
types (typically those with mutant alleles) is not made
inevitable by the rounding up of fractional values less
than unity. If we did not perform this rounding, it would
be impossible for the model to account for situations in
which the drive allele fixates faster than mutations can
emerge. We divide by two inside the floor brackets and
then multiply by two outside to ensure that the popula-
tion always consists of an even number of organisms, as
required by our assumption of sex symmetry. The total
summand is thus the average number of organisms with
genotype g born to mothers with genotype g1 and fathers
with genotype g2, or vice versa.

The organism death rate dg(t) is constrained by our
requirements that the population be homeostatic but not
perfectly resilient. In other words, the population should
resist changes to its stable population, but a sufficiently
large drop in organism fitness should still be capable of
driving it to extinction. This implies that the initial state
of the population, in the absence of the drive, should be
a stable steady state, i.e, if the population is initialized
as entirely wild type, then N(t) = N(0) ∀t ≥ 0.

The simplest way of modeling death that is consis-
tent with this requirement would be to assume that each
organism has some Poisson-distributed likelihood to die
during any generation t, implying a linear death rate
dg(t) = ζng(t). This is inadequate, however, because our
initial steady-state assumption would force us to choose
ζ = ωB/2, precluding us from using ζ to fit empirical
population data and, more importantly, causing any pop-
ulation with fitness less than unity to rapidly go extinct.

An alternative death model would be that of a logistic
population model, dg(t) = α(N(t)/K)ng(t), where K is
the carrying capacity of the local environment. Again,
however, our steady-state assumption would require that
K = N(0) and α = ωB/2, depriving us once more of a
free fitting parameter and resulting in a population that
can be shown to never go extinct, except in the extreme
case of zero fitness.

The Poisson death model leads to populations that are
not suffiicently homeostatic, but the logistic death model
produces populations that are too resilient; we find that
a linear combination of the two allows us to strike a bal-
ance between the two extremes that even leaves us a free
parameter:

dg(t) =

⌈[
ζ +

(
1

2
ωB − ζ

)
N(t)

N(0)

]
ng(t)

⌉
. (4)

Note that whereas we rounded births down, the ceiling
function brackets indicate that we round the number of
deaths up. This seems like an arbitrary and inconsistent
choice, but it is simply a quantification of the physically
sensible notion that a partial animal is a dead animal,
i.e., neither a partially born animal nor a partially dead
animal should be counted as viable members of the pop-
ulation in subsequent generations. Furthermore, since
we want a model that can account for the possibility of
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population extinction, rounding deaths up is necessary
to prevent a small population of two to four organisms
from surviving indefinitely due to the suppressed death
rate at population levels well below the carrying capac-
ity. Also note that although ζ is not a fixed parameter,
the steady state of a wild-type population will only be
stable to fluctuations if ζ ≤ ωB/2.

B. The Stochastic Model

The objective of our agent-based model is to deter-
mine whether stochastic fluctuations, which we assumed
were small and could be averaged out in our determinis-
tic model, can in fact exert any influence over the genetic
fate of a population targeted by a meiotic gene drive.
This model is initialized as follows. At t = 0, N(0) agents
are uniformly distributed throughout a two-dimensional
box of area L2, upon which we impose periodic bound-
aries that approximate bulk conditions. Finally, each
agent is assigned a genotype from the same set of possi-
bilities considered in the deterministic model.

At every time step, each female randomly chooses a
mating partner, with equal probability, from all males
lying within some characteristic interaction radius of her
position. (A female does not mate during any generation
in which a sufficiently proximate male cannot be found.)
If the genotype of the female is g1, and the genotype of
her selected partner is g2, then the coupling produces ωB-
many offspring, each of which is assigned a sex at random
and a genotype g with probability p(g|g1, g2), which is
defined the same as in Eq. (3). The total number of these
new agents is labeled by bf=1(t), which is the number
of agents that would be born during generation t if all
genotypes were of unit fitness. A uniformly distributed
random number on the interval [0, 1] is then chosen for
each new agent, and the agent is added to a random
location within the simulation box only if this number is
less than or equal to fg1fg2 , which is the fitness product
of its parents’ genotypes.

After births have been tabulated, a number of agents
equal to ⌈[

2ζ

ωB
+

(
1− 2ζ

ωB

)
N(t)

N(0)

]
bf=1(t)

⌉
(5)

are selected at random from the existing adult popula-
tion and removed from the box; newly created agents are
eligible for selection only if all existing agents have al-
ready been removed. A slight modification to Eq. (4) is
required for the stochastic model in order for the dynam-
ics of a purely wild-type population to consist of small
fluctuations about a stable steady state of N(0) organ-
isms. This is because at steady state, Eq. (4) fixes the
total number of deaths to a value of ωBN(0)/2; but in the
stochastic model, this only equals the number of births
on average. If this equation were used for the stochastic
model, the stable steady-state population that the sys-
tem relaxes towards would vary dynamically as a func-

tion of the stochastically fluctuating gender ratio, since
the number of females controls the number of mating
events. While the overall average population level would
still tend towards N(0), as desired, the fluctuations about
this state would be significant. The modifications made
in Eq. (5) resolve this issue, and the total number of
deaths in the deterministic model can be recovered by
setting bf=1(t) equal to its average value of ωBN(t)/2.

After births and deaths have been taken into account,
the remaining agents are allowed to move around the box
according to some predefined set of rules. Simple possi-
bilities include translating each agent a fixed distance in
a random direction or allowing each agent to perform
a fixed-length random walk with a specified step size.
This makes our computational model capable of study-
ing density-dependent effects on inheritance dynamics,
although our goal here is to establish a correspondence
between this model and our deterministic alternative. As
such, we set the interaction radius to exceed a length of
approximately L/

√
2 (half the simulation box diagonal),

in which case the population will be panmictic regard-
less of the motility model used. After new positions are
chosen for the agents, each female chooses a new mate
within her interaction radius, and the algorithm repeats.
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FIG. 1. Comparison of the deterministic model (thin curves)
and the stochastic model (thick curves) in the absence of
mutations (m = 0) for two different values of the drive fit-
ness: (a) fDD = 0.70 and (b) fDD = 0.80. In both panels,
nWW (0) = 980, nWD(0) = 20, ωB = 2, ζ = 0.5, and h = 0.9.
The colors red, blue, and purple correspond to the genotypes
WW , DD, and WD, respectively. The stochastic curves were
generated from 200 replicate simulations, with the center of
each curve determined by the replicate-averaged genotypic
subpopulations, and the thickness at each time point delin-
eating one standard deviation above and below that mean
value.

The dynamics of the model are considered to be stable
to stochastic fluctuations if the trajectories of many repli-
cate simulations all cluster about a single, sharply defined
mean, thereby implying that stochastic variations in the
genotypic subpopulations at most lead to small changes
in the long-term genotypic fate of the population. An un-
stable system, by constrast, would be akin to a chaotic
mechanical system in physics, wherein small variations to
the trajectory early on are able to propagate into large
variations at long times. If the simulated panmictic pop-
ulation dynamics of the agent-based model are indeed
stable in this sense, then the replicate-averaged trajec-
tory should, by construction, be very close to the result
of the deterministic model, whose averaging is predicated
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on an assumption that the stochasticity of the system
consists only of small, random fluctuations about some
mean trajectory. When the mutation rate is sufficiently
small for the population size, this close correspondence
between the models seems to hold, as illustrated in Fig.
1. Both models predict the same long-time genotypic
fate for the population, although the stochastic model,
on average, seems to relax towards steady state a little
faster than the deterministic model. This difference likely
derives from the rounding scheme used in the determinis-
tic model, which will always round a partial birth down,
even in cases where the extra whole animal might be more
likely to be born than not. For larger mutation rates, the
dynamics can become unstable to stochastic fluctuations,
resulting in the two models making disparate long-time
predictions. We document and ultimately account for
these differences in the proceeding section.

III. RESULTS AND DISCUSSION

In order to study the effects of introducing a gene drive
into a small, homeostatic, wild population, we initialize
both of our models with a population of N(0) = 1000
mostly homozygous wild-type organisms. Some small
percentage of the initial population is assigned to be het-
erozygous in the gene drive (genotype WD), and we then
iterate Eq. (2) (with the birth and death rates set by the
appropriate model) and track the evolution of the geno-
typic subpopulations until a new steady state is reached.

If our model gene drive has a homing rate h that is
sufficiently close to unity and is assumed to be incapable
of producing genetic mutations (m = 0), our determin-
istic model predicts that it will always grow to fixation
within a population, though the number of organisms
that remain at long times will depend sensitively on the
drive fitness fDD. For values below a critical thresh-
old, the population will die off completely. We can de-
termine this threshold by combining Eqs. (2)–(4) with
the assumption that at steady state, the drive homozy-
gous subpopulation should equal the total population:
nDD(t→∞) = N(t→∞). This leads to the expression:

2

⌊
1

4
ωBf

2
DDN(t→∞)

⌋
=

⌈[
ζ +

(
1

2
ωB − ζ

)
N(t→∞)

N(0)

]
N(t→∞)

⌉
. (6)

If we assume that N(t → ∞) � 0, then the algebraic
error inherent to dropping the floor and ceiling brackets
in Eq. (6) will be minimal, and we can simplify it to the
following:

1

2
ωBf

2
DD − ζ =

(
1

2
ωB − ζ

)
N(t→∞)

N(0)
.

We have already noted that a stable steady state requires
that the term in parentheses on the right-hand side of the

above equation must be greater than zero. In that case,
a positive solution for N(t → ∞) is only possible if the
following condition holds:

fDD >

√
2ζ

ωB
. (7)

If fDD is much smaller than
√

2ζ/ωB , the poor fitness of
the gene drive will crash the population. This threshold
is only approximate, due to our dropping the floor and
ceiling brackets in Eq. (6); the fate of the population
must be determined more carefully in cases where the
drive fitness is just above or just below the threshold
value.

The capability of the gene drive to fixate within a pop-
ulation is dependent upon the efficiency of the drive, as
measured by the homing rate, and we can quantify the
critical efficiency needed for drive fixation as the thresh-
old homing rate needed to cause an initial increase in the
subpopulation of drive heterozygotes. If the conditions
are favorable enough for the drive that such an increase
occurs within the first generation of the simulation, the
larger frequency of the drive allele in the next genera-
tion will only make the conditions for drive propagation
that much more favorable, guaranteeing eventual fixa-
tion. Once again using Eqs. (2)–(4), we can derive the
exact condition for initial drive propagation as

2

⌊
1

8
ωB(1− h2)nWD(0)

nWD(0)

N(0)

⌋
+ 4

⌊
1

8
ωB(1 + h)nWD(0)

N(0)− nWD(0)

N(0)

⌋
>

⌈
1

2
ωBnWD(0)

⌉
. (8)

This expression is just a statement that the number of
WD births must outweigh the number of their deaths.
The first term on the left side of the inequality comes
from the average number of heterozygote births resulting
from matings between pairs of WD organisms, and the
second term is the average number of heterozygote births
resulting from WD organisms mating with their wild-
type homozygote brethren. If we assume that nWD(0)�
N(0), then the first term on the left-hand side will, under
most reasonable circumstances, be zero due to the action
of the floor brackets. Our assumption of sex symmetry
guarantees that nWD(0) will be evenly divisible by two,
so as long as ωB is an integer, the ceiling brackets on the
right-hand side can be formally removed. Noting that
bxc > y is equivalent to x > y+ 1, we can reduce Eq. (8)
to the following much simpler condition:

1

8
ωB(1 + h)nWD(0)

N(0)− nWD(0)

N(0)
>

1

8
ωBnWD(0) + 1.

Solving the above inequality for the homing rate, we find
that drive fixation requires

h >

[(
1 +

8

ωBnWD(0)

)
N

N − nWD(0)

]
− 1. (9)
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For homing rates below this threshold, the drive al-
lele will either reach a low-frequency steady state or
be driven out of the population entirely. Experimen-
tal CRISPR-based gene drive constructs developed for
Anopheles gambiae mosquitos have effective homing rates
between 0.90 and 0.99 [9, 18], but this threshold may be
a practical concern for other species.
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FIG. 2. The generational time evolution of genotypic sub-
populations in the deterministic gene drive model for (a)
fDD = 0.70, m = 0; (b) fDD = 0.80, m = 0; (c) fDD = 0.70,
m = 0.2; (d) fDD = 0.80, m = 0.2. In all cases, the system
was initialized with the same parameters as those used in Fig.
1. The primary colors red, blue, and yellow represent the ho-
mozygous genotypes WW , DD, and MM , respectively. The
secondary colors purple, orange, and green represent the het-
erozygous genotypes WD, WM , and DM , respectively. The
insets plot the total population vs. time (in generations) for
each case.

In Fig. 2 we illustrate representative trajectories of
the deterministic model for both the case of population
extinction (panel a) and drive fixation (panel b). For our
initial population of 1000 organisms, we assumed that
2% of them were heterozygous drive carriers (h = 0.9,
m = 0). For an average litter size ωB = 2 and a mortal-
ity parameter ζ = 0.5, the threshold value of the drive
fitness given by Eq. (7) is 1/

√
2 ≈ 0.707. Consistent with

this, we observe population extinction for fDD = 0.70
and drive fixation, at a reduced population level, for
fDD = 0.80. Note that these are the same conditions
shown in Fig. 1, replotted here to facilitate a compari-
son with the analogous results for m > 0.

When the mutation rate is nonzero, the behavior of
the deterministic model can become much richer. In Fig.
2(c), the same conditions as Fig. 2(a) are reevaluated
for m = 0.2, and we find that the emergence of drive-
immune mutated alleles can protect the population from
extinction, resulting in a long-time, steady-state popula-
tion consisting principally of a mixture of drive homozy-
gotes and drive-mutation heterozygotes. A single pair of
mutation homozygotes also survives in each generation
at steady state. This seems like an anomalous artifact

of our rounding schemes, since one would normally ex-
pect mutation homozygotes to outcompete their less fit
drive counterparts given enough time, but any stochastic
uptick in mutant homozygote births during one genera-
tion could just as easily be canceled out by a stochastic
uptick in their deaths in a later generation. Our assump-
tion in this model is that, over long periods of time, the
overall trajectory of the population dynamics is stable
to these occasional fluctuations, in which case a small,
persistent population of mutant homozygotes surviving
alongside a much large population of drive homozygotes
is not impossible. As we shall demonstrate with our
stochastic model, however, this assumption of stability
is precisely what breaks down in the presence of muta-
tions.

Shifting the fitness of the drive up to 0.8 enables the
subpopulation of DM organisms to grow much larger,
introducing enough M alleles into the total population
to ensure their eventual fixation, as shown in Fig. 2(d).
The assumed lack of a fitness cost for the MM genotype
also allows the population to recover to its capacity.

The four trajectories depicted in Fig. 2 are only half
the picture, as four more allelic outcomes become observ-
able in the deterministic model as the mutation rate is
increased further. The eight qualitatively distinct out-
comes of the deterministic inheritance dynamics can be
differentiated uniquely by which of the three alleles sur-
vive at steady state, and Fig. 3 is a phase diagram
depicting the ranges of fDD and m values over which
each of these outcomes, or phases, may be observed.
Representative genotypic evolution profiles for each of
these phases are shown to the right of the figure, each
boxed by a colored frame matching the color used in the
phase diagram for that allelic outcome. The phase dia-
gram itself was generated numerically by computing the
long-time, steady-state population of the system at every
point (fDD,m) on a square mesh of side length 0.01. All
other model parameters (N(0), ωB , etc.) were the same
as those used in Fig. 1.

The genotypic subpopulation plots shown in Fig. 3 for
the extinction (E), pure drive (D), drive-mutation (D-
M), and pure mutation (M) phases represent the same
four cases depicted in Fig. 2, albeit for different values
of fDD and m. In all of these cases, the wild-type allele
is swiftly driven out of the population, supplanted by
the drive. When the mutation rate gets sufficiently high,
however, the drive can be supplanted by mutations be-
fore it can substantially reduce the frequency of wild-type
alleles, resulting in steady-state populations that remain
predominantly wild type. The remaining four phases all
share this characteristic, achieving steady states at long
times that reflect different balances between the WW ,
WM , MM , and WD genotypes, which all have unit fit-
ness in our model. Thus, while an increasing mutation
rate initially facilitates the dominance of the mutated al-
leles, as one might expect, there is a turnover point (at
m ≈ 2/3 for a one thousand organism population) where
more frequent mutations ultimately favor production of
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FIG. 3. The deterministic model phase diagram. To the right of the phase diagram, representative portraits of the genotypic
subpopulation dynamics are shown for each of the eight phases. From left to right and bottom to top, the portraits represent
the phases E, D, D-M, M, W-M, W-D-M, W-D, and W.

wild-type homozygotes.

We would like to compare and contrast the genotypic
phases observed at long times in our deterministic model
with those observed in our stochastic model. To this
end, we performed one hundred replicate simulations of
our stochastic model for each pair of fDD and m values in
our mesh, once again matching all the other parameter
values to those used for Fig. 1. We ran each replicate sim-
ulation for one thousand generations in order to ensure
that steady state was reached in all cases, and the sur-
viving alleles associated with at least one organism were
recorded. We then plotted a separate phase portrait for
each allele (see the top row of Fig. 4), using a gradient
in color saturation to represent the fraction of replicates
in which the corresponding allele survived. As in Fig. 2,
the three primary colors red, yellow, and blue are used
to represent the wild-type, mutation, and drive alleles,
respectively. The three images were then combined us-
ing a subtractive color mixing model [27] to generate the
bottom-left phase diagram, whose colors correspond to
the same phases defined for the deterministic model in
Fig. 3. (The deterministic phase diagram is replotted in
the bottom right of Fig. 4 for ease of comparison.)

The contrast between the genotypic fates predicted by
the two models is stark; wherease the deterministic model
predicts large swaths of parameter space where the drive
and wild type dominate, the stochastic model reduces
those regions to the fringes of the diagram. The region
of extinction is likewise reduced to occupy only the lower-
left corner, and the W-D and W-D-M phases have dis-

appeared entirely. The mutated allele now dominates
nearly the entire phase diagram, even when the muta-
tion rate is relatively low. The average behavior of the
computational model is, by construction, intended to be
equivalent to the analytic model, so long as the popula-
tion dynamics are stable to small, stochastic fluctuations.
This discrepancy thus implies a violation of the assump-
tion of stability.

If the dynamics are indeed becoming unstable to small
stochastic variations in the genotypic subpopulations,
then injecting a small amount of randomness into the
dynamics of the deterministic model should enable it to
behave more like the stochastic model. To test this hy-
pothesis, we amend our deterministic model by allowing
the floor function in Eq. (3) to act like a ceiling function
with some probability α during each iteration. This al-
lows for a fractional organism to sometimes be rounded
up to a whole one, thereby providing a simple mechanism
for rare events–those births expected to occur less than
once a generation–to at least occasionally transpire. (So
long as α is not too large, this modification will still per-
mit the possibility of drive fixation, the inclusion of which
was our original motivation for rounding births down in
the first place.)

The effect of making this modification is demonstrated
in Fig. 5. In Fig. 5(a), the replicate-averaged geno-
typic dynamics of the computational model are plotted
for fDD = 0.4 and m = 0.1. The fact that mutations
do not appear to grow to fixation is a consequence of a
bimodal distribution of long-time outcomes. As shown in
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FIG. 4. The stochastic model phase diagram. The top-left plot uses a white-to-red color gradient to indicate the fraction of
replicates that had surviving wild-type alleles at steady state for each pair of fDD and m values. The remaining two plots in
the top row illustrate the same for the mutated (yellow) and drive (blue) alleles. The bottom-left plot uses subtractive color
mixing to combine the three top plots into a single phase diagram that can be compared with the deterministic result replotted
in the bottom right of the figure for convenience.

the inset, mutations do fixate in about 28% of the trajec-
tories, but the population goes extinct in the remaining
78% of them. This represents an extreme case of instabil-
ity in which the population dynamics actually bifurcate
towards two disparate outcomes. Fig. 5(b) replots the
deterministic model’s result from Fig. 3 as a reference,
and Fig. 5(c) plots the replicate-averaged result for the
modified deterministic model with α = 0.1. Though the
agreement is not quantitative, our ad hoc correction is
sufficient to reproduce the sort of dynamical bifurcation
present in the fully stochastic model.

The final three panels of Fig. 5 plot the correspond-
ing results for the condition fDD = 0.8 and m = 0.05,
where the deterministic model predicts fixation of the
drive allele in a reduced population and the stochastic
model predicts eventual fixation of the mutated allele.
Although there is no dynamical bifurcation in this case,
the plotted line thicknesses in Fig. 5(d), which delineate
one standard deviation above and below the mean value
at each time point, demonstrate that the dynamics are
still relatively unstable, at least compared to the case of
m = 0 (see Fig. 1). Allowing for rare events in the ana-
lytic model is once again sufficient to replicate the phe-
nomenology of the fully stochastic results, including the

dominance of DM organisms at intermediate times. The
quantitative discrepancies presumably stem from our ar-
bitrary assignment of a flat probability of α to all rare
births, even though the likelihood of any specific type
of birth will in fact depend sensitively upon the specific
distribution of genotypes within the population of each
generation.

While the rare event probability is difficult to charac-
terize in general, we can at least quantify how the rarity
of a mutant birth depends upon the population’s genetic
composition in the case of a population where mutations
have not yet emerged. Such a population will consist of a
mixture of the three genotypes WW , WD, and DD and,
in accordance with the inheritance rules of our meiotic
gene drive, a mutant birth can only occur if one parent
has genotype WD. We want to compute the probabil-
ity pmut that a WD organism will give birth to an offsr-
pring with a mutant allele. Assuming a panmictic, sex-
symmetric population, this probability is formally equal
to

pmut =
∑
g

M
∑
g2

¬Mp(g|WD, g2)
ng2
N
,

where the sum over g is restricted to genotypes contain-
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FIG. 5. Comparing the mean genotypic dynamics across three
models. (a) The replicate-averaged dynamics of the stochas-
tic model for fDD = 0.4 and m = 0.1. The inset plots the
trajectories of the MM subpopulation in yellow and the to-
tal population in black for all 100 replicates, illustrating the
bifurcated character of the dynamics. (b) The results of the
deterministic model for the same condition. (c) The result of
modifying the deterministic model to account for the possi-
bility of rare events. (d) The results of the stochastic model
for fDD = 0.8 and m = 0.05. Though there is no bifurca-
tion in the long-time fate of the population, the instability of
the dynamics is highlighted by plotting the replicate-averaged
trajectory with a line thickness delineating one standard de-
viation above and below the mean. (e) The corresponding
results for the deterministic model. (f) The results of the
modified deterministic model for the same condition.

ing at least one M allele, and the sum over g2 is restricted
to genotypes containing no M alleles. Note that we do
not care at this point whether the mutant offspring will
survive to adulthood or not, so the fitness cost of having a
drive homozygote parent is not taken into account in the
above. Substituting the appropriate conditional proba-
bilities into this equation, the double restricted sum can
be evaluated, yielding the following expression:

pmut =
1

2
hm

[
1 +

(
1− 1

2
hm

)
nWD

N

]
. (10)

This probability is plotted in Fig. 6(a) as a function
of the fraction nWD/N for several mutation rates rang-
ing from m = 0.01 to m = 0.25. Though mutations
naturally cease to qualify as rare events for larger m,
the mutation probability remains < 1% for the lowest
value considered, even for an entire population of wild-
type/drive heterozygotes. Note that the probability is
nonzero even for nWD/N = 0, since our derivation as-

sumes at least a single heterozygote by construction. A
fractional population of zero corresponds to the limiting
case in which a finite number of WD organisms exist as
part of an infinite population.

pmut

pMUT

nWD

N
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FIG. 6. (a) The probability of a WD organism in a mutation-
free population giving birth to a mutated organism in the
next generation, pmut, is plotted versus the fraction of WD
organisms for m = 0.01, 0.05, 0.10, 0.15, 0.20, and 0.25 (from
bottom to top). (b) The probability that at least one mu-
tation has occurred by generation t, pMUT(t), is plotted for
m = 0.0001, 0.0005, 0.001, 0.005, 0.01, and 0.05 (again from
bottom to top). The solid curves were generated using the
deterministic model to calculate the genotypic subpopulation
levels in each mutation-free generation, and the data points
(circles) were computed using two hundred replicates of the
stochastic model for each of the plotted mutation rates.

Of course, the total likelihood of mutations arising
within a population will be much higher than pmut, since
every organism has some chance of producing mutations
upon mating. (Wild-type and drive homozygotes can
produce mutations if they mate with a WD heterozy-
gote.) If we make the simplifying assumption that fe-
males must initiate a mating interaction and that mul-
tiple females can choose the same male mate, then the
probability of each female producing mutated offspring
in the next generation will be independent from that of
every other female (the mean number of pairings between
two genotypes will still be (ng1/2)(ng2/N)), and the cu-
mulative probability that at least one mutation has oc-
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curred by generation t, pMUT(t), can be expressed thusly:

pMUT(t) =

1−
t∏

τ=0

∏
g1

(∑
g,g2

¬Mp(g|g1, g2)
ng2(τ)

N(τ)

)ωBng1
(τ)/2

 .
Note that the above expression is written as the com-
plement of the probability that no mutation alleles arise
within the first t generations. As before, the explicit in-
heritance probabilities can be used to evaluate the brack-
eted expression:

pMUT(t) =

1−
t∏

τ=0

{(
1− 1

2
hm

)ωBnWD(τ)/2

×
[
1− 1

2
hm

nWD(τ)

N(τ)

]ωBN(τ)/2
}
. (11)

In Fig. 6(b), we plot this probability for several dif-
ferent values of the mutation rate. The solid curves were
generated using Eq. (11) and the data points were found
by counting the frequency of mutations across two hun-
dred replicate runs of the stochastic model. Since this
probability is the complement of the probability of hav-
ing no mutations by generation t, the values of nWD(τ)
and N(τ) for each τ needed to evaluate Eq. (11) were
computed from the determinisic model with m = 0. All
the other parameters were assumed to be the same as
those used in Fig. 2(b), though the result turns out
to be effectively independent of the drive fitness. The
lowest mutation rate considered in Fig. 6(a) is now the
second highest considered in Fig. 6(b), and we see that
within about five generations, the occurrence of at least
one “rare” event is practically guaranteed. Even for a
mutation rate of m = 0.001, a whole order of magnitude
lower, the likelihood of observing at least one mutation
plateaus at around 80% within ten generations.

Though we have now quantified just how much the size
of a population can amplify the likelihood of rare inheri-
tance events, it is still not obvious how a small fluctuation
in the number of rare births can so consistently control
the fate of the population as a whole. To see this, we
once again consider the simpler case of m = 0, where it
is possible (albeit unlikely, due to the relative stability of
the dynamics in this regime) for stochastic fluctuations
in the number of organisms born with the D allele to
avert the fate of extinction at long times, even when the
drive fitness is below the threshold defined by Eq. (7).

In Fig. 7 we use the deterministic model to plot the
genotypic subpopulation trajectories for a range of values
of fDD lying both below and above the extinction thresh-
old, and we find that the divergent fate of the drive ho-
mozygotes is propagated out of comparatively small dif-
ferences in the distribution of genotypes that begin to ap-
pear after only five generations. This is roughly the time
where the drive heterozygote population peaks, which
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FIG. 7. The genotypic subpopulation dynamics of the deter-
ministic model are superimposed (with varying opacities) for
m = 0 and fDD = 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 (from lightest
to darkest). The same parameters and genotypic color scheme
used throughout the paper are used here as well (see Fig. 1).

happens to also be the point in the trajectory where the
population is at its most diverse. This diversity trans-
lates to a tipping point wherein small fluctuations in the
various subpopulation sizes can have a dramatic effect
on the dynamics at long times. Because this is the first
point in the trajectory where the number of organisms
possessing the gene drive exceed the number without it,
the genotypes most likely to be amplified by fluctuations
are those with the drive, potentially resulting in long-
term drive survival instead of a population crash. Look-
ing back to Fig. 5(d), we see similar phenomenology.
The genotypic trajectories show almost no variance for
the first ∼ 5 generations, but then a small degree of vari-
ation emerges that rapidly expands as time progresses.

IV. CONCLUSIONS

In this paper we have compared a deterministic pop-
ulation model of meiotic gene drive transmission to a
stochastic, agent-based generalization in order to gauge
the stability of long-time genotypic outcomes to random
fluctuations in small, homeostatic populations. What we
discovered, quite surprisingly, is that while the inheri-
tance dynamics are stable to fluctuations overall, there is
an unstable tipping point at short time scales (t ∼5 gen-
erations) wherein the likelihood of rare inheritance events
is amplified, and the resultant uptick in these rare births
is capable of drastically affecting the genotypic distribu-
tions at long times.

In a formally infinite or very large population, even a
negligible frequency of drive-resistant alleles will corre-
spond to a finite number of organisms, but this is clearly
not the case for a small to moderate-sized population.
To prevent low-frequency alleles from inevitably prop-
agating into our population through the accumulation
of fractional animals, our deterministic model utilized
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rounding functions that ensured the possibility of drive
survival was not precluded a priori. The dominance of
mutations in our stochastic model suggests that our de-
terministic model would have been more accurate with-
out these rounding functions, but that would have ren-
dered it incapable of characterizing the population ex-
tinction observed in the stochastic model for small but
nonzero mutation rates and drive fitnesses. Instead of
removing the rounding entirely, we found that relaxing
it just enough to allow occasional rare birthing events to
occur was sufficient to achieve at least qualitative agree-
ment with the stochastic model’s predictions across pa-
rameter space. What this demonstrates is that our faulty
assumption was not our rounding scheme but rather our
expectation that the population dynamics should always
consist of small, stochastic fluctuations about a robust
mean trajectory. On the contrary, the rapid prolifera-
tion of the gene drive produces an unstable tipping point
where even a miniscule population of more fit alleles can
dramatically alter the system’s dynamical behavior. In
short, the robustness of drive-resistant mutations in a
small, homeostatic population is due not to their grad-
ual accumulation over many generations but to their high
likelihood of first emerging at the most unstable point in
the dynamical trajectory.

This mechanistic distinction is important, as current

attempts to make gene-editing constructs more viable
have largely focused on making them more difficult to
resist [18, 28]. If multiple mutations are needed, for ex-
ample, to achieve full immunity from the action of the
construct, then there is a higher chance of the popula-
tion becoming decimated before mutations can render
the gene drive ineffective. Our work suggests that an
alternative approach viable for small, isolated popula-
tions could involve engineering a construct that somehow
avoids the allelic diversity of the dynamic tipping point
we have identified.
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