
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Interconnections between networks acting like an external
field in a first-order percolation transition

Bnaya Gross, Hillel Sanhedrai, Louis Shekhtman, and Shlomo Havlin
Phys. Rev. E 101, 022316 — Published 28 February 2020

DOI: 10.1103/PhysRevE.101.022316

http://dx.doi.org/10.1103/PhysRevE.101.022316


Interconnections between networks act like an external field in a first-order
percolation transition

Bnaya Gross,1 Hillel Sanhedrai,1 Louis Shekhtman,1 and Shlomo Havlin1, 2

1Department of Physics, Bar Ilan University, Ramat Gan, Israel
2Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan 226-8503

(Dated: February 5, 2020)

Many interdependent, real-world infrastructures involve interconnections between different com-
munities or cities. Here we show how the effects of such interconnections can be described as an
external field for interdependent networks experiencing a first-order percolation transition. We find
that the critical exponents γ and δ, related to the external field can also be defined for first-order
transitions but that they have different values than those found for second-order transitions. Sur-
prisingly, we find that both sets of different exponents (for first and second order) can even be found
within a single model of interdependent networks, depending on the dependency coupling strength.
Nevertheless, in both cases both sets satisfy the Widom’s identity, δ − 1 = γ/β which further sup-
ports the validity of their definitions. Furthermore, we find that both Erdős-Rényi and scale-free
networks have the same values of the exponents in the first-order regime implying that these models
are in the same universality class. In addition, we find that in k-core percolation the values of the
critical exponents related to the field are the same as for interdependent networks suggesting that
these systems also belong to the same universality class.

I. INTRODUCTION

In the past two decades, network theory has success-
fully described and predicted collective phenomena of
many complex systems such as the brain, climate and
infrastructures [1–4]. The resilience of such networks is
often studied under a percolation process where a fraction
1 − p of nodes are removed randomly from the network
and the size of the largest connected component, S (the
order parameter of the system) is measured [5–10]. Sev-
eral generalizations of percolation-like processes have also
been developed and these processes also affect the values
of the critical exponents, and the nature of the transi-
tion e.g., whether it is continuous or abrupt. Specifically,
interdependent networks [11–15] where one network de-
pends on another, have drawn much interest. In these
systems there exist several networks with the ordinary
connectivity links within the networks, yet dependency
links between the networks imply that if a node at one
end of a dependency link fails than the node at the other
end will also fail, even if it is still connected in its own
network. This process leads percolation on interdepen-
dent networks to result in cascading failures resulting in
abrupt, first-order percolation transitions.

The Ising model is one of the fundamental examples
used for studying a system under the effect of an external
field and it is characterized by an up-down symmetry
[16]. In the absence of an external field as the system
cools down and goes from the disordered to the ordered
phase, a spontaneous symmetry breaking to the up or
down states occurs at a critical temperature. However,
this symmetry can be broken by an external field. As the
system heats up and the system goes from the ordered
to the disordered phase an external field can keep the
system ordered even above the critical temperature. In
contrast, percolation does not have such symmetry and

FIG. 1: Model illustration. The model is composed of two
networks A and B, each contains two modules (blue nodes)
with a small fraction r of nodes (called here the core) that
have interlinks connecting the two modules (black nodes).
Minter links are assigned randomly between the cores of the
modules (black links). The two networks A and B depend
on each other via a fraction q of dependency links shown in
red. The dependency links are assumed to be within the same
community in each network.

as the system crosses the critical point an infinite cluster
emerges. Nonetheless, an analogy to the external field
can be found in term of keeping the system in the ordered
phase even at the critical point.

Several researchers have studied ‘interconnected net-
works’ where two networks each with many connections
inside their own network, also have a smaller number
of links between them [17–23]. Such networks have also
been described in the literature as networks with com-
munity structure, since each network can be regarded as
a separate community [24–27].

Recently, a new realistic model of community struc-
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ture has been proposed where only some small fraction,
r, of nodes are assumed a priori to be capable of having
interlinks to other communities [28]. This model is real-
istic for cases where additional resources are needed at a
node in order to accommodate inter links. However, once
such infrastructure exists, adding additional interlinks is
of low cost. For example, international airports may
need longer runways for transoceanic flights. Nonethe-
less, once these runways exist, adding more transoceanic
flights is easy. Similarly, power stations that transfer
large load to long distances may require additional in-
frastructure in order to handle such load. It was found
that in this model, the fraction r affects the continues
second order percolation transition analogously to an ex-
ternal field in spin systems or a ghost field in percolation.

The analogy to an external field is best characterized
through the key exponents β, δ, and γ describing the
behavior of the system near (and at) criticality [5, 29–
31], which fulfill Widom’s identity δ − 1 = γ/β implying
that there are only 2 degrees of freedom in determining
these exponents. We propose here to generalize these
critical exponents for both first and second order phase
transitions when the control parameter p is near (and at)
the percolation threshold pc, with respect to S(0, pc) that
can be zero (in 2nd order) or non-zero (in 1st order):
i) The critical exponent β describes the behavior of the
order parameter (S) near the critical point with zero-field
(r = 0) and is given by

S(0, p)− S(0, pc) ∼ (p− pc)β . (1)

ii) At the critical point, (p = pc), the increase of the order
parameter with the magnitude of the field, r, is given by
the critical exponent δ as

S(r, pc)− S(0, pc) ∼ r1/δ . (2)

iii) The susceptibility of the system, χ, is given by the
partial derivative of the order parameter with respect to
the field, r, and scales near the critical point with the
exponent γ as

χ ≡
(
∂S(r, p)

∂r

)
r→0

∼ |p− pc|−γ . (3)

Here we study analytically and via simulations the per-
colation of community structure in interdependent net-
works as shown in Fig. 1 (described later in detail) with
q fraction of interdependent nodes i.e., 1 − q fraction of
nodes in each network are autonomous. We observe two
distinct regimes in this same model, characterizing dif-
ferent values of the critical exponents and universality
classes. For small values of q, the network undergoes a
continuous second-order phase transition as for isolated
ER networks and has the corresponding critical expo-

nent values. However, for large values of q this system
undergoes a first-order phase transition with a different
set of exponent values [15]. Moreover we find here that
the fraction of interconnected nodes, r, also for the case
of an abrupt transition, can be analogized to an external
field.

II. MODEL

Our network model (demonstrated in Fig. 1) assumes
two communities where only a small fraction r of nodes in
each community are capable of having interlinks [28]. A
total of Minter links are then assigned among this small
subset of nodes. Next, the two networks constructed in
this model are set to be partially interdependent with q
fraction of nodes in each network depending on nodes in
the other network, as seen in Fig. 1.

III. RESULTS

A. Analytic solution

We begin by developing an analytic solution for the
effect of interlinks on percolation of interdependent net-
works of the type described above. We start by defin-
ing the generating functions for the degree distribution
of intra- and inter- connected nodes. For intra nodes
we obtain Gintra0 (x) =

∑
k p

intra
k xk and Gintra1 (x) =∑

k q
intra
k xk where pintrak is the probability for a node

to have k intra links and qintrak =
(k+1)pintra

k+1

z is the intra
excess degree distribution with z being the average in-
tra degree [10, 32]. We assume that interlinks are always
assigned randomly and thus their generating functions
are given by Ginter0 (x) = Ginter1 (x) = e−κ(1−x) where
κ = Minter

rN is the average inter-degree of the r fraction of
nodes in the core and N is the total number of nodes.

We next define u and v, the probability that after re-
moval of 1−p fraction of nodes from each network, an in-
tra and inter edge respectively do not lead to a node con-
nected to the giant component. They satisfy the equa-
tions:

u = 1− p
[
1−Gintra1 (u)(1− r + rGinter0 (v))

]
×

×
[
1− q + qp(1−Gintra0 (u)(1− r + rGinter0 (v))

]
,

v = 1− p
[
1−Gintra0 (u)Ginter1 (v)

]
×

×
[
1− q + qp(1−Gintra0 (u)Ginter0 (v))

]
.

For ER networks (i.e., pintrak = zke−z

k! ), Gintra0 (u) =

Gintra1 (u) = e−z(1−u) and S = 1 − u, leading to a sin-
gle transcendental equation relating S, q, and r



3

1− q + 2qp−
√

(1− q)2 + 4qS

2qp
ezS + (r − 1) = r exp

(
κp

r

[
(r − 1)(e−zS − 1)

1− q +
√

(1− q)2 + 4qS

2
− S

p

])
. (4)

As seen in Fig. 2, for large values of q the system under-
goes an abrupt first order transition while for small values
of q (Fig. 2 inset and [28, 33]) it experiences a contin-
uous second-order transition. We note that for high q
(the first-order regime), even for r > 0, there is still an
abrupt phase transition (Fig. 2). However, as r increases,
we observe that at the value of pc(r = 0), there is a scal-
ing behavior between S(r, p) and r (see Fig. 2b,c,d and
below) suggesting that r can be analogized to an external
field. Two sets of different critical exponents arise from
Eq. (4). For strong dependency (i.e. large values of q)
we obtain δ = 2 and β = γ = 1/2 while for weak coupling
we find δ = 2 and β = γ = 1 as in no coupling, see [28].
Both sets of critical exponents satisfy Widom’s identity
δ − 1 = γ/β.

In Fig. 3, the two sets of different critical exponents for
strong and weak dependency are obtained from numerical
analysis of Eq. (4). Later we also present an analytic
derivation of the two sets of exponents obtained from Eq.
(4). It can be seen that for large values of q we obtain
γ = 1/2 and the system undergoes an abrupt transition
(Fig. 2). In contrast, for small values of q we obtain γ =
1 and the system undergoing a continuous second-order
transition (Fig. 2 inset and [28, 33]). This shows that
even in a single model (represented by a single equation
(Eq. (4))) one can obtain both sets of exponents. For
the case of removing 1−p fraction of nodes from network
A only, an implicit equation similar to Eq. (4) can be
obtained for the limits q = 0, 1 (See Appendix A and
[28]). In order to be consistent with [12, 34], Figs. 2 and
4 are presented for this specific case.

B. Analytic Derivation of Critical Exponents

Having solved the model and demonstrated that scal-
ing relationships analogous to those of an external field
can be found for first order transitions, here we seek to
extract these scaling exponents analytically. To derive
the exponents for ER networks, we let f(S, p, r, q) be

f(S, p, r, q) =

[
(1− r)(1− e−zS)·

·
1− q +

√
(1− q)2 + 4qS

2
− S

p

]
, (5)

FIG. 2: (a) The size of the mutual giant connected
component S(r, p) for interdependent networks with
large q (q = 1) whose communities each have an ER
structure. Simulations of single realizations (colored con-
nected symbols) and theory (dashed lines) are shown. At
the critical point of the system with no field, pc(r = 0), we
observe that as r increases, S(r, pc) increases as well. The
power-law scaling with r of this increase suggests that r can
be analogized to an external field. The inset shows the effect
of the external field, r, for a single network composed of two
communities and a continuous transition (not interdependent,
i.e., q = 0). Simulations are shown for N = 107 nodes, mean
degree z = 4 and Minter = N/20. We find that the critical
exponents have the values (b) β = 1/2, (c) δ = 2 and (d)
γ = 1/2 and the Widom’s identity δ − 1 = γ/β is satisfied.
The simulations are plotted with symbols and the theory as
dashed lines. The simulations for γ are shown for N = 108

and r = 0.0007.

and thus Eq. (4) takes the form

r +
2f(S, p, r, q)

1− q +
√

(1− q)2 + 4qS
=

= r exp

[
κpf(S, p, r, q)

r
− zS

]
. (6)

In the limit of r → 0, we recover f(S, p, 0, q) = 0 defin-
ing the giant component of two interdependent ER net-
works. Likewise, at criticality, fS(Sc, pc, 0, q) = 0, where
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FIG. 3: The critical exponents β (left) and γ (right)
for q = 0.2 (green) and 0.8 (blue). It can be seen that for
small values of q we get β = γ = 1, while for large values of q
we get β = γ = 1/2. Here r = 10−8 .

FIG. 4: The size of the mutual giant connected com-
ponent S(r, p) for interdependent SF networks with
large q (q = 1). (a) λ = 4.5, (b) λ = 3.35 and (c) λ = 2.8.
Here r = 0.01 (blue connected triangles), r = 0.007 (cyan
connected pentagons), r = 0.003 (yellow connected squares)
and r = 0 (red connected circles). The critical exponents (d)
β = 1/2, (e) δ = 2 and (f) γ = 1/2. Colors and symbols are
λ = 4.5 - blue circles, λ = 3.35 - green squares and λ = 2.8 -
orange triangles. In all cases β, δ and γ are the same as for
ER (see Fig. 2) suggesting that for interdependent networks
ER and SF are in the same universality class. Simulations are
shown for N = 107 and Minter = N/20. The theory in all the
plots is shown as dashed lines. For γ the theory is shown for
r = 0.0001.

fS refers to the derivative of f with respect to S. Ex-
panding f(S, p, 0, q) around S = Sc and p = pc gives

f(S, p, 0, q) = f(Sc, pc, 0, q) + fS(Sc, pc, 0, q)(S − Sc)+
+ fp(Sc, pc, 0, q)(p− pc) + ... = 0.

Further developing analytically this expansion leads to
β = 1/2 for large q and β = 1 for small q. The exponents
δ and γ require different approximations in the expansion
of f(S, p, r, q) in order to arrive at their values analyti-
cally (we find δ = 2 and γ = 1/2 for large q and δ = 2
and γ = 1 for small q), see Appendix B for the detailed
derivation.

Simulations and theory for the critical exponents for
ER networks with large q are in excellent agreement and
are shown in Fig. 2b-d. The simulations support our
analytical derivation that δ = 2 and β = γ = 1/2. These
values also satisfy the Widom’s identity. Simulations for
the critical exponents for q = 0 have been shown else-
where [28] and also show excellent agreement with our
finding that for small q, δ = 2 and β = γ = 1. These
values also satisfy Widom’s identity.

Lee. et al Ref [33] found γ = 1 for large values of
q using finite size scaling analysis of the susceptibility
χ measured from the fluctuations. This finding seems
to be in contrast to γ = 1/2 measured as a response
to the field (Eq. (3)) found here. This might indicate
that the fluctuation dissipation theorem (FDT) which
has been studied widely [35–37] is violated. To resolve
this question, we also measured for large q, γ directly
based on the fluctuations as χ = N(〈S2〉 − 〈S〉2) with
respect to the meta-stable state of each realization with
respect its distance to pc (see Zhou et al [38]) and find
γ = 1/2, thus validating the FDT (see Appendix C).
This demonstrates an interesting point how measuring
γ in different ways could lead to two different exponent
values which can be related to each other [38].

C. Scale free networks

Fig. 4 shows S(r, p) for interdependent SF networks
(i.e., pintrak ∼ k−λ) for different values of λ with large
q, showing excellent agreement between the theory and
the simulations. The critical exponents can also be mea-
sured and clear scaling relations are observed. For λ > 4
we have low heterogeneity and indeed as expected we
find similar results as for ER networks (i.e, δ = 2 and
β = γ = 1/2). For high heterogeneity (i.e. 3 < λ < 4
and 2 < λ < 3) the system has different exponents than
ER for the case of a single layer (corresponding to q = 0)
[28], yet for interdependent networks for large q we find
that the critical exponents are the same as for interde-
pendent ER networks, δ = 2 and β = γ = 1/2. Thus,
our results suggest that interdependent ER networks and
interdependent SF networks with large q are in the same
universality class in contrast to small q at which the expo-
nents are different [28]. The reasoning is most probably
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due to the fact that the random spread of damage due to
interdependence does not distinguish between high and
low degree nodes.

D. k-core percolation

To further assess the effects of an external field on first-
order transitions, we also consider here the case of k-
core percolation. The k-core percolation is an iterative
process in which one removes randomly 1 − p fraction
of nodes as in regular percolation where nodes with less
than k neighbors are also considered failed. Thus, in the
final giant component all remaining nodes have at least
k links to other surviving nodes [39–42] as illustrated in
Fig. 5. We study k-core percolation on two communities
where only a fraction r of nodes in each community are
capable of having interlinks (See Fig. 5). Minter links
are assigned randomly between pair of nodes one from
each community that are capable of having interlinks.
We denote by z the average degree in each community
and by κ the average degree between the communities.
To solve k-core percolation on our model, we generalize
the approach of Dorogovtsev et al. [39] for two networks
or communities with r interconnected nodes. We denote
the probabilities R and T that following an intra and
inter edge respectively, we will not reach a node which is
connected to the giant k-core. The probabilities R and
T satisfy the coupled equations

R = 1− p+ p

k−2∑
n=0

{(1− r)[ (1−R)n

n!

dn

dRn
Gintra1 (R)]+

+ r

n∑
j=0

[
(1−R)j

j!

dj

dRj
Gintra1 (R)]·

· [ (1− T )(n−j)

(n− j)!
d(n−j)

dT (n−j)G
inter
0 (T )]} , (7)

and

T = 1− p+ p

k−2∑
n=0

n∑
j=0

[
(1−R)j

j!

dj

dRj
Gintra0 (R)]·

· [ (1− T )(n−j)

(n− j)!
d(n−j)

dT (n−j)G
inter
1 (T )]. (8)

Here the generating functions for the intra and inter
nodes are the ones defined in Sec IIIA. The size of the

FIG. 5: Model illustration - k-core. The model is com-
posed of two interconnected networks. The black nodes have
both interlinks and intralinks while the blue nodes have only
intralinks. In k-core percolation a node with degree smaller
then k fail in iterative process until a final giant component
remains.

giant k-core will be:

Sk(r, p) = p

∞∑
n=k

{
(1− r)

[
(1−R)n

n!

dn

dRn
Gintra0 (R)

]

+ r

n∑
j=0

[
(1−R)j

j!

dj

dRj
Gintra0 (R)]·

· [ (1− T )(n−j)

(n− j)!
d(n−j)

dT (n−j)G
inter
0 (T )]

}
. (9)

For simplicity we denote φna(R) = (1−R)n

n!
dn

dRnG
intra
a (R),

ψna (T ) = (1−T )n

n!
dn

dTnG
inter
a (T ) and φnab(R, T ) =∑n

j=0 φ
j
a(R)ψn−jb (T ). Then Eqs. (7)-(9) become,

R = 1− p+ p

k−2∑
n=0

[(1− r)φn1 (R) + rφn10(R, T )] , (10)
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T = 1− p+ p

k−2∑
n=0

φn01(R, T ) (11)

and

Sk(r, p) = p

∞∑
n=k

[(1− r)φn0 (R) + rφn00(R, T )], (12)

where φn00 and φn0 are the probabilities that a randomly
selected node has n neighbors connected to the giant k-
core if it is or is not interconnected, respectively. Here
a, b ∈ {0, 1}. For the case of ER networks the generating
functions are the same as the ones in the main text and
thus,

φna(R) = ψna (R) =
(z(1−R))n

n!
e−z(1−R)

and

φnab(R, T ) =

n∑
j=0

(z(1−R))j

j!

(κ(1− T ))(n−j)

(n− j)!
e−z(1−R)−κ(1−T ) .

In this case φn0 (R) = φn1 (R) and φn00(R, T ) = φn01(R, T ) =
φn10(R, T ).
Simulations and theoretical results for 3-core percolation
on ER networks can be seen in Fig. 6a. Figs. 6b-d show
that the critical exponents for k-core percolation are the
same as those found for interdependent percolation (i.e.
δ = 2, β = 1/2 and γ = 1/2) which further suggests that
interdependent percolation and k-core percolation are in
the same universality class.

IV. SUMMARY

In summary, we have shown the effects of an exter-
nal field represented by interconnected nodes on first-
order percolation phase transitions. This is done by ana-
lyzing analytically and numerically, interdependent net-
works with interconnections. We find that a single model
of interdependent networks possesses two different sets
of exponent values depending on the level of interdepen-
dence coupling, q. For high-values of q the critical expo-
nents are the same for both ER and SF networks (δ = 2
and β = γ = 1/2) suggesting a common universality
class. Moreover, we find that k-core percolation has simi-
lar exponents suggesting that interdependent percolation
and k-core percolation belong to a common universality
class as well. These exponents satisfy Widom’s identity
δ − 1 = γ/β and their common value suggests the exis-
tence of a single universality class describing these cas-
cading phenomenon. We hope our study will encourage
more researchers to apply an external field in systems ex-
periencing first order transitions and study their critical
behaviour.
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Appendix A ANALYTIC DERIVATION FOR
THE CASE OF REMOVAL FROM NETWORK A

ONLY FOR q = 1

For the specific case of fully interdependent networks
(q = 1), we consider the case of removal of 1− p fraction
of nodes from network A only in order to be consistent
with [12, 34]. In this case u and v satisfy the equations
[28]:

u = 1− p+ pGintra1 (u)[1− r + rGinter0 (v)],

v = 1− p+ pGintra0 (u)Ginter1 (v).
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For the case of fully interdependent ER networks we
use the framework from [12, 34] to arrive at the following
equation for the mutual giant component,

e−zS(r − 1) + 1−

√
S

p
=

= r exp

κ√Sp(e−zS(r − 1) + 1−
√

S
p − r)

r
− zS

 .
(A.1)

Note that for r = 0, Eq. (A.1) recovers the well-
known result for two interdependent networks [12] S =
p(1 − e−zS)2 and Eq. (4) in the main text is recovered
with p→ √p since there we removed p fraction of nodes
from both networks. Fig. 2 in the main text shows ex-
cellent agreement between the theory of Eq. (A.1) and
the simulations.

Appendix B CRITICAL EXPONENTS -
ANALYTIC DERIVATION FOR PARTIAL

INTERDEPENDENT NETWORKS

In the main manuscript, we defined f(S, p, r, q) which
allows us to analytically find the critical exponents

f(S, p, r, q) =

[
(1− r)(1− e−zS)·

·
1− q +

√
(1− q)2 + 4qS

2
− S

p

]
. (B.1)

In the limit of r → 0, we recover f(S, p, 0, q) = 0 defin-
ing the giant component of two interdependent ER net-
works. Likewise, at criticality, fS(Sc, pc, 0, q) = 0, where
fS refers to the partial derivative of f with respect to S.
In order to find β we expand f(S, p, 0, q) around S = Sc
and p = pc

f(S, p, 0, q) = f(Sc, pc, 0, q) + fS(Sc, pc, 0, q)(S − Sc)+
+ fp(Sc, pc, 0, q)(p− pc) + ... = 0.

rearranging and keeping the dominant terms gives:

(S − Sc)2 ∼ −2
fp(Sc, pc, 0, q)

fSS(Sc, pc, 0, q)
(p− pc)−

− 2
fSp(Sc, pc, 0, q)

fSS(Sc, pc, 0, q)
(p− pc)(S − Sc) + ...

the scaling depends on the value of fp(Sc, pc, 0, q) =
Sc/p

2
c . Small values of q exhibit a second order phase

transition with Sc = 0 leading to β = 1 while large
values of q lead to an abrupt phase transition with
Sc > 0 giving β = 1/2. It can be demonstrated that
fSp(Sc, pc, 0, q) = 1/p2c 6= 0 and fSS(Sc, pc, 0, q) 6= 0.

In order to find δ we take the limit of small r. We

define x = f(S, p, r, q)/r which satisfies the equation:

1 +
2x

1− q +
√

(1− q)2 + 4qS
= exp(κpx− zS). (B.2)

The dominant balance of the equation for x and the con-
ditions 0 < S, p < 1, imply that in the limit r → 0, x
approaches a constant whose value depends on p and q,
denoted here as C(p, q). We let the superscript c denote
that f is evaluated at p = pc, S = Sc, r = 0. Expanding
f around S = Sc, r = 0 (with fixed p = pc), keeping the
dominant terms and making use of the prior equation,
we obtain

x = f cr +
1

2
f cSS

(S − Sc)2

r
+ ...

whose RHS must equal to C(pc, q). In addition, f cr =
−Sc/pc and f cSr = −1/pc. For large values of q the tran-
sition is abrupt, therefore Sc > 0 and thus x = 0 is not
a solution. By plugging x = −Sc/pc into Eq. (B.2) at
criticality one can see that C(pc, q) 6= −Sc/pc and thus

(S − Sc)2 ∼ 2[C(pc,q)−fc
r ]

fc
SS

r giving δ = 2. For small values

of q the transition is continues, Sc = 0 and thus

x =
f

r
= f cSS

S2

2r
+ f cSrS + ... = C(pc, q) + o(1).

If C(pc, q) < 0 then simply S ∼ r1/2 meaning δ = 2. If
C(pc, q) = 0 then x(r → 0) = o(1). Assuming small x
and S in Eq. (B.2) gives

1 +
1

1− q
x+ o(x) = 1 + κpcS − zS + o(x) + o(S),

where o(x) is the little-O notation meaning terms much
smaller than x. Therefore,

f cSS
S2

2r
− 1

pc
S + ... =

z

κpc − 1/(1− q)
S + ... .

Since κ� z the condition κpc − 1/(1− q) > 0 is always
satisfied, the equation has no balance and therefore we
ignore the solution x(pc, r → 0) = 0 and thus δ = 2
concluding that δ = 2 for all value of q.

In order to find γ we recall that the solution of Eq.
(B.2) can be written as x = C(pc, q) + o(1) < 0 where
r → 0. Thus,

f(S, p, r, q) = rC(p, q) + o(r).

Taking ∂r|p on both sides, r → 0 and rearranging for ∂S
∂r

gives,

∂S

∂r
=
C(p, q)− fr(S, p, 0, q)

fS(S, p, 0, q)
.

Expanding fr and fS , and substituting the result for the
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scaling of (S − Sc) with p− pc gives

∂S

∂r
=

C(pc, q)− f cr + ...

f cSSA(p− pc)β + 1/p2c(p− pc) + ...
.

For large values of q we find that β = 1/2 leading to
γ = 1/2 while for small values of q, β = 1 giving γ = 1.

Appendix C CRITICAL EXPONENTS -
ANALYTIC DERIVATION FOR FULLY

INTERDEPENDENT NETWORKS (q = 1)

In order to derive analytically the critical exponents
from Eq. (A.1) we define

f(S, p, r) = e−zS(r − 1) + 1−

√
S

p
(C.1)

and thus Eq. (A.1) takes the form

f(S, p, r) = r exp
[
κ
√
Sp(f(S, p, r)/r − 1)− zS

]
.

(C.2)
The analytic derivation of the critical exponents is based
on several assumptions regarding f(S, p, r) and its deriva-
tive at criticality. Here we validate these assumptions:

1 ) f(Sc, pc, 0) = 0. We get: −e−zSc + 1 −
√

Sc

pc
= 0

which yields the well known result [12] Sc = pc(e
−zSc −

1)2.
2 ) fS(Sc, pc, 0) = 0. We obtain: ze−zSc− 1

2
√
Scpc

= 0

as shown in Fig. C.1.
3 ) fSS(Sc, pc, 0) = −z2e−zSc + 1

4Sc

√
Scpc

=

−z2e−zSc + ze−zSc 1
2Sc

= ze−zSc

(
−z + 1

2Sc

)
6= 0 .

Inequality 3 ) is valid due to the fact that if we as-
sume zSc = 1/2 and we substitute that in the equa-
tions obtained from 1 ) and 2 ) we get wrong equality
−e−zSc + 1 = 2zSce

−zSc .

4 ) fp(Sc, pc, 0) = 1
2pc

√
Sc

pc
6= 0 .

5 ) fr(Sc, pc, 0) = e−zSc 6= 0 .
6 ) C(pc) 6= f cr = e−zSc .

Inequality 6 ) is valid because if we assume x =
C(pc) = e−zSc when r → 0 and p = pc and substi-
tute into x = exp

(
κ
√
Sp(x− 1)− zS

)
we get: e−zSc =

exp
(
κ
√
Scpc(e

−zSc − 1)− zSc
)

which yields Sc = 0.
To obtain β we assume S → Sc and p → pc in

fS(Sc, pc, 0) = 0. Expanding f(S, p, 0) around S = Sc
and p = pc, noting that fS(Sc, pc, 0) = f(Sc, pc, 0) = 0,
and keeping the dominant terms gives

(S − Sc)2 = − 2fp(Sc, pc, 0)

fSS(Sc, pc, 0)
(p− pc) + ...

from which we obtain

(S − Sc) ∼ (p− pc)
1
2 .

0 0.2 0.4 0.6 0.8 1
-0.2

-0.1

0

0.1

0.2

FIG. C.1: f(S, p) as a function of S for different values
of p. Here one can see that at p = pc ≈ 2.4554/4 ≈ 0.61135
the condition fS(Sc, pc, 0) = 0 is satisfied.

FIG. C.2: The critical exponents γ (left) and δ (right)
for Eq. 4 in the main text with κ independent of r.
The derivation of the critical exponents is validated by solving
Eq. 4 in the main text which gives δ = 2 and γ = 1/2. Here
κ = 10.

Thus, β = 1
2 .

To find δ we set p = pc in Eq. (C.2) and analyze the

limit of r → 0. We consider x = f(S,p,r)
r , and rewrite

Eq. (C.2) as x = exp
[
κ
√
Sp(x− 1)− zS

]
. The dominant

balance of the equation for x and the conditions 0 <

FIG. C.3: The critical exponents γ measured directly
from the fluctuations. We find that γ = 1/2 and thus the
FDT is not violated.
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S, p < 1, imply that in the limit r → 0, x approaches a
constant whose value depends on p, denoted here C(p).
We let the superscript c denote that f is evaluated at
p = pc, S = Sc, r = 0. Expanding f around S = Sc, r = 0
(with fixed p = pc) and making use of the prior equation,
we obtain

x = f cr +
1

2
f cSS

(S − Sc)2

r
+ ...

whose RHS must be equal to C(pc). Thus, as long as
C(pc) 6= f cr it follows that

(S − Sc) ∼ r
1
2 ,

meaning δ = 2 as confirmed numerically in Fig. C.2.

To find γ we note that for r → 0+, x = C(p) + o(1).
Thus

f(S, p, r) = rC(p) + o(r).

Taking ∂r|p on both sides, r → 0 and rearranging for ∂S
∂r

gives,

∂S

∂r
=
C(p)− fr(S, p, 0)

fS(S, p, 0)
.

Expanding fr and fS , and substituting the result for scal-
ing of (S − Sc) with p− pc gives

∂S

∂r
=

C(pc)− f cr + ...

f cSS

√
−2f cp/f

c
SS(p− pc)

1
2 + ...

.

Therefore, to the leading term

∂S

∂r
∼ (p− pc)−

1
2 ,

giving γ = 1
2 as shown numerically in Fig. C.2.

In order to validate the FDT we measured γ directly
from the fluctuations as χ = N(〈S2〉−〈S〉2) ∼ (p−pc)−γ .
We find that γ = 1/2 and the FDT is not violated as can
be clearly seen in Fig. C.3.

Appendix D CRITICAL EXPONENTS -
ANALYTIC DERIVATION FOR A SINGLE

NETWORK (q = 0)

For the case of a single network the equation for the
giant component S is [28]

e−zS(r − 1) + 1− S

p
=

= r exp

(
κp(e−zS(r − 1) + 1− S

p − r)
r

− zS

)
. (D.1)

In order to derive analytically the critical exponents β, δ
and γ we let f(S, p, r) denote the LHS of Eq. (D.1). Thus

f(S, p, r) = r exp (κp(f(S, p, r)/r − 1)− zS) . (D.2)

In the limit of r → 0 we find f(S, p, 0) = 0 which recovers
the equation for a single ER network. Likewise, at criti-
cality fS(Sc, pc, 0) = 0. These yield Sc = 0 and pc = 1

z .
In addition, one can demonstrate the following:
1 ) fSS(Sc, pc, 0) = −z2 6= 0.
2 ) ∂n

p f(Sc, pc, 0) = 0.

3 ) ∂S∂
n
p f(Sc, pc, 0) = −∂np (1/p) 6= 0.

4 ) ∂S∂pf(Sc, pc, 0) = z2.
5 ) fr(Sc, pc, 0) = 1 6= 0.

To obtain β we assume S → Sc and p → pc in
f(S, p, 0) = 0. Expanding f(S, p, 0) around S = Sc and
p = pc gives

f(S, p, 0) = f(Sc, pc, 0) + fS(Sc, pc, 0)S + fp(Sc, pc, 0)(p− pc)+

+
1

2
fSS(Sc, pc, 0)S2 + fSp(Sc, pc, 0)S(p− pc) + ... = 0

Noting 1 ), 2 ) and 4 ) and keeping the dominant terms
gives

S = −
2f cSp
f cSS

(p− pc) + ... = 2(p− pc) + ...

from which we find

S ∼ (p− pc)1.

meaning β = 1.

To find δ we substitute in Eq. (D.1) p = pc and ana-

lyze the limit of r → 0. We now consider x = f(S,p,r)
r and

rewrite Eq. (D.1) as x = exp (κp(x− 1)− zS). Assum-
ing p = pc and r → 0 yields S → 0, thus, we can find x for
the zero-order term from x = exp (κ/z(x− 1)) which has
two solutions. The first solution is 0 < x1 < 1 and the
second is x2 = 1. Regarding the solution x2 = 1 we can
also find the first-order term by substituting x = 1 + ε,
which yields,

1 + ε = exp (κε/z − zS) = 1 + κε/z − zS + ...

and gives ε ∼ zS/(κ/z − 1). Expanding f(S, p, r) at
p = pc around S = Sc and r = 0 gives

f(S, pc, r) = f(Sc, pc, 0) + fS(Sc, pc, 0)S+

+ fr(Sc, pc, 0)r +
1

2
fSS(Sc, pc, 0)S2 + ...

Using x = f(S,p,r)
r with x2 = 1 + ε, noting 1 ) and 5 ) and

keeping the dominant terms gives

1 +
zS

(κ/z − 1)
∼ 1− (zS)2

2r
.

which yields S ∼ 2z
z−κr. However, this can not be true
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since κ � z and S > 0 implying that x2 is a spurious
solution. Therefore we will use x1 which gives

x = 1− (zS)2

2r
+ ... = x1 + ...

and keeping the dominant terms we find

S ∼ r 1
2 ,

i.e. δ = 2.
To find γ we note that for r → 0+, x = C(p) + o(1).

Thus

f(s, p, r) = rC(p) + o(r).

Taking ∂r|p on both sides and r → 0 gives

∂S

∂r
fS(S, p, 0) + fr(S, p, 0) = C(p).

Rearranging for ∂S
∂r gives,

∂S

∂r
=
C(p)− fr(S, p, 0)

fS(S, p, 0)
.

Expanding fr and fS , substituting the result for scaling
of (S − Sc) with p− pc and using 1 ), 4 ) and 5 ) gives

∂S

∂r
=

C(pc)− f cr + ...

f cS + f cSSS + f cSp(p− pc) + ...
=

=
1− x1
z2

(p− pc)−1 + ...

Therefore the leading term is

∂S

∂r
∼ (p− pc)−1.

giving γ = 1.

Appendix E ANALYTIC DERIVATION OF qc

In the main manuscript we showed that for low values
of q the transition is continues while for high values of q

the transition is abrupt. Here we will derive analytically
the transition point qc between these two behaviours. For
r = 0 Eq. 4 in the main text take the form

−S + (1− q)p[1− exp(−zS)] + qp2[1− exp(−zS)]2 = 0

and we denote the LHS as f(S, p, q). At the transition
point qc the following conditions are satisfied{

fS(0, pc, qc) = 0

fSS(0, pc, qc) = 0

and explicitly{
−1 + (1− qc)pcz = 0.

−z2(1− qc)pc + 2z2qcp
2
c = 0.

leading to

qc =
(z + 1)−

√
2z + 1

z
. (E.1)

Appendix F SUMMARY OF THE CRITICAL
EXPONENTS

In this table we summarize the values of the critical
exponents β, δ and γ for various percolation processes
on random network structures.

process β δ γ

regular percolation
(ER)

1 2 1

regular percolation
(SF) λ > 4

1 2 1

regular percolation
(SF) 4 > λ > 3

1/(λ− 3) depends on λ depends on λ

regular percolation
(SF) 3 > λ > 2

1/(3− λ) depends on λ depends on λ

interdependent
percolation(ER,SF)

1/2 2
1/2 (1 according
to the definition of
[33])

k-core percolation
(k ≥ 3)

1/2 2 1/2
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