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Modularity is a key organizing principle in real-world large-scale complex networks. Many real-
world networks exhibit modular structures such as transportation infrastructures, communication
networks and social media. Having the knowledge of the shortest paths length distribution (DSPL)
between random pairs of nodes in such networks is important for understanding many processes,
including diffusion or flow. Here, we provide analytical methods which are in good agreement with
simulations on large scale networks with an extreme modular structure. By extreme modular, we
mean that two modules or communities may be connected by maximum one link. As a result of the
modular structure of the network, we obtain a distribution showing many peaks that represent the
number of modules a typical shortest path is passing through. We present theory and results for
the case where inter-links are weighted, as well as cases in which the inter-links are spread randomly
across nodes in the community or limited to a specific set of nodes.

I. INTRODUCTION

The study of complex networks gains extensive interest
in the last years as networks successfully model and lead
to better understanding of many real world systems and
processes in which interacting objects are involved. In
these models, objects are represented as nodes, and the
interactions by links [1–7].

Many real world networks exhibit a modular or com-
munity structure [8–11]. That is, a network is comprised
of smaller networks (called communities, or modules)
that are highly connected within themselves (by intra-
links), and have a lower number of links between them
(inter-links), which is a key to their structure and func-
tion. For demonstration, see Fig. 1. Knowing the dis-
tances distribution within networks with such topology
is important for many reasons such as designing fast-
communication, navigation, disease spreading and for op-
timizing processes on large graphs.

For each random pair of nodes i and j in the network,
many paths can exist, or non at all. The distance be-
tween a pair of nodes is naturally defined as the shortest
path length among all the paths existing between them.
Distribution of shortest paths are expected to depend on
the network structure and size. However, apart from a
few studies [12–17], the shortest paths length distribu-
tion (DSPL) despite its importance, attracted little at-
tention. Recent studies developed analytical methods to
compute the DSPL in Erdős-Rényi and configuration-
model networks [18, 19]. Another paper studied the
DSPL in modular random networks [20], testing the con-
ditions in which the number of inter-links between two or
more modules control the network topology. This means,
answering the question ”how many links between two
modules are needed in order to unite them into one?”.
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FIG. 1: Illustration of the model. We study networks that
comprise M modules, each of which has the same degree dis-
tribution, same topology and same size, n. Thus, we study a
modular network with a total of M×n = N nodes. The upper
picture shows the whole network, where nodes of each module
have different color. The lower picture, is a projection of the
upper network, showing the outer network, where each node
represents a module. We start by constructing each module
according to a given topology, mean degree (kin) and links
distribution, and then construct the outer network which has
its own topology, mean degree (kout) and links distribution,
where we consider each module as a node. Two modules can
be connected by a maximum of one link. In section III we
provide an analysis of different network topologies.

Adding more inter-links results in a change of the SPL
distribution, which approaches a δ function as we add
more inter-links. Still, the case where the connections
between the modules is itself a complex network, mean-
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ing that the inter-links are determined according to a
given outer network, an analytical approach for finding
the DSPL has not been developed yet.

As a motivation for the present study, we analyzed the
distance distribution (DSPL) in the Internet routers-IP
autonomous systems (AS) network. Each AS functions
as a community, and contains routers IPs which are the
nodes inside the community. The data were obtained
from the center of applied Internet analysis (Caida) [21].
Several studies have been performed on distances in the
Internet [22–24], here we want to point out a specific phe-
nomena which occurs when more and more inter-links are
removed. In this case, a wavy distribution emerges. In
Fig. 2 we show the distance distribution (DSPL) of our
data for different values of maximal inter-links degrees.
By limiting the number of inter-links of an AS, we mimic
a situation in which the Internet network undergoes an
attack or power shortage. We can observe in Fig. 2 mul-
tiple peaks for the DSPL after such an attack, represent-
ing the modules passed by the shortest path. This phe-
nomena motivates us here to develop a simplified model
of extreme community structure which exhibits a wavy
DSPL, and we study this analytically in order to better
understand this phenomena.

In this paper we develop an analytical approach for
obtaining the DSPL of a modular network. Our theory
calculates the DSPL of the network given the shortest
path distribution within one module (in net), and the
DSPL of the network that connects the modules by treat-
ing each module as a node (out net). Our method holds
for any inner and outer network topologies, and not only
for random networks. The model we suggest assumes
an extreme community condition where each module I
is connected to module J with a maximum of one link
that connects two randomly chosen nodes in both mod-
ules. Another condition we assume here is that the outer
network has no small loops as explained in detail below.
In order to better simulate real world phenomena, such
as routing and transportation between cities or countries,
our model assumes a weight w for inter-links, where intra-
links weight is set to 1. We further include analysis of
various cases in which inter-links are limited to a spe-
cific set of nodes rather than being chosen randomly from
the inner network. Analytic analysis of specific network
topologies is also included.

The paper is organized as follows: In Sec. II A we
present the basic model and theory we use to find the
DSPL. In sections II B and II C we extend the theory for
different inter-links configurations. In Sec. III we present
our results of DSPL, from both our theory and simula-
tions of selected network topologies. More comprehensive
mathematical analysis of some specific cases of network
of networks is presented in more detail in the Appendix.

FIG. 2: Analysis of autonomous systems (AS) dis-
tances distribution for different values of maximal
number of inter-links outgoing from one module (max
degree). AS data was obtained from Caida and was collected
using MIDAR-iff, where router topology based on aliases
discovered by MIDAR, iffinder, and kapar. The data con-
tained approximately 100 million nodes which are assigned
into 47,000 communities (AS). a node that connects two dif-
ferent ASs is an inter-linked node. Here we consider a case
in which the Internet network undergoes a deliberate attack
or experience node failures due to lack of electricity supply
on inter-links between AS. We expect that inter-linked nodes
fall with higher probability, due to their high betweenness
centrality (in case of a deliberate attack) or high power de-
mand in the case of power outage). We examine the distance
distribution for those cases, allowing different maximal inter-
link degree of an AS. Here, distance is defined as the shortest
path length between two nodes in the graph. Note the wavy
pattern of the distribution.

II. MODEL AND THEORY

A. Basic model

Let a network consist of m communities, or modules.
Each module is assumed to be of the same size and
constructed in the same fashion (or just with the
same distances distribution), e.g., Erdős-Rényi, scale-
free (SF), random regular (RR), lattice or any other
structure. An outer network, which also can take any
structure, regards every module as a node. Therefore
we obtain a ”large” network which comprises modules,
and another network on top of it which connects those
modules as illustrated in Fig. 1.

Our model assumes the following:
1 . There is at most one inter-link between two modules.
2 . The inter-links connect between pairs of random
nodes of two modules.
3 . inter-links have a weight w (integer), while the weight
of intra-links is 1.
4 . The outer network has no small loops.
5 . As a consequence of 4 , an outer shortest path
between modules in the outer network is single and



3

the second outer shortest path is much longer than it.
Therefore, the shortest path in the whole network, in
most cases, will pass through the shortest path of the
outer network.

It is important to notice that while assumptions 4 and
5 hold for short distances, they partially fail for the
long distances in the network. Hence, we expect slight
deviations at the end of the distribution, as seen in
general in the figures. Random sparse networks, for
instance, exhibit locally tree-like behavior [25]. The
range of this behavior is up to the average distance of the
network approximately [26], therefore for these networks
our theory is accurate up to the average distance of the
network, and then it has slight deviations as we show
below. For 1D lattice, for example, assumptions 4 and 5
are valid up to the longest distances, whereas for a 2D
lattice, the assumptions fail.

Now, the shortest path length (SPL) distribution in each
module (inner paths) is P inl , and has the generating
function Gin(x) =

∑∞
l=0 P

in
l xl. Likewise, the SPL

distribution of the outer network is P outl and has the
generating function Gout(x) =

∑∞
l=0 P

out
l xl.

According to the above assumptions, one can find that
the SPL between two random nodes in the network sat-
isfies

d =

lout+1∑
i=1

lini + wlout, (1)

which yields

d+ w =

lout+1∑
i=1

(lini + w), (2)

where d is the total distance between two random
nodes, lout is the external shortest path length between
the communities those nodes reside in, and lini is the
internal distance between nodes in the same community
which function as the connecting nodes between the
communities in lout. See illustration in Fig. 3.

This is a sum of independent random variables where
the number of elements of the sum itself, is also a ran-
dom variable. Then we can use known theorems [27] to
conclude the following results.
First, from Walds identity,

〈d+ w〉 = 〈lout + 1〉〈lin + w〉,

which gives

〈d〉 = (〈lout〉+ 1)(〈lin〉+ w)− w. (3)

This result suggests that in small world networks the
extreme modularity condition makes the average distance

FIG. 3: Illustration of the problem and the theory.
Consider two random nodes i and j, which reside in different
modules mi and mj . In order to reach via the shortest path
from node i (source) to node j (target), one has to walk as
follows. First, to find the outer shortest path that connects
the modules (lout). Next, to look for the shortest path within
mi to the node that connects the source node to a node that
resides in the next module of lout, which is denoted by lin1 in
the figure. We iterate this process again in the next modules
on the path, until we finally land in our target node. Our
total path length will be d =

∑
lini + wlout.

much longer. Furthermore, for the generating functions
one can write[

xwGd(x)
]

=
[
xGout(x)

]
◦
[
xwGin(x)

]
xwGd(x) = xwGin(x)Gout(x

wGin(x)),

where Gd(x) is the generating function of Pd, the prob-
ability distribution of d, and ◦ is a composition of func-
tions.
Thus, we get

Gd(x) = Gin(x)Gout(x
wGin(x)). (4)

Since we have the generating function of the shortest
path distribution we are consequently able to find Pd by
derivation or integration (Cauchy formula) numerically
by

Pd =
G

(d)
d (0)

d!
=

1

2πi

∮
Gd(z)

zd+1
dz (5)

where the integral is performed on a close path around
z = 0 in the complex plain. This integral is far more
simple to compute numerically than computing high
derivatives. A simple contour can be a canonical circle
with r = 1.

See Appendix A where we analyze analytically few spe-
cific cases of network of networks topologies. Including,
1-2D lattices, Poisson distance distribution, two modules
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and star graph. We find for these cases explicitly all or
part of the following expressions. Gin/out(x), Gd(x) and
Pd. For two modules with Poisson DSPL we find analyt-
ically also a condition for the appearance of two peaks
rather than one peak, see Eqs. (A.19) and (A.20) and
Figs. A.3 and A.4.

B. One node has all the inter-links in each module

When analyzing the internet data (AS) that was men-
tioned above, we noticed the fact that many inter-
connected nodes have multiple inter-links. In order to
cover other realistic cases such as this, we consider also
the scenario in which all the inter-links of a module go
out and in from the same single inter-connected node,
rather than from random nodes as the above model, see
Fig. 4. This situation changes the distance significantly,

d = lin1 + lin2 + wlout,

and if lout = 0 then d = lin (because the source and the
target reside in the same module). Hence

Gd(x) = Gout(0)Gin(x)+

[Gout(x
w)−Gout(0)] [Gin(x)]

2
.

(6)

FIG. 4: Illustration of the model in section II B. Here,
each module has only one interconnected node to which all
the inter-links of this module are connected.

C. Different cases of inter-links connections

In this section, we consider the case in which, when
entering a module via an interconnected node i, we leave
this module via different interconnected node j with
probability p, or, when departing the module via the
same node with probability 1− p. See Fig. 5.

FIG. 5: Illustration of the model in section II C. (a)
In this scenario we enter the community through node i and
leave the community with probability p through a different
node j, with addition of a tour inside the community. (b)
Here, with probability 1− p, the arrival and the departure to
and from the community is from the same node.

In appendix B we find that for this case

Gd(x) = Gout(0)Gin(x)+

[Gin(x)]
2 Gout

(
xw
(
1− p+ pGin(x)

))
−Gout(0)

1− p+ pGin(x)
.

(7)
One can see that the last equation converges nicely to
those of chapters II A (Eq. (4)) and II B (Eq. (6)) at the
limits p = 1 and p = 0 respectively.

III. RESULTS

Fig. 6 compares between theory and simulations for
different network layouts and parameters where the
inter-links have the same length as the inner links, i.e.
w = 1. In general the figure shows a good agreement
between theory and simulations.
It is important to notice the distance distribution
exhibits a wavy behavior on top of a hill envelope. The
intuitive explanation for this is that each hill represents
paths between nodes in two modules that have the same
outer distance. The first hill comes from paths between
nodes inside the same module, while the second hill
comes from paths between neighboring modules, which
are about twice longer due to their consistency of two
inner paths - the first, in the source module, from the
source node to the interconnected node inside the source
module, and the second, from the interconnected node
in the target module, to the target node. The second
hill is higher because there are more paths between
neighboring modules than paths within a single module.
In other words, in the outer network (in between
modules), there are more shortest paths with lout = 1
than with lout = 0. The same holds for the third hill
(lout = 2) and so on. That is to say, what rules the
hills’ heights is the outer SPl distribution, therefore we
get a bell shaped envelope which comes from the outer
network distribution, and upon it hills which come from
inner networks distribution.

Note that, for the long distances there is a slight de-
viation between the theory and the simulations results.
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FIG. 6: Results of distance distribution in several types of modular networks with uniform links weight (w = 1).
In (a) we show the case of ER×ER (outer network ER, modules ER), with M = 102 (number of modules), kout = 4, n = 103

(size of each module) and kin = 4. Theory, simulations mean and simulations standard deviation (shaded area) results are
shown. (b) The same as (a) except that kout = 2. In (c) we show RR of SF (out: RR, in: SF) where M = 102, kout =
3, n = 103, kin0 = 2 and the power law degree exponent is γin = 3. In (d) we show RR of WS (WattsStrogatz model) where
M = 102, kout = 3, n = 103, kin = 4 and β = 0.5. Simulation results were taken over 10 realizations. In all cases one can
see a good agreement between theory and simulations except for slight deviations at large distances, the reason of which is
discussed in the text. The wavy distributions found here are significantly wider than a distribution of a single network, due to
the extreme modular structure. In a single ER network, the mean distance is given by 〈d〉 ≈ ln(N)/ln(k), where in our model
in the case of ER×ER the mean distance is 〈d〉 ≈ (ln(n)/ ln(kin) + 1)(ln(M)/ ln(kout) + 1)− 1. See Eq. (3).

This can be explained by the fact that in theory we ne-
glect loops in the outer network, while in practice, for
finite networks, there are long loops (the short ones are
negligible). The long loops causes that there are modules
far from each other have few outer similar paths between
them. This multiplicity of similar outer paths shortens
the distance from a source node to a target node because
the shortest path is chosen among them. In this case,
we will need to find the minimum of similar independent
random variables, which is different (lower) than the ex-
pectation value relative to the random variables.

Fig. 7 shows the results for the distance distribution
for the extreme modular network, both theory and sim-

ulations, where inter-links are weighted with w = 10.
It can be seen that the separation between the hills be-
comes more significant because paths between modules
with different outer distances have dramatically different
lengths as a result of the length of the inter-links. Within
a single 2D lattice there is a broad distance distribution
because the system is not a small world network. As
a result when the inter-links are not much longer than
the inner ones, the wavy behavior vanishes because the
widths of hills are large so they become blended together.
However, when w is sufficiently large, the waves are very
distinct.

Fig. 8 shows the results of Eq.(7), for various values of
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FIG. 7: Weighted inter-links cases. Assuming a weight w to inter-links, results for random and lattice networks are shown.
In (a) we show a ER of ER network with the parameters M = 102, kout = 3, w = 10, n = 103 and kin = 3. Theory,
simulations mean and simulations standard deviation (shaded area) results are shown. In (b) we show a RR of L2D (outer:
RR, inner: 2D lattice) network with the parameters M = 102, kout = 3, w = 10 and n = 102. In (c) we show L1D of L2D
(outer: 1D lattice, inner: 2D lattice) with M = 15, w = 10 and n = 121 and the theory is from the explicit formula in the
appendix. In (d) we show a RR of L2Dperc (2D lattice with percolation where fraction q of random nodes was removed)
network with the parameters M = 102, kout = 3, w = 10, n = 102 and q = 0.2. For this case, we test the DSPL in the giant
connected component. All cases show exclusive distances distribution and good agreement between theory and simulations.

p. This model suits a more realistic case, in which there
is a probability p of accessing and leaving a community
through a different or the same (1 − p) interconnected
node. Note the reduction in the number of waves when p
approaches 0, which is the case in which no intra-module
paths were taken.

In order to examine the emergence of the wavy distri-
bution, we regulate the parameter n, modules size. We
show in Fig. 9a that where n is very small the network
acts as a single network, of course. However, when we
increase n more and more, at some point the wavy pat-
tern appears and becomes more and more clear. In the
Appendix Sec. A 5, we find analytically a criterion for
the emergence of a wavy distribution in a network of two
modules. In Fig. 9b we show by changing the outer av-

erage degree, kout, how the sparsity of the outer network
affects the waviness of the distribution.

IV. DISCUSSION

In this paper we develop a framework to find analyti-
cally the distance distribution within networks with ex-
treme community structure given the distributions of the
inner and outer networks. We study here a model where
we assume there is at most a single inter-link between
modules. We showed that the SPL distribution has a
wavy pattern in good agreement with simulations. Fu-
ture work can investigate the validation of this model
for real networks, where multiple links between modules
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FIG. 8: Impact of the parameter p in both theory (a) and simulations (b). Results of Eq. (7) where the network is
formed as follows. Out: RR, M = 100, k = 3, w = 1. In: RR, n = 1000, k = 4. where (a) shows the theory, Eq.(7), and (b)
shows simulation results. The values of p in simulations were found by sampling many realizations of random shortest paths
and measuring how many times each path goes in and out a module through different interconnected nodes and how many
times via the same node. Results show good agreement between theory and simulations.

FIG. 9: Impact of the modules size and the outer degree on the wavy distribution. In (a) the network parameters
are Out: ER, M = 100, k = 3, w = 1. In: ER, k = 4 and n changes. The results were averaged over 5 realizations of
simulation. In (b) all the parameters are the same, except n = 1000 and kout changes.

exist.
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Appendix A: Specific networks

1. 1D lattice

Consider a 1D lattice with periodic boundaries with
size L, where L is odd, for simplicity. The distances
frequency of each node from all other nodes is given by

Nl =


1, l = 0

2, 1 ≤ l ≤ (L− 1)/2

0, l > L/2

, (A.1)

where Nl is the number of nodes in distance l from the
source node. Then, the distance distribution, Pl, is ob-
tained by

Pl = Nl/L. (A.2)

The generating functions of Nl and Pl satisfy

GN (x) = −1 + 2
(

1 + x+ ...+ x(L−1)/2
)

= −1 + 2
1− x(L+1)/2

1− x
,

GP (x) = GN (x)/L.

(A.3)

Thus,

G1D(x) = GP (x) =
1

L

(
−1 + 2

1− x(L+1)/2

1− x

)
. (A.4)

Comment: In Eq. (A.1) we counted twice the distances
between different nodes i and j ((i, j) and (j, i)), and
only once the distance (0) between a node i to itself.
The reason is that we define Pl as the probability of the
distance between two random nodes to be l. Indeed the
probability to choose different nodes i and j is twice as
large as the probability to choose the same node i twice.
Note, it matters only for the value of P0.

2. 2D lattice

Consider a 2D square lattice with periodic boundaries
and size L×L. For simplicity, we assume that L is odd.
Then, the distances of each node from all other nodes
have the following frequency

Nl =


1, l = 0

4l, 1 ≤ l < L/2

4(L− l), L/2 < l ≤ L
0, l > L

, (A.5)

and the distance distribution is

Pl = Nl/L
2. (A.6)

We note that Nl is obtained by a convolution of the series
al and bl, where

al =

{
1, 0 ≤ l < L/2− 1

0, l > L/2− 1
, bl =

{
1, 0 ≤ l < L/2

0, l > L/2
,

(A.7)
such that {

N0 = 1

Nl+1 = 4(al ∗ bl)
. (A.8)

As a result, the generating functions of these sequences
(al, bl, Nl, Pl) satisfy{

GN (x) = 1 + 4xGa(x)Gb(x)

GP (x) = GN (x)/L2
. (A.9)

But note that

Ga(x) = 1 + x+ ...+ x(L−3)/2 =
1− x(L−1)/2

1− x
.

Gb(x) = 1 + x+ ...+ x(L−1)/2 =
1− x(L+1)/2

1− x
.

(A.10)

Therefore, we obtain

G2D(x) = GP (x)

=
1

L2

(
1 + 4x

(1− x(L−1)/2)(1− x(L+1)/2)

(1− x)2

)
.

(A.11)

3. 1D lattice of 2D lattices

Consider a circle of square lattices that are intercon-
nected with one inter-link between two random nodes
from neighboring lattices. The inter-links have weight w
while the intra-links have weight 1. Then, the distance
distribution is obtained according to Eq. (A.4), (A.11)
and (4) by

G1D×2D(x) = G2D(x)G1D(xwG2D(x)). (A.12)

This result is shown in Fig. 7c.

4. Poisson distance distribution

To get insight of the wavy distribution, we assume here
that the network has a Poissonian distance distribution.
This will enable us to obtain analytically the DSPL in
our model of extreme modular networks. Indeed random
networks have in certain parameters range a distance dis-
tribution which can be approximated by a Poissonian dis-
tribution, as shown in Fig. A.1. This changes with the
degree and the network size significantly. For higher de-
grees it does not work so well, while for small degrees it
does.
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FIG. A.1: Test of Poisson approximation for ER DSPL.
Simulations were performed over ER network with k = 2
(top) and k = 4 (bottom). Marked lines represent simulation
results and unmarked lines are Poissonian distributions with
the same mean. For k = 2 the approximation is good, while
as n increases further it becomes less accurate. However when
k = 4, there is a large deviation between theory result and
simulations even for small system size. Generally, we see a
difference that Poisson distribution has a standard deviation√
λ where the average is λ, while the DSPL does not change

its standard deviation while changing its average for large n.

Thus, under proper conditions, if

Pl =
λl

l!
e−λ, (A.13)

where λ = 〈l〉, then the generating function is as known

G(x) = eλ(x−1). (A.14)

Now, if both inner and outer networks have approxi-
mately Poisson distribution, then for Pd it is satisfied
according to Eq. (A.14) and (4) that

Gd(x) = eλin(x−1)eλout(x
weλin(x−1)−1), (A.15)

where λin = 〈lin〉 and λout = 〈lout〉.
Still, it is difficult to find an explicit expression for the

Taylor coefficients, which are Pd, in order to find some
criteria for the emergence of wavy distribution. However,
numerical calculation shows that if 〈lin〉 is large enough
relative to 〈lout〉, then the wavy pattern appears. See
Fig. A.2.

FIG. A.2: Both inner and outer networks have Poisson
distance distribution. Analytical results of Eqs. (A.15) and
(5) where 〈lout〉 = 5.

5. Two modules

To better understand the transition from a single peak
to wavy distribution of distances, we study here a simple
case which can be fully analyzed analytically. To this
end, we study a network of two connected nodes that
satisfies P0 = 1/2, P1 = 1/2 and Pl = 0 for any other l.
Hence, the generating function is

Gtwo(x) =
1

2
(1 + x). (A.16)

Let a network of two modules which have a Poisson
DSPL. Then, according to Eqs. (A.16), (A.14) and (4)
we obtain

Gtwo×Poisson(x) =
1

2
eλ(x−1)

[
1 + xweλ(x−1)

]
, (A.17)

where λ = 〈lin〉.
Then we can find the coefficients of the Taylor series

Gtwo×Poisson(x) =
1

2

∞∑
d=0

λd

d!
e−λxd+

1

2

∞∑
d=0

(2λ)d

d!
e−2λxd+w,

that yields

Pd =

{
1
2
λd

d! e
−λ, d < w

1
2
λd

d! e
−λ + 1

2
(2λ)d−w

(d−w)! e
−2λ, d ≥ w

. (A.18)

If w = 1 then for d ≥ 1

Pd =
1

2

λd

d!
e−λ

(
1 +

d2d

2λ
e−λ

)
.
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Next, we find the ratio

φ(d, λ) :=
Pd+1

Pd
=

λ

d+ 1

2λ+ (d+ 1)2d+1e−λ

2λ+ d2de−λ
. (A.19)

This ratio indicates whether the series Pd increases (φ >
1) or decreases (φ < 1). From Fig. A.3 one can see that

FIG. A.3: Analysis of Pd, for two modules having Pois-
sonian DSPL with average λ. The plot shows the ratio
Pd+1/Pd according to Eq. (A.19). If the ratio is greater than
1 then Pd increases, and if the ratio is lower than 1 then Pd

decreases. In this analysis the inter-links weight w = 1.

for small λ (λ = 4) Pd increases up to some value and
then decreases. In contrast, for large λ (λ = 10) Pd in-
creases again after decreasing, which indicates a wavy
pattern. However, in the transition (λ = 6.27) two con-
ditions are satisfied.

I φ(dc, λc) = 1

II ∂φ
∂d (dc, λc) = 0

. (A.20)

Numerical solution of these equations yields λc ≈ 6.27.
Namely, for two modules which have Poisson DSPL, if
〈lin〉 > 6.27, then two peaks will appear. Assuming each
module is ER with kin = 2 (See fig. A.1), we find nu-
merically that the required size should be approximately
n = 160 in order to satisfy 〈l〉 > 6.27. See Fig. A.4 where
the simulations results are consistent with this predic-
tion.
For different values of w a similar analysis can be done.
Higher values of w yield lower values of λc. As example,
we find numerically that λc ≈ 3.31 where w = 2.
In contrast, where w = 0, then λc ≈ 8.38.

6. Star graph

A star graph with n nodes has the following distance
distribution

Nl =


n, l = 0

2(n− 1), l = 1

2
(
n−1
2

)
, l = 2

, (A.21)

FIG. A.4: Emergence of multiple peaks in two mod-
ules with Poisson DSPL. The upper panel is from theory
(Eq. A.18), and we see that the emergence of two peaks is
for 5 < 〈lin〉 < 7 which is in agreement with the value found
λc = 6.27. In the lower panel we show simulations of ER
with k = 2, and one can see that the transition is slightly
above n = 150, consistent with the finding that approximately
n = 160 gives 〈l〉 = 6.27. It works well for k = 2 because for
this range the Poisson approximation holds well as shown in
Fig. A.1.

and Pl = Nl/n
2. Then

Gstar(x) = P0 + P1x+ P2x
2. (A.22)

P1 is about twice P0, and P2 is about n times P0. Thus,
for outer network star graph, if the inner network is such
that there are separated peaks, there will be three peaks
where the third one is much higher depending on n.

Appendix B: Different cases of inter-links
connections

In this section, we analyze in detail the case of section
II C for which, when entering a module via an intercon-
nected node i, we leave this module via different inter-
connected node j with probability p, or, when departing
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from the module via the same node with probability 1−p.
See Fig. 5.

We denote lcon as the length of the path within the
module which was taken during the course, excluding
the first and the last modules. Thus, with probability
1 − p, lcon = 0 (when entering and exiting were via the
same node), and with probability p, lcon = lin (when
entering and exiting the module has been done via dif-
ferent nodes). In the latter case, the distance between the
two interconnected nodes is the typical random distance
within the module. Therefore,

d = lin1 + lin2 + wlout +

lout−1∑
i=1

lconi

= lin1 + lin2 + w +

lout−1∑
i=1

(lconi + w) ,

(B.1)

and if lout = 0 then d = lin. Hence,

Gd(x) = Gout(0)Gin(x) + [Gin(x)]
2
xw×(

[Gout(x)−Gout(0)] /x
)
◦
(
xw
(
1− p+ pGin(x)

))
.

As a result

Gd(x) = Gout(0)Gin(x)+

[Gin(x)]
2 Gout

(
xw
(
1− p+ pGin(x)

))
−Gout(0)

1− p+ pGin(x)
.

(B.2)
Note that the last equation converges nicely to those of
chapters II A (Eq. (4)) and II B (Eq. (6)) at the limits
p = 1 and p = 0 respectively.


