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Abstract

Non-periodic arrangements of inclusions with incremental linear negative stiffness embedded

within a host material offer the ability to achieve unique and useful material properties on the

macroscale. In an effort to study such types of inclusions, the present work develops a time-

domain model to capture the nonlinear dynamic response of a heterogeneous medium containing

a dilute concentration of subwavelength nonlinear inclusions embedded in a lossy, nearly incom-

pressible medium. Each length scale is modeled via a modified Rayleigh-Plesset equation, which

differs from the standard form used in bubble dynamics by accounting for inertial and viscoelastic

effects of the oscillating spherical element and includes constitutive equations formulated with in-

cremental deformations. The two length scales are coupled through the constitutive relations and

viscoelastic loss for the effective medium, both dependent on the inclusion and matrix properties.

The model is then applied to an example nonlinear inclusion with incremental negative linear stiff-

ness stemming from microscale elastic instabilities embedded in a lossy, nearly incompressible host

medium. The macroscopic damping performance is shown to be tunable via an externally applied

hydrostatic pressure with the example system displaying over two orders of magnitude change in

energy dissipation due to changes in pre-strain. The numerical results for radial oscillations versus

time, frequency spectra, and energy dissipation obtained from the coupled dynamic model captures

the expected response for quasi-static and dynamic regimes for an example buckling inclusion for

both constrained and unconstrained negative stiffness inclusions.
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I. INTRODUCTION

Mechanical metamaterials with designed elastic instabilities have been of increasing in-1

terest in recent years. One type of these engineered subwavelength structures achieves the2

desired negative effective properties through unstable elements, which are described by a3

fourth-order, non-convex potential energy function [1, 2]. The pioneering work of Lakes and4

colleagues proved that composite materials with a negative stiffness phase yield extreme ma-5

terial properties that exceed that of its constituents [3–8]. Research on related topics over6

the last two decades includes analyses on bounds of effective medium moduli and macro-7

scopic stability of materials containing negative stiffness phases [4, 5, 9, 10], ferroelectric8

materials undergoing a phase transition [6, 7, 11], mass-spring systems [8, 12, 13], and beam9

structures [14–19].10

One application of interest is the ability to efficiently dissipate the mechanical energy of11

acoustical and vibratory disturbances. The ability to increase damping or provide vibration12

isolation using nonlinear [20] and quasi-zero stiffness [21] springs has also been long studied,13

and is often applied to low-frequency vibration isolation systems. More recent efforts include14

nonlinear energy sinks, where dissipation of vibrations incident on a linear structure is15

enhanced by transferring the energy to a nonlinear energy sink consisting of a purely cubic16

nonlinear attachment [22] and further improved with the addition of a negative linear spring17

component [23]. Increased effective damping has also been demonstrated through buckling18

elements in single structures [14, 15, 17], periodic lattices [18, 19], layered composites [24, 25],19

and small-scale inclusions [16, 26–28].20

Furthermore, periodic arrangements of mechanical instabilities allow for tunable wave21

propagation. Geometric and material nonlinearity offer the ability to study small, linear22

acoustic propagation for large pre-stresses imposed on buckling structures [29–31]. Other23

metastable systems study the nonlinear propagation of solitary waves [12, 32, 33]. While24

this offers the ability to create nonreciprocal lattices [31, 34], phononic switches with tunable25

band gaps [29, 30], and stable propagation through soft lattices [33], these phenomena all26

currently rely on periodicities of the structure. Of interest in the current work is instead27

the study of tunable wave phenomena in a heterogeneous medium containing randomly28

distributed inclusions.29

Only a dilute concentration of negative stiffness inclusions may be required to obtain in-30
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creased damping in a composite material [4, 16]. If the magnitude of the inclusion stiffness31

is comparable to the surrounding matrix material, the deformation at the inclusion surface32

is much larger than at the boundary of the composite. The associated high localized strains33

result in enhanced energy dissipation for a viscoelastic solid [4]. However, previous research34

on the dynamic behavior of randomly dispersed, negative stiffness inclusions often focus on35

the quasi-static [4, 16, 17] or low-frequency response [7, 26, 28]. With the advancements in36

manufacturing methods, the fabrication of complex, small-scale inclusions for acoustic appli-37

cations [28] is becoming increasingly accessible, which necessitates more advanced, dynamic38

models that capture the nonlinear, multiscale behavior of these heterogeneous materials.39

The present work develops a multiscale material model for a random distribution of nega-40

tive stiffness inclusions within a matrix material to study the linear and nonlinear dynamics41

due to an acoustic perturbation. Such dynamic models are not only valuable to predict the42

macroscopic response, but also for optimization and design purposes to target specific ap-43

plications. Section II presents the theoretical models used in the present analysis, including44

the incremental deformation theory and the coupling of an ordinary differential equations45

utilized at each scale. In Section III, different regimes are explored for an illustrative inclu-46

sion design with mechanical instabilities to demonstrate the functionality and validity of the47

model, including that of an unstable inclusion presented in Section III B and an inclusion48

constrained within the negative stiffness regime in Section III C.49

II. THEORETICAL MODEL50

The theoretical model presented in this paper couples concepts of incremental deforma-51

tion theory [35], multiscale homogenization of a heterogeneous medium containing spherical52

negative stiffness inclusions [5, 27], and nonlinear dynamics [36, 37] to captures the acoustic53

response of an effective medium containing a dilute concentration of non-interacting hyper-54

elastic inclusions. The model is applicable to both low and high excitation amplitudes. The55

macroscale is shown in Fig. 1(a) as an effective medium sphere with radius R∗ embedded in56

a matrix material. The change in radius is determined by the total pressure on the surface57

of the effective medium sphere P ∗total. Within the effective medium is a dilute concentration58

of non-interacting nonlinear inclusions, as depicted by the single inclusion with radius RI59

within the matrix in Fig. 1(b). Once again, the change in radius is due to the total pressure60
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FIG. 1. Schematic for the (a) macroscale showing an effective medium sphere within a matrix

being driven by an external pressure Pext and (b) microscale with a single inclusion embedded in

a matrix being driven by an external pressure Pext.

on the surface of the inclusion, given by P I
total.61

The total pressure on each scale consists of: (i) an internal pressure, (ii) an effective62

pressure due to the shear stress of the matrix, and (iii) the time harmonic and/or static63

work done by an external force far away from the surface. For heterogeneous media under64

isostress conditions, such as suspensions or emulsions, P I
total = P ∗total. The present analysis65

is currently limited to fluid or fluid-like (nearly incompressible) elastic media for which66

the isostress assumption is valid. However, for compressible media, the localization of the67

external forcing pressure on the macroscale to that of the microscale is required.68

The dynamic response of a gas bubble in a fluid may be modeled as a forced, nonlinear69

oscillator through the Rayleigh-Plesset equation. Previous extensions of the Rayleigh-Plesset70

equation accounted for the effects of a nearly incompressible matrix material [36–38], and the71

moving mass of an object with non-negligible inertia [39]. The present work further extends72

the models in Refs [36, 38, 39] to account for the inertial effects and loss mechanism of an73

oscillating sphere within a matrix through incremental deformation theory. More detail on74

the modified Rayleigh-Plesset equation utilized here can be found in Ref [27].75

In the interest of simplicity, the constitutive relation for the matrix in the present work is76

equivalent to a linear Kelvin-Voigt material, which in turn is equivalent to the viscoelastic77

stress tensor developed by Landau and Lifshitz [40]. The corresponding dissipative energy78

function developed by Landau and Lifshitz [40] may then be incorporated directly in La-79

granges equation for a dissipative system. In the case of a nonlinear inclusion embedded in80

a linear matrix, the result is a Rayleigh-Plesset-type equation for the dynamical response of81

the inclusion [27, 38].82

While the Kelvin-Voigt model of the matrix may not be optimal because it does not83
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account for relaxation, it is a reasonable starting point for investigating the dynamic response84

of a nonlinear inclusion embedded in a nearly incompressible elastic medium with losses.85

For example, the Kelvin-Voigt model is used to investigate bubble dynamics in soft tissue,86

also assumed to be nearly incompressible and lossy [41, 42], and wave propagation through87

viscoelastic media containing encapsulated, fluid-filled spherical inclusions [43]. Insofar as88

the focus of the present work is on the nonlinear dynamics of the inclusion, the Kelvin-Voigt89

model for the surrounding matrix is appealing not only due to its analytical simplicity but90

also because it reproduces the dissipation term that appears in the much-studied Rayleigh-91

Plesset equation for bubble dynamics in liquids.92

Although the matrix material is simplified in the present work with respect to both93

the constitutive relationship and loss mechanism, this initial study opens several avenues94

of future research. For example, future work can explore alternative viscoelastic material95

models for the matrix based on generalized Kelvin-Voigt, Maxwell, and Zener models [44, 45],96

or more complex general viscoelastic compressibility to account for viscoelastic loss, and97

damping due to acoustic radiation loss [46, 47]. Furthermore, the addition of compressibility98

[37, 48] or use of alternative nonlinear constitutive relationships for the matrix [42] can also99

be considered. Since the choice of a specific model becomes important for different materials,100

applications, and regimes of operation, the present work provides an initial basis to pave101

the way for more complex models in the future.102

A. Microscale Dynamics103

The form of the Rayleigh-Plesset-type equation solved numerically in the present work104

for the microscale inclusion is [27]105

(ρM + ρI/5)RIR̈I +
3

2
ρMṘ

2
I = P I

total − (3ζI + 4ηM)
ṘI

RI

, (1)106

which is a function of the following parameters: the instantaneous density of the inclusion107

ρI and the static equilibrium density of the matrix ρM, which is approximately constant for108

a nearly incompressible matrix; the instantaneous radius RI, and the first and second time109

derivatives (denoted with overdots) of the instantaneous radius ṘI and R̈I; loss terms related110

to the imaginary component of the inclusion bulk modulus ωζI and matrix shear modulus111

ωηM; and the total pressure on the surface of the inclusion P I
total. The total pressure is defined112
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by the internal pressure of the inclusion PI, the pressure due to the shear stress of the matrix113

PMI, and the negative external forcing pressure Pext, such that P I
total = PI + PMI − Pext.114

The internal pressure of the inclusion in terms of incremental deformation may be defined115

using a Taylor series expansion about the pre-strain state (denoted with a subscript 1) [35]:116

PI = PI1 − 3KIεI +
9

2
K ′Iε

2
I −

9

2
K ′′I ε

3
I . (2)117

The incremental dimensionless radius εI = ξI − ξI1 is a function of the total and pre-strain

dimensionless radii, such that

ξI =
RI −RI0

RI0

, (3)

ξI1 =
RI1 −RI0

RI0

. (4)

Note that ξI is the small-strain limit of the Green-Lagrange strain tensor necessary to de-118

scribes finite deformations. The coefficients in the Taylor series are 3KI = − ∂PI/∂ξI|ξI1
,119

9K ′I = ∂2PI/∂ξ
2
I |ξI1

, and 27K ′′I = − ∂3PI/∂ξ
3
I |ξI1

and represent the local stiffness moduli at120

the linear, nonlinear quadratic, and nonlinear cubic orders, respectively.121

The structurally induced negative stiffness refers to strain states for which KI ≤ 0. In122

addition to the unstable behavior of the inclusion, the dynamics when the inclusion is con-123

strained within the negative stiffness regime is also of interest. Constrained negative stiffness124

is achievable when the incremental shear modulus of the surrounding elastic matrix material125

is sufficiently large, i.e. when KI + 4
3
µM ≥ 0 [5, 16]. The present model is limited to either126

a fluid matrix, or that of a soft viscoelastic solid, for which µM/KM � 1. For the case of127

the solid matrix, an effective pressure characterizes the shear stress on the surface of the128

inclusion, which may be defined as [27, 36]:129

PMI = PMI1 − 4µMIεI + AMIε
2
I −DMIε

3
I , (5)130

where µMI is the local shear modulus and AMI and DMI are the local elastic coefficients at

quadratic and cubic order, respectively, for a nearly incompressible medium evaluated at

the surface of the inclusion. The local moduli,

µMI =
µM0

1 + ξI1

, (6)

AMI =
11µM0 + AM0

(1 + ξI1)
2 , (7)

DMI =
2 (18µM0 + 5AM0 + 8DM0)

(1 + ξI1)
3 . (8)
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are expressed explicitly in terms of the static shear modulus µM0, and third- and fourth-order131

elastic constants, AM0 and DM0, respectively, of the matrix.132

B. Macroscale Dynamics133

The ordinary differential equation used to model the macroscale dynamics is of the same134

form as Eq. (1), where subscripts denoting the inclusion now refer to the effective medium.135

Several parameters (density, stiffness, and loss) describing the macroscale are obtained via136

volume-averaging homogenization methods, which inherently couple the two scales by virtue137

of the functional dependence on the inclusion and matrix properties. The effective density138

is independent of the dynamics and may be defined from a quasi-static approximation as139

follows:140

ρ∗ = φρI + (1− φ) ρM, (9)141

where φ = N(RI/R∗)
3 is the instantaneous volume fraction that varies as a function of142

deformation. The effective medium pressure is assumed to be of the same form as the143

microscale inclusion,144

P∗ = P∗1 − 3K∗ε∗ +
9

2
K ′∗ε

2
∗ −

9

2
K ′′∗ ε

3
∗, (10)145

where K∗, K
′
∗, and K ′′∗ are the local linear and nonlinear stiffness moduli and ε∗ is the146

dimensionless change in radius. When a dilute concentration of elastic inclusions, i.e. where147

the volume fraction φ � 1, is embedded in a nearly incompressible matrix with µM � KM,148

it is reasonable to assume that the effective medium is fluid-like and shear effects may be149

neglected on the macroscale. The homogenization model chosen here is that described in150

Refs. [27], but others may also be applied as long as they correspond to the same limiting151

assumptions required for the modified Rayleigh-Plesset type equation. The effective medium152

sphere is contained within a matrix material of the same constitutive form as Eq. (5)–(8),153

where the strains correspond to that of the macroscale.154

The final source of coupling between scales appears in the macroscopic bulk viscosity ζ∗.155

It is assumed that ζI is a constant, but ζ∗, which represents the effective dissipation due to156

the internal oscillations of the microscale inclusions, is a function of Ṙ∗.157

The bulk viscosity of the effective medium may be expressed as158

ζ∗ =
1

3
N (3ζI + 4ηM)

RIṘ
2
I

R∗Ṙ2
∗
, (11)159
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which will vary as a function of the deformation through the radial terms of both the160

inclusion and effective medium.161

When accounting for the influence of the inclusion on the effective medium, the ordinary162

differential equation describing the macroscale is163

(ρM + ρ∗/5)R∗R̈∗ +
3

2
ρMṘ

2
∗ = P ∗total − 4ηM

Ṙ∗
R∗
−N (3ζI + 4ηM)

RIṘI

R2
∗

∂RI

∂R∗
, (12)164

where P ∗total = P∗ + PM∗ − Pext. The derivative of RI with respect to R∗ in the final term of165

Eq. (12) characterizes the influence of the changing radius (or volume) of the inclusion on166

the radius (or volume) of the effective medium, and is obtained numerically in the present167

work.168

The unknowns obtained by solving the coupled system defined by Eqs. (1) and (12) are169

the radii on each scale.170

The coupled, multiscale model derived in this section is capable of capturing the dynamic171

behavior of both the micro- and macroscales for propagating acoustic waves. However, the172

model is also applicable to the case of dynamic loading on the macroscale, which does173

not necessarily result in a propagating wave. The latter is particularly relevant to vibration174

isolation and damping applications, which demonstrates the versatility of the present model.175

C. Energy Dissipation176

It is also of interest to quantify the effective damping of the heterogeneous medium due177

to the inclusion dynamics. For linear viscoelastic media driven by a time-harmonic forcing178

function, metrics of damping are clearly defined, such as the phase lag between an applied179

stress and the associated strain response. However, an analogous definition is not applicable180

to nonlinear media. Instead, damping is often characterized by energy dissipation, such181

as specific damping capacity Ψ, because it valid for both linear and nonlinear media and182

systems[14, 25]. The general definition of damping capacity is energy dissipated over one183

cycle normalized by stored energy. However, the meaning of stored energy is not as well184

defined. It has been previously defined as the stored energy in one quarter cycle [14], the185

maximum stored energy per cycle [49], the work done per cycle [49], and the average stored186

energy over a cycle [25]. In the present work, the maximum stored energy over one time187

period is employed. In the limit of linear materials with small damping, the maximum188
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stored energy corresponds to one quarter cycle, but for nonlinear media, the maximum is189

not necessarily within the first quarter of the time period.190

The total energy dissipated at the surface of the effective medium as a function of time191

is defined as [40]192

Udiss (t) = −4π (3ζ∗ + 4ηM)R∗Ṙ
2
∗. (13)193

The instantaneous energy stored at time t is defined by [36]194

Ustr (t) = −4π

∫
R∗(t)

R2
∗(P∗ + PM∗)dR∗. (14)195

The specific damping capacity is then obtained over each period, T = 1/fd,196

Ψ =

∫
T
Udissdt∫

T
Ustrdt

(15)197

with the dissipated and stored energy obtained from Eqs. (13) and Eq. (14), respectively.198

Given that the nonlinear inclusions may dissipate or store different amounts of energy per199

cycle, the specific damping capacity is not necessarily constant as a function of time and200

will be evaluated over each time period.201

III. NUMERICAL SIMULATION OF AN EXAMPLE INCLUSION202

To illustrate the capabilities of the coupled multiscale model, the resulting dynamic be-203

havior is explored for one example metamaterial inclusion. A dilute concentration, φ0 =204

0.5%, of the example inclusions are embedded in a surrounding matrix, of which two exam-205

ple cases are considered. The first is comprised of unstable inclusions within a fluid matrix206

with µM0 = 0 Pa, and corresponds to an effective medium with macroscopic instabilities.207

The second case consists of an inclusion embedded in a lossy, nearly incompressible matrix208

material with µM0 = 280 kPa. The shear modulus is large enough to constrain the inclusion209

within the negative stiffness regime and denotes macroscopic stability for all deformation210

states in the latter example.211

All other properties of the matrix other than the shear modulus remain identical in the212

two cases, for which the properties are approximately that of water: ρM = 1000 kg/m3
213

and KM = 2.2 GPa, which are commonly chosen values approximately equal to those of214

water [43, 50]. Additionally, in both cases the bulk viscosity of the inclusion is zero, such215

that ζI = 0, but the shear viscosity of the matrix is non-zero, at ηM = 5 Pa·s, which is in216
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FIG. 2. Example of an unstable metamaterial inclusion design with beam elements as (a) full

sphere, (b) cut of full sphere to reveal internal features, and (c) zoomed in of the double beam

elements with the pressure transformer denoted with a dashed box.

the vicinity of the values discussed in the literature for nearly incompressible viscoelastic217

media [43, 50].218

Each multiscale system is subjected to a sinusoidal forcing pressure, p = pa sin (fdτ/f0),219

where pa is the amplitude of the acoustic pressure wave, fd is the drive frequency in Hz, f0220

is the undamped natural frequency at the global equilibrium position in Hz, and τ = 2πf0t221

is dimensionless time. The value of fd/f0 is chosen to be 0.1 in all cases to ensure that222

resulting behavior is subresonant at each pre-strain to ensure the macroscale approximation223

is valid. The driving pressure amplitude pa will vary in each case.224

The constitutive response of both the example inclusion and the effective medium in the225

low-frequency limit for both matrix materials are explored in Section III A. The subres-226

onant response is obtained for unstable inclusions in Section III B and for the inclusions227

exhibiting constrained negative stiffness in Section III C. In each case, three pre-strains are228

discussed to exhibit the changing behavior as a function of inclusion deformation and illus-229

trate the tunable nature of the example metamaterials. These pre-strains are introduced in230

Section III A.231

A. Snapping acoustic metamaterial inclusion232

A three-dimensional schematic of the inclusion of interest appears in Fig. 2(a), where a233

cut of the sphere is shown in (b) to reveal the internal features. The inclusion is symmetric234

about the cut plane, as well as the dashed lines shown in Fig. 2(b). The symmetry lines235

partition the inclusion into four quadrants in-plane. Within each quadrant there is a double236

beam element, a pressure transformer, and a curved outer surface that interfaces with the237
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matrix. The zoomed in figure of Fig. 2(c) more clearly shows the double beam elements,238

where the pressure transformed is highlighted in the dashed box. An external force incident239

on the inclusion-matrix interfaces is concentrated at the pressure transformer to deform the240

center of the double beam elements. The desired response is obtained due to the double241

beam elements, which are introduced instead of single beam elements to ensure the second242

buckling mode of the clamped-clamped beam is constrained [51].243

The example inclusion utilized in the present work has initial radius of RI0 = 29.5 mm and244

is constructed out of nylon. A finite element method (FEM) model for the element shown in245

Fig. 2 is developed using Comsol Multiphysics. In the model, the displacement is imposed246

on the pressure transformers to compress the beam elements. Then, the strain energy density247

of the entire element resulting from that deformation is calculated in Comsol. The results248

of that model represent a displacement-controlled loading where the resulting strain energy249

density exhibits two inflections points that induce the desired mechanical instabilities.250

From the strain energy density versus displacement FEM results, the pressure PI and251

strain EI is obtained, as shown in Fig. 3(a). There exist strain states for which the pressure-252

strain curve has a negative slope, corresponding to positive linear stiffness, strain states253

where there is a positive slope representing negative linear stiffness, and strain states with254

zero slope with zero linear stiffness. The vertical dashed lines denote the states of zero255

linear stiffness, where the negative stiffness regime falls between the two lines. Dashed lines256

corresponding to the same strain states also appear in the deformation-dependent linear257

stiffness KI shown in Fig. 3(b). Several pre-strain states are denoted in Fig. 3(a) and (b).258

Pre-strain A (solid circle) represents the global equilibrium configuration for which there is259

no deformation. Pre-strain B (solid triangle) is approximately at the first pressure extremum260

in Fig. 3(a), which corresponds to KI ≈ 0 in Fig. 3(b). Pre-strain C (solid square) represents261

a point within the negative stiffness regime.262

In displacement-controlled loading, the deformation moves through all strain states, in-263

cluding those within the negative stiffness regime. However, for pressure-controlled loading,264

when the inclusion reaches state B, the inclusion undergoes a large deformation due to a265

small change in pressure, commonly referred to as snap-through behavior. After the snap-266

through, the inclusion is now constrained to state E (open triangle), which represents the267

same internal pressure, but a different strain value. The same behavior is observed upon268

unloading the system. State D (open square) represents the same pressure as state C, but269
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FIG. 3. (a) Inclusion pressure Pi in MPa versus strain Ei and (b) local linear stiffness Ki in MPa

versus strain Ei. The three initial pre-strains of interest are denoted by A (solid circle), B (solid

triangle), and C (solid square). Pre-strain state D (open square) represents the same pressure but

at different strain value as state C, and state E (open triangle) represents the same pressure but

different strain as state E. The linear negative stiffness region of the inclusion is delineated by the

gray dashed lines.

with a different strain value. Although the pressure amplitudes are the same for states B270

and E, and states C and D, respectively, in Fig. 3(a), the stiffnesses in (b) differ. For state271

B, KI ≈ 0, and for state C, KI < 0. However, states D and E represent local linear stiffnesses272

values that are distinctly positive and greater than zero.273

It is of interest to explore the dynamics of two different effective media, one with a fluid274

matrix and one with a viscoelastic matrix. The effective medium pressure P∗ versus strain E∗275

is shown in Fig. 4(a) for µM0 = 0 Pa (solid) and µM0 = 280 kPa (dotted). The corresponding276

local linear stiffness K∗ as a function of strain E∗ is shown in Fig. 4(b). The effective277

medium pressure versus strain response for µM0 = 0 Pa in Fig. 4(a) is non-monotonic and278

the pressure amplitude resembles that of the inclusion shown in Fig. 3(a). The similarity is279

expected because a fluid matrix offers no shear resistance to the macroscopic deformation.280

Therefore, there exists a local regime of negative stiffness on the macroscale, as illustrated281
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FIG. 4. (a) Effective medium pressure P∗ in MPa versus strain E∗ and (b) local linear stiffness K∗

in GPa versus strain E∗ for two different shear moduli, µM0 = 0 Pa (solid line) and µM0 = 280 kPa

(dotted line). The three initial pre-strains of interest are denoted bu A (solid circle), B (solid

triangle), and C (solid square). Pre-strain state D (open square) represents the same pressure but

at different strain value as state C, and state E (open triangle) represents the same pressure but

different strain as state E. The linear negative stiffness region of the inclusion is delineated by the

gray dashed lines.

by the solid line in Fig. 4(b). The region between the vertical dashed corresponds to the282

microscale negative stiffness regime, which is identical to the strain states for macroscopic283

negative stiffness. When the shear modulus is increased to µM0 = 280 kPa, the corresponding284

pressure curve in Fig. 4(a) becomes monotonic and has shifted up in magnitude relative to285

µM0 = 0 Pa. This implies that the macroscale is stable for all strain states and characterizes286

an effective medium with constrained negative stiffness on the microscale. The local linear287

stiffness K∗ has shifted upward for µM0 = 280 kPa relative to at µM0 = 0 Pa and is now288

purely positive.289

The same strain states A-E from Fig. 3 are again highlighted in Fig. 4(a) and (b). States A290

(solid circle), B (solid square), and C (solid triangle) are indicated for both shear moduli, and291

represent the three initial pre-strain states for which the dynamics are considered. Although292
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the pressures are the same at the global equilibrium given by state A, the local stiffness293

on the macroscale differ for the two cases considered due to the differences in slope in the294

pressure-strain curve. For the effective medium where µM0 = 0 Pa, pre-strain B represents295

the local pressure extremum, where K∗ ≈ 0 and pre-strain C corresponds to a state within296

the macroscopic negative stiffness regime. As with the inclusion, states D (open square)297

and E (open triangle) represent the same pressure but different strain values as pre-strains298

C and B, respectively, for an effective medium with µM0 = 0 Pa.299

For the case with µM0 = 280 kPa, pre-strains B and C represent points of microscale300

zero linear stiffness and negative stiffness, respectively. However, the macroscale is fully301

constrained, so K∗ > 0 always. Instead, pre-strain B represents a segment of the pressure-302

strain curve with a decreased local linear stiffness relative to pre-strain A, and pre-strain C303

possesses a decreased local linear stiffness relative to pre-strain B, but are both still positive.304

States D and E are not relevant when considering the behavior for an inclusion constrained305

in a matrix with µM0 = 280 kPa. The dynamic response is now considered for the fluid306

matrix in Section III B for initial pre-strains A, B, and C, where states D and E become307

important, and for a viscoelastic matrix inducing constrained negative stiffness in Section308

III C for initial pre-strains A, B, and C, where states D and E are relevant to resulting309

behavior.310

B. Unstable Inclusion311

The first case considered is that of an unstable inclusion embedded in a fluid matrix312

material for the three pre-strains A, B, and C denoted in Figs. 3 and 4. Although the inclu-313

sion cannot be constrained in the negative stiffness regime, pre-strain C is still considered314

to explore how the coupled model behaves for instances where macroscopic instabilities are315

present. In this example, it is assumed that an external mechanism constrains the inclusion316

within the negative stiffness regime for all time τ < 0, but is removed at τ = 0. The driving317

pressure amplitude is p0 = 500 Pa.318

First consider the normalized radius RI/R
int
I as a function of dimensionless time τ shown319

in Fig. 5(a), (b), and (c) for pre-strain A, B, and C, respectively. The radius Rint
I represents320

the initial radius to which the inclusion is constrained to by external pressure P0. In Fig. 5(a),321

the inclusion oscillates with a small amplitude about the imposed pre-strain radius. During322
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FIG. 5. Normalized radius Ri/R
int
i versus dimensionless time τ for an unstable inclusion in a fluid

matrix with properties approximately those of water for (a) pre-strain A, (b) pre-strain B, and (c)

pre-strain C. Inserts in (b) and (c) show both the transient and steady-state regimes.

the first few cycles, transient effects are observed, but a steady-state response resembling323

that of a linear, sinusoidal oscillator is soon reached. Therefore, at this drive amplitude and324

pre-strain, the inclusion oscillations are small and appear linear.325

The behavior at pre-strain B, shown in Fig. 5(b), is much different than for pre-strain A.326

Two inserts more clearly present the transient behavior, given roughly by τ < 300, and the327

steady-state behavior, for approximately τ > 300. Initially, the inclusion is constrained to328

RI/R
int
I = 1 and oscillates a few times about the initial condition before snapping through329

to a state given by RI/R
int
I ≈ 0.8796, which corresponds to state E in Figs. 3 and 4. The330
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initially large oscillations decay with each cycle until a steady-state response is reached. The331

steady-state response, which also resembles the behavior of a linear, sinusoidal oscillator, is332

about pre-strain state E.333

Inclusions constrained to pre-strain C are also perturbed from the initial condition and334

the oscillations are about a state other than RI/R
int
I = 1 as shown in Fig. 5(c). When starting335

in the negative stiffness regime, the inclusion immediately snaps from the initial condition336

RI/RI
int = 1 to a smaller radius RI/R

int
I = 0.9303. The new pre-strain is defined by state337

D in Figs. 3 and 4. The large amplitude oscillations then decay to sinusoidal behavior in338

steady state, where the oscillations are now about the stable pre-strain D.339

Despite the large radial oscillations on the microscale, there is little deformation on the340

macroscale. The maximum change in radius for pre-strain A is 7.5 × 10−5%. Although341

the snap-through deformation induces large changes in the microscale radii for pre-strains342

B and C, the maximum change in radius for the macroscale is within 0.063% and 0.038%,343

respectively. Therefore, the coupled dynamic model captures that the localized strain on344

the surface of the inclusion is much larger than the boundary of the effective medium even345

for large microscale deformations.346

To further understand the resulting nonlinearity, the frequency content of the radial347

oscillations is considered at each pre-strain. However, in the case of the snapping behavior348

for pre-strains B and C, the spectral behavior is more clearly visualized with a spectrogram349

obtained via a short-time Fourier transform. The power spectrum amplitude in dB is shown350

as a function of dimensionless time τ and normalized frequency f/fd in Fig. 6(a), (b),351

and (c) for pre-strains A, B, and C, respectively. The amplitude is normalized by the mean352

magnitude at f/fd = 1. For all cases there is a significant amount of power at zero frequency.353

The spectrogram for pre-strain A in Fig. 6(a) indicates most of the power is concentrated354

near f/fd = 1, confirming the dynamics correspond to a predominately a linear system. The355

transient response, i.e. for τ > 150, indicates some power at the local undamped natural356

frequency f/fd ≈ 10 is attenuated before reaching a steady-state response. When steady-357

state is reached, the amplitude is significantly smaller at all frequencies other than at the358

fundamental drive frequency of f/fd = 1, indicating that the overall system response is359

predominantly linear.360

The spectrogram for pre-strain B, shown in Fig. 6(b), demonstrates a more prominent361

transient response. The power is mainly concentrated at f/fd ≈ 10, which corresponds to362
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FIG. 6. Spectrogram amplitude in dB as a function of normalized frequency f/fd and dimensionless

time τ for an unstable inclusion in a fluid matrix with properties approximately those of water for

(a) pre-strain A, (b) pre-strain B, and (c) pre-strain C.

the local undamped natural frequency at pre-strain E, rather than at pre-strain B. However,363

energy at the fundamental drive frequency f/fd is still evident. Additionally, for τ < 150,364

the spectrum is more broadband and the power is dispersed over the frequency band shown.365

As the transient behavior decays towards a steady-state solution, the power near f/fd = 10366

decreases, but remains relatively constant at f/fd. The radial oscillations due to snap-367

through deformation are so large that steady-state is not reached until τ > 300, which then368

corresponds to a linear sinusoidal response.369

A similar trend is observed for pre-strain C, shown in Fig. 6(c). The local undamped370

natural frequency is that of the new constrained state after snap-through, pre-strain D, for371
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FIG. 7. Damping capacity per cycle for an unstable inclusion in a fluid matrix with properties

approximately those of water for pre-strain A (dotted line), pre-strain B (connected open circles)

and pre-strain C (solid line).

which f/fd ≈ 8. There is a significant amount of power concentrated at the undamped372

natural frequency, with a small amount also visible at the second harmonic, f/fd ≈ 16. The373

fundamental drive frequency f/fd = 1 is clearly excited in the transient regime, but the374

power is dispersed across the range of frequencies shown. As time increases, the amplitudes375

are attenuated except at the drive frequency, indicating a linear, steady-state response.376

Since large radial oscillations were obtained when the inclusion snaps from an initial state377

to a new constrained state, it is also anticipated that a large amount of energy is dissipated378

relative to the energy stored. The damping capacity per cycle obtained from Eqs. (13)–(15),379

shown in Fig. 7, exhibits this trend, where the snap-through deformation for pre-strain B380

(connected open circles) and pre-strain C (solid line) results in an initially large damping381

capacity greater than 1. After several cycles, the damping capacities of pre-strains B and382

C approach a much smaller value that continually decreases as the radial oscillations on383

the macroscale reach steady state. Slightly more energy is dissipated at pre-strain B than384

C because the snap-through deformation induces a larger change in strain when deforming385

from pre-strain B to E than when deforming from pre-strain C to D. In both cases, the386

large displacements due to snap-through will induce a favorable damping capacity relative387

to pre-strains that are constrained to one stable state.388

The high damping observed in this case is a transient phenomenon. As the oscillations389

of the inclusion reach steady state, the damping capacity will further decrease until it is390

similar in magnitude to that of Pre-strain A. For this case, the inclusion would need to391
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be continuously reset to an unstable or nearly unstable state to exploit the snap-through392

deformations for efficient energy dissipation. It may be difficult to reset the structures by393

passively varying the external pressure, but may be feasible using active components in the394

inclusions. For example, one can envision a scenario where an externally imposed voltage395

is used to control the pre-strain of the inclusion that contains electro-mechanically cou-396

pled material domains. The inclusion could then be controlled to repeatedly return to the397

quasi-zero linear stiffness configuration after activation by an external disturbance, such as398

an acoustic wave that induces snap-through deformation at the microscale. Alternatively,399

one can also envision control on different time scales using a phase transformation induced400

via thermo-mechanical loading, as with shape-memory polymers or alloys, and small-scale401

inclusions could be designed that reset to a desired configuration via an external tempera-402

ture. The present model is still relevant when studying similar inclusions that utilize other403

activation methods, and extensions to capture this should be explored in future work.404

C. Constrained Negative Stiffness405

The case of snapping inclusions constrained within the negative stiffness regime by a406

nearly incompressible viscoelastic matrix with a sufficiently large shear modulus allows the407

study of small (and large) perturbations about some constrained reference state for all408

strains. The three pre-strains are again denoted by A, B, and C in Figs. 3 and 4. In the409

example presented for a constrained inclusion, the shear modulus is µM0 = 280 kPa and the410

driving pressure amplitude is p0 = 6 kPa. All other parameters are identical to the fluid411

matrix case.412

Shown in Fig. 8 is the normalized radius RI/R
int
I as a function of dimensionless time τ .413

The normalization allows the induced perturbations to oscillate about RI/R
int
I = 1 such414

that the steady-state dynamics of all three pre-strains can be conveniently compared. In415

Fig. 8(a), the steady-state dynamics for pre-strain A resembles a linear sine wave. For pre-416

strain B in Fig. 8(b), some distortion exists in the sinusoidal shape. The dynamic behavior417

is not symmetric about the initial radius and instead undergoes more compression than418

expansion over each cycle of the drive period. Additionally, the peaks and troughs are no419

longer perfectly rounded. The nonlinearity is most perceptible for the negative stiffness420

regime, as shown for pre-strain C in Fig. 8(c). The sinusoidal forcing function induces peaks421
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FIG. 8. Normalized radius Ri/R
int
i versus dimensionless time τ in steady state for a constrained

inclusion in a viscoelastic matrix with µM0 = 280 kPa and remaining properties approximately

those of water for (a) pre-strain A, (b) pre-strain B, and (c) pre-strain C.

and troughs at the same values of τ as for the pre-strains A and B, but there now exist422

additional, smaller fluctuations within each period. Closer examination reveals that the423

nonlinear response repeats over a time scale of two periods of the drive frequency. Lastly,424

the amplitude for pre-strain B is marginally larger than for pre-strain A, but the maximum425

amplitude obtained for pre-strain C is an order of magnitude larger than at the other two426

pre-strains. This implies that the decreased stiffness at pre-strain C, relative to A and427

B, significantly increases the nonlinearity and maximum perturbation from the constrained428

reference state for the same source function.429

For the constrained negative stiffness case, the dynamic response is dominated by the430
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FIG. 9. Normalized spectrum in dB as a function of normalized frequency f/fd and dimensionless

time τ for a constrained inclusion in a viscoelastic matrix with µM0 = 280 kPa and remaining

properties approximately those of water for (a) pre-strain A, (b) pre-strain B, and (c) pre-strain

C.

steady-state behavior, and the spectral content is easily understood from the Fourier trans-431

form, as shown in Fig. 9. The spectrum F {RI/RI0} is normalized such that the amplitude is432

0 dB at f/fd = 1. For pre-strain A, the spectral content shown in Fig. 9(a) should resemble433

that of a linear system due to the sinusoidal oscillations in Fig. 8(a), where the amplitude434

is concentrated at the fundamental drive frequency. In addition to the narrowband peak at435

f/fd = 1, a weak second harmonic exists that is approximately 40 dB down from the fun-436

damental, and higher-order harmonics appear that are more than 70 dB down. There also437

exists a resonance at the local undamped natural frequency (f/fd ≈ 10), which is more than438

50 dB down, which once again represents a transient effect as is evident from Fig. 6(a). The439
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magnitudes of the harmonics relative to the fundamental reveal that nonlinearity is present440

in the system when the inclusion is constrained to pre-strain A, but it is barely observable441

even at a drive amplitude of p0 = 6 kPa. Further increase in the source amplitude would442

induce nonlinearity even at this pre-strain and cause the generated harmonics to become443

meaningful contributions to the overall behavior.444

The spectral content of pre-strains B and C indicates varying levels of nonlinearity. At445

pre-strain B, shown in Fig. 9(b), the amplitude of the second harmonic is about 20 dB down446

from the fundamental, while the third and fifth harmonics, which are approximately 30 dB447

down from the fundamental, are weaker contributions to the overall response. The relative448

influence of each harmonic in Fig. 9(b) is consistent with the behavior in Fig. 8(b), which449

reveals that distortion exists in the sinusoidal response of the radius versus time, but the450

overall trend resembles that of a linear oscillator.451

The case corresponding to the example negative stiffness state in Fig. 9(c) reveals the452

most nonlinearity. Distinct spectral peaks are observed in F {RI/RI0} in addition to the453

fundamental drive frequency. A strong third harmonic of the drive frequency exists, which454

is within 6 dB of the fundamental. Other harmonics of the drive frequency also appear at455

varying amplitudes, but they are all more than 15 dB below the fundamental. Peaks also456

manifest at non-integer multiples of fd. Subharmonics occur at frequencies less than the457

driving frequency and are defined by f/fd = 1/(n + 1) for n = 1, 2, 3, . . . [52]. Only the458

first subharmonic, f/fd = 1/2, is present in Fig. 9(c), which is almost 20 dB below the459

fundamental. Additionally, there are integer half-multiples that occur at frequencies greater460

than the driving frequency and are defined as f/fd = (2n+ 1)/2 for n = 1, 2, 3, . . .. Within461

the field of bubble dynamics, these frequencies are sometimes referred to as a ultraharmonics462

[52]. In Fig. 9(c), ultraharmonics occur at several frequencies (e.g. f/f2 = 3/2, 5/2, 7/2 . . .)463

with varying amplitudes. For example, at f/fd = 5/2, the amplitude is approximately 15464

dB below the fundamental, but the ultraharmonics at higher frequencies are more than 20465

dB down.466

Generation of subharmonics and ultraharmonics stems from sufficiently large magnitudes467

of the driving pressure incident upon a system with strong nonlinearity. At p0 = 6 kPa, it468

is possible to induce oscillations at frequencies other than integer multiples of the driving469

frequency. However, this behavior is only observed for inclusions constrained in the negative470

stiffness regime. The threshold pressure to induce subharmonic or ultraharmonic generation471
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FIG. 10. Damping capacity per cycle for a constrained inclusion in a viscoelastic matrix with

µM0 = 280 kPa and remaining properties approximately those of water for pre-strain A (dotted

line), pre-strain B (connected open circles) and pre-strain C (solid line).

is therefore characterized by the amount of nonlinearity present at each pre-strain. For472

pre-strain C, the threshold is the smallest, and would be larger for pre-strain B, and larger473

still for pre-strain A. Thus, there is an inverse relationship between the minimum external474

forcing pressure and maximum macroscopic stiffness necessary to observe subharmonic and475

ultraharmonic generation. The ability to generate subharmonic and ultraharmonics only at476

pre-strain C further signifies that a strongly nonlinear response is obtained for an inclusion477

constrained within the negative stiffness regime relative to the other cases.478

Larger radial oscillations are obtained when constrained to the negative stiffness regime479

relative to other pre-strains, which can be exploited for specific applications such as a energy480

dissipation. The damping capacity per cycle is shown in Fig. 10. Pre-strain A (dotted line)481

represents the smallest damping capacity as expected due to the smallest amplitude radial482

oscillations. The steady-state damping capacity for pre-strain B (open circles) is increased483

by over an order of magnitude relative to pre-strain A. However, the damping capacity484

for pre-strain B is more than an order of magnitude smaller than for pre-strain C (solid485

line). The increased nonlinearity present at Pre-strain C also results in more fluctuation in486

the damping capacity per cycle than at Pre-strains A and B. Unlike for the unconstrained487

inclusion, the increase in damping capacity due to microscale instabilities for the constrained488

inclusion is a steady-state phenomena. The magnitude of the damping capacity for all three489

cases shown in Fig. 10 therefore changes minimally with the number of cycles.490

24



IV. CONCLUSION491

The present work develops a coupled multiscale model to capture the dynamics of nonlin-492

ear inclusions embedded in a nearly incompressible matrix material. Each scale is modeled493

using a modified Rayleigh-Plesset equation, where the scales are coupled through the stiff-494

ness, density, and loss of the effective medium. As the local material properties vary on495

the microscale due to an external forcing pressure, the corresponding effective properties496

describing the macroscale will also change.497

The dynamic model properly captures the snap-through deformation, for which a small498

pressure perturbation induces a large change in strain. This occurs in the presence of499

macroscopic instabilities, which are induced when the static shear modulus of the matrix500

cannot constrain the inclusion, as occurs with a fluid. As the inclusion undergoes large snap-501

through deformation, a significant amount of energy is dissipated due to the large transient502

radial oscillations relative to the small, steady-state oscillations about a constrained state.503

Therefore, this behavior is of interest in applications where energy dissipation is important,504

such as impact and shock absorption [18].505

When the macroscale is stable, a larger time-harmonic pressure amplitude is required to506

induce nonlinearity than for a matrix with zero shear modulus. A more strongly nonlinear507

response is achieved in the negative stiffness regime, which results in a larger damping508

capacity, whereas the nearly linear response occurring for zero pre-strain yields the smallest509

damping capacity. These results for constrained and unconstrained negative stiffness agree510

with those reported in the literature for ordered periodic media with metamaterial unit cells511

[19, 23] or single structures [14, 17], but were instead obtained here via a coupled, multiscale512

time-domain model for randomly distributed, subwavelength inclusions. In verifying the513

expected response through this initial study, additional frequency-domain effects and their514

utility to acoustical applications can be explored in future work, such as harmonic generation,515

parametric amplification, and phase conjugation.516

It is also worth emphasizing that the theoretical model presented here is not specific to517

the chosen inclusion design or metamaterials in general. While the current model utilized a518

nearly incompressible viscoelastic medium with a Kelvin-Voigt model, it is possible to also519

include compressibility of the matrix, as well as other viscoelastic constitutive relationships,520

which is recommended for future research. The present numerical model is also valuable for521
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design purposes, where the geometric features of the inclusion may be varied to obtain an522

optimal macroscale response, and to study the effects of pre-stress on similar inclusions that523

utilize other activation methods such as piezoelectric or thermo-mechanical loading.524
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