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We present an information geometric analysis of entropic speeds and entropy production rates
in geodesic evolution on manifolds of parametrized quantum states. These pure states emerge as
outputs of suitable su (2; C) time-dependent Hamiltonian operators used to describe distinct types
of analog quantum search schemes. The Riemannian metrization on the manifold is specified by the
Fisher information evaluated along the parametrized squared probability amplitudes obtained from
analysis of the temporal quantum mechanical evolution of a spin-1/2 particle in an external time-
dependent magnetic field that specifies the su (2; C) Hamiltonian model. We employ a minimum
action method to transfer a quantum system from an initial state to a final state on the manifold
in a finite temporal interval. Furthermore, we demonstrate that the minimizing (optimum) path
is the shortest (geodesic) path between the two states, and, in particular, minimizes also the total
entropy production that occurs during the transfer. Finally, by evaluating the entropic speed and
the total entropy production along the optimum transfer paths in a number of physical scenarios
of interest in analog quantum search problems, we show in a clear quantitative manner that to a
faster transfer there corresponds necessarily a higher entropy production rate. Thus, we conclude
that lower entropic efficiency values appear to accompany higher entropic speed values in quantum
transfer processes.

PACS numbers: Information Theory (89.70.+c), Probability Theory (02.50.Cw), Quantum Mechanics
(03.65.-w), Riemannian Geometry (02.40.Ky), Statistical Mechanics (05.20.-y).

I. INTRODUCTION

Riemannian geometry has been employed in a variety of different approaches in quantum searching [1, 2]. In
[3], it was shown that Grover’s algorithm is specified by a unitary and adiabatic process that preserves the Fisher
information function. In [4], the role of entanglement in quantum search was investigated in terms of the Fubini-
Study metric. In [5, 6], quantifying the notion of quantum distinguishability between parametric density operators
by means of the Wigner-Yanase quantum information metric, it was shown that the quantum search problem can
be recast in an information geometric framework wherein Grover’s dynamics is characterized by a geodesic on the
manifold of parametric density operators of pure quantum states constructed from the continuous approximation of
the parametric quantum output state in Grover’s algorithm. Finally, in Ref. [7], methods of information geometry
were used to confirm the superfluity of the Walsh-Hadamard operation and, most importantly, to recover the quadratic
speedup relation.
Thermodynamic perspectives on quantum computation [8] and information [9], including quantum error correction

[10, 11], can be quite insightful. In the framework of classical and quantum algorithms viewed in terms of simple
quantum circuit models, the performance of search schemes is usually quantified by means of the query complexity
of the algorithm (that is, the number of oracle queries made by the algorithm). However, more realistic models of
computation should be considered to properly analyze quantum speedups. In particular, a physically realistic analysis
should also take into account the thermodynamic resource costs of running these algorithms on an actual computer.
Some preliminary findings are beginning to appear in the literature [12, 13]. For instance, using Bennett’s Brownian
model of low power reversible computation [8], Perlner and Liu argued in Ref. [13] that classical exhaustive search
can be quite competitive with Grover’s quantum search algorithm when the comparison between the two searching
schemes is made in terms of actual thermodynamic resource costs, including energy consumption, memory size, and
time. The comparative analysis presented in Ref. [13] is mathematical in flavor and, most of all, focuses solely on
comparing classical search schemes with Grover’s quantum search algorithm. A comparison among distinct quantum
searching schemes is absent in Ref. [13].
In Ref. [14], we presented an information geometric characterization of the oscillatory or monotonic behavior of

statistically parametrized squared probability amplitudes emerging from special functional forms of the Fisher infor-
mation function selected ad hoc: constant, exponential decay, and power-law decay. Furthermore, for each case, we
computed both the speed and the thermodynamic divergence of the corresponding physical processes by exploiting a
convenient Riemannian geometrization of useful thermodynamical concepts. Finally, we briefly discussed the possibil-
ity of employing the proposed information geometric perspective to help characterize a convenient trade-off between
speed and thermodynamic efficiency in quantum search algorithms. A limitation of the work in Ref. [14] is that the
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Fisher information functions were selected in an ad hoc fashion without specifying their emergence from a precise
physical setting. Therefore, despite the mathematical generality, the observed behaviors of the parametrized squared
probability amplitudes that emerged from our information geometric analysis had no obvious physical interpretation.
Inspired by the work of Byrnes and collaborators [15], we presented in Ref. [16] a detailed analysis concerning the
physical connection between quantum search Hamiltonians and exactly solvable time-dependent, two-level quantum
systems. More specifically, we analytically calculated the transition probabilities from a source state to a target state
in a number of physical scenarios characterized by a spin-1/2 particle immersed in an external time-dependent mag-
netic field. In particular, we investigated both the periodic oscillatory as well as the monotonic temporal behaviors of
such transition probabilities and, additionally, explored their analogy with characteristic features of Grover-like and
fixed-point quantum search algorithms, respectively. Finally, we discussed from a physics perspective the connection
between the schedule of a search algorithm, in both adiabatic and nonadiabatic quantum mechanical evolutions, and
the control magnetic fields in a time-dependent driving Hamiltonian.
In this paper, motivated by the lack of any comparative thermodynamical analysis of quantum search algorithms

and building on our previous works presented in Refs. [14, 16, 17], we borrow the idea of Riemannian geometrization
of the concepts of efficiency and speed within both quantum and thermodynamical settings in order to provide a
novel theoretical perspective on the trade-off between speed and efficiency in terms of minimum entropy production
paths emerging from quantum mechanical evolutions. Specifically, we present an information geometric analysis of
entropic speeds and entropy production rates in geodesic evolution on statistical manifolds of parametrized quantum
states arising as outputs of su(2; C) Hamiltonian models mimicking different types of continuous-time quantum search
evolutions.
The layout of the remainder of this paper is as follows. In Section II, we present some preliminary information

geometric concepts. Specifically, we focus our attention on the notions of Fisher information, thermodynamic length,
and optimum paths. In Section III, we explain how the pure states that we consider emerge as outputs of suitable
su (2; C) time-dependent Hamiltonian evolutions used to describe different types of analog quantum search schemes.
In Section IV, we introduce the Riemannian metrization on the parameter manifold specified by the Fisher information
evaluated along the parametrized squared probability amplitudes obtained from analysis of the temporal evolution of
a spin-1/2 particle in the external time-dependent magnetic field characterizing the su (2; C) Hamiltonian model. In
particular, we use a minimum action method to transfer a quantum system from an initial state to a final state on
the manifold in finite time. Moreover, we demonstrate that the minimizing (optimum) path is the shortest (geodesic)
path between the two states, and, in particular, minimizes also the total entropy production that occurs during the
transfer. Finally, by calculating the entropic speed and the total entropy production along the optimum transfer paths
in a number of physical scenarios of interest in analog quantum search problems, we demonstrate in a transparent,
quantitative manner that to a faster transfer there corresponds necessarily a higher entropy production rate. Finally,
our concluding remarks appear in Section V.

II. INFORMATION GEOMETRIC PRELIMINARIES

In Section II, we introduce some preliminary information geometric notions. In particular, we discuss the concepts
of Fisher information, thermodynamic length, and optimum paths.

A. Fisher information

From an information-theoretic perspective, the concept of Fisher information can be applied to either a multi-
parameter case or a single parameter case. In the former case, the Fisher information matrix F (θ) with elements
Fαβ (θ) is defined as [18, 19],

Fαβ (θ)
def
=

∑

x∈X

px (θ)
∂ log [px (θ)]

∂θα
∂ log [px (θ)]

∂θβ
, (1)

where “log” denotes the natural logarithmic function. In Eq. (1), we assume X denotes a discrete random variable

with alphabet X and probability mass function pX (x; θ) = px (θ). Furthermore, θ
def
=

(

θ1,..., θM
)

with M being the

dimensionality of the parameter space Θ
def
= {θ}. The quantity Fαβ (θ) in Eq. (1) is a measure of the minimum

error in estimating a parameter θ of a distribution px (θ). Specifically, the Fisher information F (θ) obtained from
Fαβ (θ) in Eq. (1) by assuming a one-dimensional parameter space is formally defined as the variance of the score

V
def
= ∂θ {log [px (θ)]} with ∂θ

def
= ∂/∂θ, F (θ)

def
= var (V) = Eθ

[

{∂θ log [px (θ)]}2
]

. The quantity Eθ [·] denotes the
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Theoretical Framework Fluctuating Observable Quantity Parameter of Interest Fisher Information Length

information theory score function elapsed time variance of the score entropic

thermodynamics energy temperature size of energy fluctuations thermodynamic

quantum theory Hermitian operator magnetic field intensity dispersion of the operator statistical

TABLE I: Schematic description of typical fluctuating observable quantities and parameters of interest together with the physical
interpretation of the concepts of Fisher information and length through parameter space in information theory, thermodynamics,
and quantum theory.

expected value of the random variable V squared with respect to the probability mass function px (θ). We remark
that the mean value of the score is zero. For the sake of convenience, we also point out that in the multi-parameter
case, Fαβ (θ) in Eq. (1) can be recast as

Fαβ (θ)
def
= Eθ [(Vα − 〈Vα〉) (Vβ − 〈Vβ〉)] . (2)

In Eq. (2), 〈Vα〉 def
= Eθ [Vα] and Vα

def
= ∂α {log [px (θ)]} with ∂α

def
= ∂/∂θα. The relevance of the Fisher information

is encoded in the Cramer-Rao inequality which states that the mean-squared error of any unbiased estimator T (X)
of the parameter θ is lower bounded by the reciprocal of the Fisher information [18], var (T ) ≥ 1/F (θ). Roughly
speaking, F (θ) is a measure of the amount of information about θ that is present in the data and gives a lower bound
on the error in estimating θ from the data.
In addition to being central to the fields of information theory [18] and information geometry [20], the concept of

Fisher information plays a key role in the geometric descriptions of both quantum mechanics [21, 22] and statistical
mechanics [23]. For an overview of the physical meaning of the Fisher information in information theory, quantum
mechanics, and thermodynamics, we refer to Table I.

B. Thermodynamic length

The Riemannian metric tensor introduced in Eq. (1) allows one to define the notions of length of a path and
distance between two states in the particular state space being considered. The state space may have quantum
origin or thermodynamical origin. More generally, one deals with an information-theoretic state space where states
are parametrized by parameters more general than those used in thermodynamics. For these general scenarios, it
is customary to define the metric tensor in terms of the information-theoretic concept of entropy where the Fisher
metric tensor is employed to define a notion of distance between points in the space of parameters.
In Ref. [24], using the second derivatives of the internal energy with respect to extensive variables such as volume,

Weinhold proposed a Riemannian metric in the space of thermodynamic equilibrium states. In Ref. [25], Ruppeiner
presented a Riemannian geometric model of thermodynamics with a Riemann structure specified in terms of a metric
tensor defined by means of second derivatives of the entropy as a function of extensive variables such as volume
and mole number. In Ref. [26], Salamon and collaborators showed that Weinhold’s energy version and Ruppeiner’s
entropy version of the thermodynamic metric tensor are conformally equivalent. Using the energy version of the
thermodynamic metric tensor, Salamon and Berry defined in Ref. [27] the length of a path γθ with the parameter θ
parametrized by an affine parameter ξ with 0 ≤ ξ ≤ τ in the space of thermal states as,

L (τ)
def
=

∫ τ

0

√

dθα

dξ
gαβ (θ)

dθβ

dξ
dξ, (3)

where gαβ (θ) denotes the thermodynamic metric tensor. The quantity L (τ) in Eq. (3) is known as the thermodynamic

length of the path γθ and has dimensions of (energy)1/2. Clearly, it is also possible to define L (τ) in terms of the
entropy version of the thermodynamic metric tensor. In such a case, the corresponding “entropy” and “energy”
lengths emerging from Eq. (3) will simply differ by a factor of the square root of some mean temperature during
the thermodynamic process being considered [26, 27]. More generally, it is also possible to show that under suitable
working conditions, the entropy defined by a probability distribution leads to a length in the space of probability
distributions that equals the length computed using the thermodynamic entropy in the space of extensive variables
[28]. To understand the physical interpretation of the thermodynamic length, it is convenient to introduce the so-
called thermodynamic divergence I (τ) of a path γθ with the variable θ expressed in terms of an affine parameter ξ
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with 0 ≤ ξ ≤ τ [29],

I (τ)
def
= τ

∫ τ

0

dθα

dξ
gαβ (θ)

dθβ

dξ
dξ. (4)

From Eqs. (3) and (4), using the Cauchy-Schwarz inequality, it follows that I ≥ L2. In particular, the equality
I = L2 is obtained only when the integrand in Eq. (4) is constant along the path γθ. The thermodynamic length and
the thermodynamic divergence can be regarded as control measures of the dissipation of finite time thermodynamic
processes. In particular, while I measures the number of natural fluctuations along a path, L is an indicator of the
cumulative root-mean-square deviations measured along the path [29].

C. Optimum paths

Optimum paths γθ with θ (ξ)
def
= {θα (ξ)}, 1 ≤ α ≤ M where M is the dimensionality of the parameter space,

and 0 ≤ ξ ≤ τ are paths characterized by the most favorable affine time ξ parametrization. Such a favorable
time parametrization of the path θ (ξ) yields the shortest thermodynamic length. Specifically, minimization of the
action functional represented by the length L in Eq. (3) by requiring its variation δL equals zero yields, after some
straightforward tensor algebra and imposing that δθα = 0 at the extremum, we obtain the standard form for the
geodesic equation,

d2θα

dξ2
+ Γα

βγ

dθβ

dξ

dθγ

dξ
= 0. (5)

We note that the affine parameter ξ is not unique since it is defined up to changes of scale and origin. In summary,
optimum paths are geodesic paths θα (ξ) that solve Eq. (5). The quantities Γµ

νρ in Eq. (5) are the Christoffel

connection coefficients of the second kind defined as [30], Γα
βγ

def
= (1/2)gαδ (∂βgδγ + ∂γgβδ − ∂δgβγ) with ∂β

def
= ∂/∂θβ.

We point out that optimum paths minimizing L (τ) in Eq. (3) are also paths minimizing the divergence I (τ) in Eq.
(4). Indeed, by minimizing I (τ) under the same working assumptions employed in the minimization of the length, it
can be shown after some straightforward computations that the optimum paths θα (ξ) satisfy the equation

d

dξ

[

Fαρ (θ)
dθα

dξ

]

− 1

2

dθα

dξ

∂Fαβ (θ)

∂θρ
dθβ

dξ
= 0. (6)

Interestingly, Eq. (6) is the information geometric analogue of Eqs. (36) and (6) in Refs. [31] and [32], respectively.
Since optimum paths are geodesic paths, the “thermodynamic” speed (henceforth, entropic speed) vE defined as

vE
def
=

√

dθα

dξ
gαβ (θ)

dθβ

dξ
, (7)

is constant when evaluated along these shortest paths. Furthermore, optimum paths are also paths that correspond
to constant entropy production rate rE, where rE is given by

rE
def
=

dI
dτ

, (8)

with I (τ) defined in Eq. (4) and evaluated along the optimum paths. Finally, we point out that the entropy production
rate rE equals the squared invariant norm of the speed vE when both quantities are evaluated along the optimum
paths. For the sake of forthcoming discussions, we shall be naming lengths, divergences, and speeds as “entropic”
quantities. Our proposed notion of efficiency is inspired here by the definition of thermal efficiency of a heat engine
[33] and by the concept of efficiency of a quantum evolution in the Riemannian approach to quantum mechanics as
presented in Ref. [34]. Specifically, replacing the condition of minimum energy dispersion with the requirement of
minimum entropy production, we find it convenient to define the entropic efficiency of an evolution along a path of
minimum entropic length joining the distinct initial and final points on the information manifold as,

ηE
def
= 1− rE

r
, (9)

where r
def
= max

{⌈

r
(i)
E

⌉}

is the maximum of the ceiling functions of r
(i)
E ∈ R+\ {0} with the index “i” labelling the

distinct evolutions (of quantum mechanical origin, in our case) being compared. The ceiling function maps x ∈ R
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to the least integer greater than or equal to x. The quantity r plays the effective role of a normalizing factor that
renders ηE adimensional with 0 ≤ ηE ≤ 1. Furthermore, in view of the fact that we wish to rank the relative entropic
performance of the various evolutions, the quantity r can be interpreted as the least integer upper bound of the
entropy production rate of the hottest among all cool paths available for each evolution under consideration. Clearly,
the entropic efficiency ηE in Eq. (9) assumes the ideal value ηE = 1 when the evolution is characterized by a path
that is maximally cooled (that is, maximally reversible). In such a case, the total entropy production remains ideally
constant during the evolution and, consequently, the rate of entropy production rE approaches the limiting value of
zero.
In the next section, we describe the quantum mechanical evolutions that generate the probability paths that we use

to present an information geometric analysis of speed and minimum entropy production with some of the concepts
we have just introduced in the current section.

III. THE SU(2; C) HAMILTONIAN MODELS

In this section, we explain the manner in which the normalized pure states that we consider emerge as outputs of
suitable su (2; C) time-dependent Hamiltonian evolutions. These normalized pure states are employed to describe,
from a physics perspective, different types of analog quantum search schemes [16, 17].
The quantum evolution that we consider is defined in terms of an Hamiltonian operator Hsu(2; C) written as the

most general linear superposition of the three traceless and anti-Hermitian generators {iσx, − iσy, iσz} of su (2; C),

the Lie algebra of the special unitary group SU (2; C) [35], Hsu(2; C) (t)
def
= a (t) (iσx) + b (t) (−iσy) + c (t) ( iσz). The

quantities a (t), b (t), and c (t) are time-dependent complex coefficients while ~σ
def
= (σx, σy, σz) is the Pauli vector

operator [36, 37]. In particular, by setting a (t)
def
= −iωx (t), b (t)

def
= iωy (t), and c (t)

def
= −iΩ (t), the Hamiltonian

Hsu(2; C) (t) becomes

Hsu(2; C) (t)
def
= ωx (t)σx + ωy (t)σy +Ω(t)σz. (10)

In the language of su (2; C) Hamiltonian models, ω (t)
def
= ωx (t) − iωy (t) = ωH (t) eiφω(t) and Ω (t) denote the

so-called complex transverse field and real longitudinal field, respectively. Clearly, ωH (t) denotes the modulus
of ω (t). In what follows, we specify that longitudinal fields Ω (t) are oriented along the z-axis while transverse
fields ω (t) lie in the xy-plane. Considering the quantum mechanical evolution of a spin-1/2 particle (an elec-

tron, for instance) in an external time-dependent magnetic field ~B (t), the Hamiltonian Hsu(2; C) (t) in Eq. (10)

can be recast as Hsu(2; C) (t)
def
= −~µ · ~B (t), where ~µ

def
= (eℏ/2mc)~σ is the magnetic moment of the electron with

µBohr
def
= eℏ/(2mc) denoting the so-called Bohr magneton. The quantity m denotes the mass of an electron while

|e| is the absolute value of the electric charge of an electron. Furthermore, c and ℏ denote the speed of light and

the reduced Planck constant, respectively. The magnetic field ~B (t) can be decomposed as ~B (t)
def
= ~B⊥ (t) + ~B‖ (t),

with ~B⊥ (t)
def
= Bx (t) x̂ + By (t) ŷ and ~B‖ (t)

def
= Bz (t) ẑ. It is straightforward to identify the link between the

set of field intensities {ωH (t) , ΩH (t)} and the set of magnetic field intensities
{

B⊥ (t) , B‖ (t)
}

. In particular, we

note that B⊥ (t) ∝ ωH (t) and B‖ (t) ∝ ΩH (t)
def
= |Ω (t)|. In terms of components, the exact relation between

{Bx (t) , By (t) , Bz (t)} and {ωx (t) , ωy (t) , Ω (t)} is given by Bx (t) = − (2mc/eℏ)ωx (t), By (t) = − (2mc/eℏ)ωy (t),
and Bz (t) = − (2mc/eℏ)Ω (t). Furthermore, in terms of field intensities, we obtain B⊥ (t) = (2mc/ |e|ℏ)ωH (t), and
B‖ (t) = (2mc/ |e|ℏ)ΩH (t). Investigating the quantum mechanical evolution of an electron specified by the Hamil-
tonian Hsu(2; C) (t) in terms of exact analytical expressions of complex probability amplitudes and/or real transition
probabilities from an initial source state to a final target state is a highly nontrivial matter. The unitarity of the
quantum mechanical evolution requires that the complex probability amplitudes α (t) and β (t) satisfy the normal-

ization condition, |α (t)|2 + |β (t)|2 = 1. Given the unitary evolution operator U (t) with iℏU̇ (t) = Hsu(2; C)U (t)

and U̇ def
= ∂tU , the temporal evolution of a quantum source state |s〉 def

= x |w〉 +
√
1− x2 |w⊥〉 can be specified by

means of the mapping,
(

x,
√
1− x2

)

→
(

α (t)x+ β (t)
√
1− x2, − β∗ (t)x+ α∗ (t)

√
1− x2

)

where x
def
= 〈w|s〉 is the

quantum overlap. The set of orthonormal state vectors {|w〉 , |w⊥〉} span the two-dimensional search space of the
N = 2n-dimensional complex Hilbert space Hn

2 . Therefore, the probability that the source state |s〉 transitions into
the target state |w〉 under U (t) is given by,

P|s〉→|w〉 (t)
def
= |〈w|U (t) |s〉|2 = |α (t)|2 x2 + |β (t)|2

(

1− x2
)

+ [α (t)β∗ (t) + α∗ (t)β (t)]x
√

1− x2. (11)
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Rabi Scenario Tranversal Magnetic Field Intensity, B⊥ (t) Resonance Condition Complex Tranverse Field, ω (t)

original 2mc

|e|ℏ
Γ B‖ = mc

e
ω0 Γeiφω(t)

generalized 2mc

|e|ℏ
ωH (t) B‖ (t) =

mc

e
φ̇ω (t) Γ cos (λt) eiφω(t)

generalized 2mc

|e|ℏ
ωH (t) B‖ (t) =

mc

e
φ̇ω (t) Γ

(1+λt)2
eiφω(t)

generalized 2mc

|e|ℏ
ωH (t) B‖ (t) =

mc

e
φ̇ω (t) Γe−λteiφω(t)

TABLE II: Schematic description of the complex transverse field ω (t), the resonance condition in terms of the longitudinal
magnetic field intensity B‖ (t), and the transverse magnetic field intensity B⊥ (t) in the chosen four quantum mechanical Rabi
scenarios.

It is clear from Eq. (11) that in order to compute the exact analytical expression of transition probabilities, one needs
to have the exact analytical expression of the evolution operator U (t) in terms of the complex probability amplitudes
α (t) and β (t).
Following our previous work presented in Ref. [16] and exploiting the results in Refs. [38, 39], we consider here

four quantum mechanical scenarios in which the transition probability P|w⊥〉→|w〉 (t) from an initial state |w⊥〉 to
a final state |w〉, where 〈w⊥|w〉 = δw⊥, w and with σz |w〉 = + |w〉 and σz |w⊥〉 = − |w⊥〉, can be expressed in an

exact analytical manner. In all four cases, we assume to be in a physical situation where φ̇ω (t) = ω0, Ω (t) = −ℏ

2ω0,
and ω0 is a negative constant. We emphasize that, from a formal mathematical viewpoint, more general temporal
behaviors of φ̇ω (t) and Ω (t) could have been chosen provided the so-called generalized Rabi condition as presented

in Ref. [38, 39], φ̇ω (t) + (2/ℏ)Ω (t) = 0, is satisfied. However, the choice made appears to be more convenient from
an experimental perspective.
The four scenarios can be formally distinguished by means of the temporal expression of the field intensity ωH (t).

In the first case, we assume a constant field intensity ωH (t), ω
(1)
H (t)

def
= Γ. This case defines the original Rabi

scenario where P|w⊥〉→|w〉 (t) is given by, P(1)
|w⊥〉→|w〉 (t) = sin2 [(Γ/ℏ) t]. In the remaining three cases, we consider

three generalized Rabi scenarios where the field intensity ωH (t) exhibits oscillatory, power law decay, and exponential

law decay behaviors, ω
(2)
H (t)

def
= Γcos (λt), ω

(3)
H (t)

def
= Γ

(1+λt)2
, and ω

(4)
H (t)

def
= Γe−λt, respectively. Observe that ω

(2)
H (t)

is a positive quantity on a temporal scale with 0 ≤ t ≤ (π/2)λ−1. In all three cases, it can be shown that the

transition probability P(j)
|w⊥〉→|w〉 (t) is given by [39],

P(j)
|w⊥〉→|w〉 (t) = sin2

[

∫ t

0

ω
(j)
H (t′)

ℏ
dt′

]

, (12)

for any j ∈ {2, 3, 4}. Interestingly, being on resonance, the transition probability in all four cases depends only on the
integral of the transverse field intensity ωH (t). In this paper, the chosen expressions of ωH (t) serves to specify the
particular type of behavior of the analog quantum search algorithms that corresponds to the time-dependent two-level
quantum systems, the latter being characterized by the selected transverse field intensity.
A summary of the main properties of the four quantum evolutions that we consider in this paper appear in Table

II. The transition probabilities P(k)
|w⊥〉→|w〉 (t) with 1 ≤ k ≤ 4 are the essential quantities that we use to construct our

parametrized output quantum states in the next section.

IV. OPTIMUM PATHS, ENTROPIC SPEED, AND ENTROPY PRODUCTION RATE

In this section, we first introduce the Riemannian metrization on the parameter manifold specified by the Fisher
information (see Eq. (1)) introduced in Section II evaluated along the parametrized squared probability amplitudes
obtained from the analysis of the temporal evolution of a spin-1/2 particle in an external time-dependent magnetic
field that characterizes the su (2; C) Hamiltonian model described in Section III. Then, using a minimum action
method to transfer a quantum system from an initial state to a final state on the manifold in finite time, we show that
the minimizing (optimum) path is the shortest (geodesic) path between the two states, and, in particular, minimizes
also the total entropy production that occurs during the transfer. Finally, by calculating the entropic speed (see Eq.
(7)) and the entropy production rate (see Eq. (8)) along the optimum transfer paths in the physical scenarios outlined
in Section III and Table II, we verify in a transparent quantitative manner that to a faster transfer there corresponds
necessarily a higher entropy production rate.
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FIG. 1: Illustrative depiction of the behavior of the Fisher information F (θ) versus θ (plot (c)) defined in terms of the
transition probabilities pw (θ) (dashed line) and pw⊥

(θ) (solid line) (plot (b)). These probabilities, in turn, emerge from the

specific external magnetic field configuration ~B = ~B⊥ + ~B‖ with ~B⊥ = Bxx̂ + Byŷ (plot (a)) that characterizes the su (2; C)
Hamiltonian model being considered. In plots (b) and (c), we set Γ/ℏλ = π/2 and λ = 1. In plot (a), the two-dimensional
parametric plot of the transverse magnetic field components, we set |ω0| = 10π and λ = 1. Furthermore, for simplifying
normalization purposes, we also set Γ/µBohr = 1 with µBohr denoting the Bohr magneton in plot (a). All physical quantities
are assumed to be suitably expressed in terms of the MKSA unit system. Finally, the su (2; C) Hamiltonian model considered
in this Figure corresponds to the fourth scenario studied in the paper.

A. From quantum evolutions to probability paths

In our work, the parameter θ denotes the statistical version of the elapsed time t where we assume that θ is an
experimental parameter that can be determined by measurement of a conventional observable that varies with time
(for instance, the transverse magnetic field intensity B⊥ (t) = (2mc/ |e| ℏ)ωH (t)). We point out that choosing the
elapsed time as the experimentally controllable statistical parameter is not unusual. For example, the comparison

between the inverse temperature β
def
= (kBT )

−1
with kB denoting the Boltzmann constant and θ/ℏ is reminiscent

of the well-known connection between statistical mechanics and quantum mechanics in terms of the so-called Wick
rotation. Specifically, by replacing β with the imaginary time it/ℏ, the Wick rotation allows one to compute quantum
mechanical probability amplitudes just as one calculates averages of observables in statistical mechanics. Therefore,
by minimizing the entropy production, we shall find the optimum paths on the manifold of state space parametrized
by θ along which one drives the system. To be more specific, in view of the connection between analog quantum search
and two-level quantum systems [16, 17], we assume that the output of a continuous-time quantum search algorithm

where the input is the normalized N = 2n-dimensional n-qubit source state |s〉 def
= |ψ (θ0)〉 can be described as,

|ψ (θ)〉 def
= eiϕw(θ)

√

pw (θ) |w〉 + eiϕw
⊥
(θ)

√

pw⊥
(θ) |w⊥〉. The N -dimensional normalized output state |ψ (θ)〉 belongs

to the two-dimensional subspace of the n-qubit complex Hilbert space Hn
2 spanned by the set of orthonormal state

vectors {|w〉 , |w⊥〉} and containing the source state |s〉. The squared probability amplitude pw (θ)
def
= |〈w|ψ (θ)〉|2

and pw⊥
(θ)

def
= |〈w⊥|ψ (θ)〉|2 denote the success and failure probabilities of the search algorithm, respectively. Finally,

ϕw (θ) and ϕw⊥
(θ) are real quantum phases of the states |w〉 and |w⊥〉, respectively. The quantum state |ψ (θ)〉

is parameterized in terms of a single continuous real parameter that emerges from the (computing) elapsed time of
the algorithm. As briefly mentioned earlier, this parameter θ plays the role of a statistical macrovariable used to
distinguish neighboring quantum states |ψ (θ)〉 and |ψ (θ)〉 + |dψ (θ)〉 along a path through the space of quantum
mechanical pure states. In summary, given our working conditions outlined earlier and assuming to have |ψ (θ0)〉
= |w⊥〉 as our input state, we shall essentially focus on the space of probability distributions {p (θ)} with p (θ)

def
=

(pw (θ) , pw⊥
(θ)) and with the natural Riemannian distinguishability metric given by the Fisher information metric

in Eq. (1) (which, under suitably chosen working conditions [22], can be taken proportional to the Fubini-Study

metric), |ψ (θ)〉 7→ p (θ) = (pw (θ) , pw⊥
(θ)) =

(

|〈w|ψ (θ)〉|2 , |〈w⊥|ψ (θ)〉|2
)

. In Fig. 1, we report the behavior of the

Fisher information evaluated along the probabilities obtained from an su (2; C) quantum evolution specified by an

exponentially decaying transverse fiend intensity ω
(4)
H (t).
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B. Illustrative examples

In order to compute the entropic speed vE and the entropy production rate rE along the optimum cooling paths,
we clearly need to first locate such paths. The expression of paths γθ with θ = θ (ξ) and ξ being an affine parameter

depends upon the specific parametric behavior of the Fisher information F (θ) = Eθ

[

{∂θ log [px (θ)]}2
]

evaluated

along the probability paths p (θ)
def
= (pw (θ) , pw⊥

(θ)). The probabilities pw (θ) and pw⊥
(θ) emerge, in turn, from

analyzing the chosen Schrödinger evolutions specified in the previous subsection. Therefore, the Fisher information
plays a key role in our proposed information geometric analysis of quantum mechanical evolutions.

1. Constant Fisher information

In the first quantum mechanical scenario that we consider, the space of probability distributions {p (θ)} with

p (θ)
def
= (pw (θ) , pw⊥

(θ)) is defined in terms of the success and failure probabilities

pw (θ)
def
= sin2

(

Γ

ℏ
θ

)

, and pw⊥
(θ)

def
= cos2

(

Γ

ℏ
θ

)

, (13)

respectively. We note that the probabilities in Eq. (13) exhibit a periodic oscillatory behavior with period given

by T
def
= (πℏ) /Γ. Using Eq. (13), the Fisher information F (θ) in Eq. (1) becomes a constant quantity F0 with

F (θ) = F0
def
= 4 (Γ/ℏ)

2
. Furthermore, since we are focusing on a single parameter probability path γθ with θ = θ (ξ),

the geodesic equations in Eq.(6) reduces to,

d2θ

dξ2
+

1

2F
dF
dθ

(

dθ

dξ

)2

= 0. (14)

In particular, given that F (θ) = F0, Eq. (14) yields, d
2θ/dξ2 = 0. Assuming non vanishing positive initial conditions

θ (ξ0) = θ0 and θ̇ (ξ0) = θ̇0, integration of the geodesic equation is trivial and leads to the following optimum paths,

θ (ξ) = θ0 + θ̇0 (ξ − ξ0) . (15)

From the knowledge of the optimum paths, we can finally compute both the entropic speed vE and the entropy
production rate rE that characterize the geodesic motion on the statistical manifold being considered. Specifically,
evaluating the entropic speed vE in Eq. (7) and the total entropy production rE in Eq. (4) along the optimum paths
in Eq. (15), we obtain

vE (Γ) =
Γ

ℏ
θ̇0, and rE (Γ) =

(

Γ

ℏ

)2

θ̇20, (16)

respectively. From Eq. (16), we note that vE (Γ) ∝ Γ while rE (Γ) ∝ Γ2. Therefore, the magnitude ω
(1)
H (t) = Γ of the

complex transverse field that specifies the su (2; C) Hamiltonian in Eq. (10) is the essential quantity that one needs to
manipulate in order to find a convenient tradeoff between speed and entropy production rate within our information
geometric analysis of quantum mechanical evolutions.

2. Oscillatory behavior of the Fisher information

In the second quantum mechanical scenario that we analyze, the space of probability distributions {p (θ)} with

p (θ)
def
= (pw (θ) , pw⊥

(θ)) is defined in terms of the success and failure probabilities

pw (θ)
def
= sin2

[

Γ

ℏλ
sin (λθ)

]

, and pw⊥
(θ)

def
= cos2

[

Γ

ℏλ
sin (λθ)

]

, (17)

respectively. From Eq. (17), we observe that the probabilities pw (θ) and pw⊥
(θ) exhibit a periodic oscillatory behavior

with period given by T
def
= π/λ. In particular, pw (θ) reaches its maximum value sin2 [Γ/ (ℏλ)] at t∗

def
= π/ (2λ).

Therefore, in order for pw (θ) to reach a maximum value equal to one, we need to impose the constraint Γ = (h/4)λ.
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FIG. 2: Illustrative depiction of the behavior of the Fisher information F (θ) versus θ (plot (a)), the entropic speed vE (ξ)
versus ξ (plot (b)), and the entropic efficiency ηE (ξ) versus ξ (plot (c)). Dotted, dashed, thin solid, and thick solid lines in
plots (a), (b), and (c) correspond to constant, oscillatory, exponential decay, and power law decay of the Fisher information,

respectively. In all plots, we impose Γ/(ℏλ) = π/2, λ = 1/π, θ0 = 1, and θ̇0 = 1. Finally, all physical quantities are assumed
to be suitably expressed in terms of the MKSA unit system.

Employing Eq. (17), the Fisher information F (θ) becomes, F (θ) = 4 (Γ/ℏ)
2
cos2 (λθ). In the case being considered,

Eq. (14) becomes d2θ/dξ2 − λ tan (λθ) (dθ/dξ)2 = 0. Assuming nonvanishing positive initial conditions θ (ξ0) = θ0
and θ̇ (ξ0) = θ̇0, integration of the geodesic equation yields optimum paths θ (ξ) whose general expression can be
recast as,

θ (ξ) = θ0 +

√

1− λ2ξ20
λ

θ̇0
[

sin−1 (λξ)− sin−1 (λξ0)
]

. (18)

From the knowledge of the optimum paths, we can find both the entropic speed vE and the entropy production rate
rE that specify the geodesic motion on the statistical manifold being considered. Specifically, evaluating the entropic
speed vE in Eq. (7) and the total entropy production rE in Eq. (4) along the optimum paths in Eq. (18), we find

vE (Γ) =
Γ

ℏ
|cos (λθ0)| θ̇0, and rE (Γ) =

(

Γ

ℏ

)2

cos2 (λθ0) θ̇
2
0 , (19)

respectively. Comparing Eqs. (19) and (16), we note that with respect to the first scenario, this second scenario is
characterized by a geodesic motion generating cooler optimum paths explored with a smaller entropic speed.

3. Power law decay of the Fisher information

In the third quantum mechanical scenario that we investigate, the space of probability distributions {p (θ)} with

p (θ)
def
= (pw (θ) , pw⊥

(θ)) is specified by means of the success and failure probabilities

pw (θ)
def
= sin2

[

Γ

ℏλ

(

1− 1

1 + λθ

)]

, and pw⊥
(θ)

def
= cos2

[

Γ

ℏλ

(

1− 1

1 + λθ

)]

, (20)

respectively. The probability pw (θ) in Eq. (20) exhibits an asymptotic monotonic convergence to one provided that

Γ = (h/4)λ. Furthermore, making use of Eq. (20), the Fisher information F (θ) becomes, F (θ) = 4 (Γ/ℏ)
2
(1 + λθ)

−4
.

In this case, Eq. (14) can be expressed as d2θ/dξ2 − [2λ/ (1 + λθ)] (dθ/dξ)
2
= 0. Assuming nonvanishing positive

initial conditions θ (ξ0) = θ0 and θ̇ (ξ0) = θ̇0 and integrating this geodesic equation , the optimum paths become

θ (ξ) =
(1 + λθ0)

2
+ λθ̇0

[

(ξ − ξ0)− 1+λθ0
λθ̇0

]

λ2θ̇0

[

1+λθ0
λθ̇0

− (ξ − ξ0)
] . (21)
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FIG. 3: Plot of the two-dimensional parametric region P where the exponential decay strategy outperforms the power law decay
strategy in terms of higher entropic speed values. The black region P tends to vanish as the values of λ become sufficiently
large.

Once again, from the knowledge of the optimum paths, we can calculate both the entropic speed and the entropy
production rate that characterize the geodesic motion on the statistical manifold being considered. Specifically,
evaluating the entropic speed vE in Eq. (7) and the entropy production rate rE in Eq.(8) along the optimum paths
in Eq. (21), we obtain

vE (Γ) =
Γ

ℏ

1

[1 + λ (Γ) θ0]
2 θ̇0, and rE (Γ) =

(

Γ

ℏ

)2
1

[1 + λ (Γ) θ0]
4 θ̇

2
0, (22)

respectively, where λ (Γ)
def
= (4Γ) /h. In analogy to the first and second scenarios, the motion on the manifold

associated with the third scenario proceeds at constant entropic speed vE and, thus, exhibits minimum entropy
production. In particular, this third scenario is characterized by a geodesic motion that yields optimum paths cooler
than those found in the second scenario.

4. Exponential decay of the Fisher information

In the fourth and last quantum mechanical scenario that we analyze, the space of probability distributions {p (θ)}
with p (θ)

def
= (pw (θ) , pw⊥

(θ)) is defined in terms of the success and failure probabilities

pw (θ)
def
= sin2

[

Γ

ℏλ

(

1− e−λθ
)

]

, and pw⊥
(θ)

def
= cos2

[

Γ

ℏλ

(

1− e−λθ
)

]

, (23)

respectively. The probability pw (θ) in Eq. (23) exhibits an asymptotic monotonic convergence to one provided that

Γ = (h/4)λ. Moreover, using Eq. (23), the Fisher information F (θ) becomes F (θ) = 4 (Γ/ℏ)2 e−2λθ. In this case, the

geodesic equation becomes d2θ/dξ2 − λ (dθ/dξ)
2
= 0. Considering nonvanishing positive initial conditions θ (ξ0) = θ0

and θ̇ (ξ0) = θ̇0, integration of the geodesic equation yields the following optimum paths,

θ (ξ) = θ0 −
1

λ
log

[

1− λθ̇0 (ξ − ξ0)
]

. (24)

As pointed out in the previous illustrative examples, from the knowledge of the optimum paths, we can determine
both the entropic speed vE and the entropy production rate rE that characterize the geodesic motion on the statis-
tical manifold under consideration. Specifically, evaluating the entropic speed vE in Eq. (7) and the total entropy
production in Eq. (4) along the optimum paths in Eq. (24), we find

vE (Γ) =
Γ

ℏ
e−λ(Γ)θ0 θ̇0, and rE (Γ) =

(

Γ

ℏ

)2

e−2λ(Γ)θ0 θ̇20 , (25)
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Analog Quantum Search su(2; C) Hamiltonian Model Fisher Information Speed Entropy Production Rate

Grover-like constant B⊥, original constant higher higher

Grover-like oscillating B⊥, generalized oscillatory high high

fixed-point-like power law decay of B⊥, generalized power law decay low low

fixed-point-like exponential decay of B⊥, generalized exponential decay lower lower

TABLE III: Schematic behavioural description of the entropy production rate, speed, and Fisher information in the selected
four su(2; C) Hamiltonian models. In particular, for each model, we point out the Grover-like or fixed-point-like property
exhibited by its corresponding analog quantum search algorithm.

respectively, where λ (Γ)
def
= (4Γ) /h. From the comparison of Eqs. (22) and (25), we conclude that this last scenario

can exhibit the coolest optimum paths, albeit with the path exploration occurring at the slowest entropic speed for
values of λ (Γ) sufficiently large. More specifically, we observe that 0 ≤ e−λθ0 ≤ 1/ (1 + λθ0)

2 ≤ |cos (λθ0)| ≤ 1 when

θ0 ∈ R+ and λ (Γ)
def
= (4Γ) /h ≫ 1. However, when 0 ≤ λ . 1, the exponential-decay strategy can outperform the

power-law strategy in terms of entropic speed. In Fig. 2 we plot the constant values of the entropic speed vE and the
entropic efficiency ηE that emerge from the particular parametric expression of F (θ). The expression of the Fisher
information, in turn, depends on the particular su (2; C) Hamiltonian model considered. More formally, combining

Eqs. (22) and (25), we get v
(power-law)
E (Γ) =

[

eλθ0/ (1 + λθ0)
2
]

v
(power-law)
E (Γ). Introducing the function fP (λ, θ0)

def
=

eλθ0/ (1 + λθ0)
2, the two-dimensional parametric region P where the exponential law decay strategy yields entropic

speed values higher that those of the power law decay strategy is given by, P def
= {(λ, θ0) ∈ R+ × R+ : fP (λ, θ0) < 0}.

A plot of such a region P appears in Fig. 3. We emphasize that, for values of the parameter λ sufficiently large, the
power law decay strategy outperforms the exponential decay strategy in terms of entropic speed. To have a physical
grasp of a typical value of λ, we recall that λ = (4Γ) /h and Γ = (|e| ℏB⊥) /2mc. Therefore, assuming to consider
a magnetic field with initial intensity B⊥ of the order of 0.2 T (a value typical of neodymium magnets), λ ≃ 37
[MKSA]. Furthermore, in Table III we summarize the behavior of the entropy production rate rE, the entropic speed
vE, and the Fisher information F (θ) for each of the four quantum mechanical evolutions considered. Finally, for each
quantum evolution, we specify the type of continuous-time quantum search it resembles.

V. CONCLUSIONS

In this article, we presented an information geometric characterization of entropic speeds and entropy produc-
tion rates that emerge from the geodesic motion on manifolds of parametrized quantum states. These pure states
emerge as outputs of suitable su (2; C) time-dependent Hamiltonian evolutions employed to specify distinct types of
continuous-time quantum search schemes. The Riemannian metrization on the manifold is essentially specified by the
Fisher information evaluated along the parametrized squared probability amplitudes obtained from the analysis of
the quantum mechanical temporal evolution of a spin-1/2 particle in an external time-dependent magnetic field that
prescribes the su (2; C) Hamiltonian model. In Fig. 1, we show the manner in which a specific Fisher information
behavior arises from a given su (2; C) Hamiltonian model characterized by a particular magnetic field configuration
(see Table II). We use a minimum action principle to transfer a quantum system from an initial state to a final state on
the manifold in a finite temporal interval. Furthermore, we demonstrate that the minimizing (optimum) path is the
shortest (geodesic) path between the two states and in particular, also minimizes the total entropy production, that
is, the thermodynamic divergence of the path that occurs during the transfer. Then, by evaluating the entropic speed
and the total entropy production along the optimum transfer paths in the four chosen physical scenarios of interest
in analog quantum search problems, we demonstrate in a clear quantitative manner that to a faster transfer there
necessarily corresponds a higher entropy production rate (see Fig. 2 and Table III). Thus, we conclude that lower
(entropic) efficiency values do appear to accompany higher (entropic) speed values in quantum transfer processes. In
particular, quantum mechanical evolutions that generate probability paths with a Fisher information that exhibits
an exponential decay behavior seem to achieve the highest entropic efficiency with the cost of also having the lowest
entropic speed. By contrast, probability paths with a constant Fisher information appear to be the fastest but also
the most inefficient from an entropic standpoint. A graphical summary of these results, including all four su (2; C)
Hamiltonian models considered in this paper (see Table II), appear in Fig. 2 and Table III.
In conclusion, we view our investigation presented in this paper as a natural progression of our works presented in

Refs. [14, 16]. It constitutes a nontrivial preliminary effort toward understanding quantum search algorithms from a
thermodynamical perspective developed within an information geometric setting. It is our intention to improve upon
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the analysis provided in this paper and pursue these fascinating lines of investigations in forthcoming scientific efforts.
Of course, it is our sincere hope that our work will inspire other scientists to further explore these research avenues
in the near future.
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