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Benchmark data are presented for the zeroth- through third-order many-body perturbation corrections to the
electronic Helmholtz energy, internal energy, and entropy in the canonical ensemble in a wide range of tem-
perature. They are determined as numerical λ-derivatives of the respective quantities computed by thermal full
configuration interaction with a perturbation-scaled Hamiltonian, Ĥ = Ĥ0 + λV̂. Sum-over-states analytical for-
mulas for up to the third-order corrections to these properties are also derived as analytical λ-derivatives. These
formulas, which are verified by exact numerical agreement with the benchmark data, are given in terms of the
Hirschfelder–Certain degenerate perturbation energies and should be valid for both degenerate and nondegener-
ate reference states at any temperature down to zero. The results in the canonical ensemble are compared with
the same in the grand canonical ensemble.

I. INTRODUCTION

In a previous study [1], we reported the benchmark data
for several low-order perturbation corrections to the electronic
grand potential, internal energy, and chemical potential of
an ideal gas of molecules in the grand canonical ensemble.
They were determined numerically as the λ-derivatives of the
respective quantities calculated exactly, i.e., by thermal full
configuration interaction (FCI) [2] with a perturbation-scaled
Hamiltonian, Ĥ0+λV̂ . We call this the λ-variation method [3].
The first- and second-order corrections evaluated by the finite-
temperature many-body perturbation theoretical formulas in a
number of textbooks [4–9] were shown to disagree with these
benchmark data, implying that the theory is incorrect beyond
the zeroth order and does not converge at the exact limit. This
failure was ascribed not so much to any mathematical issue
as to its neglect of the variation of chemical potential with λ,
causing the average number of electrons to fluctuate and vio-
lating the net electrical neutrality of the system as a basic tenet
of equilibrium thermodynamics [10–13].

We derived [14] the correct first-order correction formulas
for the grand potential, internal energy, and chemical potential
in the grand canonical ensemble by demanding to restore the
electrical neutrality of the system at each perturbation order.
These analytical formulas were given in two forms: sum-over-
states expressions written in terms of the energy corrections
according to the Hirschfelder–Certain degenerate perturba-
tion theory (HCPT) [15] and reduced formulas expressed with
the molecular integrals and Fermi–Dirac distribution function.
They both reproduce the benchmark data at any temperature
down to zero. The latter were derived from the former using
the sum rules of the HCPT corrections and several Boltzmann-
sum identities, one of which being responsible for the same
kind of massive mathematical simplifications in the zeroth-
order (Fermi–Dirac) theory. These simplifications use noth-
ing more than elementary calculus and combinatorics as well
as the HCPT sum rules and there is no need to resort to the
Matsubara Green’s function [16] or thermal Wick’s theorem
[17] in the time-dependent diagrammatic logic, which seems
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much less tractable.

Another way to restore the electrical neutrality of the sys-
tem is simply to adopt the canonical ensemble and sample
only the electrically neutral states. There have been only a few
attempts to formulate finite-temperature many-body perturba-
tion theory in the canonical ensemble of electrons [18–20].
Arnaud et al. [18] and Schönhammer [19] derived the exact
thermodynamic properties of noninteracting electrons by as-
suming equidistant energy levels. However, there have been
no reports of order-by-order analytic equations or numerical
values of the perturbation corrections to various thermody-
namic quantities in the canonical ensemble in a more general
case. This is probably because the kind of elegant mathemat-
ical simplifications in the grand canonical ensemble, which
leads to the Fermi–Dirac theory at the zeroth order or similar
analytical formulas at the first order [14], does not seem to
occur [20] in the canonical ensemble.

In this work, we use the λ-variation method [3] to deter-
mine the benchmark numerical data for the zeroth- through
third-order perturbation corrections to the Helmholtz energy,
internal energy, and entropy in the canonical ensemble of elec-
trons in ideal gases of identical atoms or molecules. Contri-
butions from translational, rotational, and vibrational motion,
which are more important, are well understood and not con-
sidered here. We present sum-over-states analytical formulas
for the zeroth- through third-order perturbation corrections to
these thermodynamic quantities, given in terms of the HCPT
energy expressions [15]. These formulas are, again, obtained
as analytical λ-derivatives of thermal FCI expressions in a
purely time-independent, nondiagrammatic derivation. We
show that they exactly reproduce the benchmark numerical
data and thus form the basis of finite-temperature perturbation
theory in the canonical ensemble. We also make a comparison
of the canonical and grand canonical ensembles.

II. THERMAL FULL CONFIGURATION INTERACTION

Let us consider an ideal gas of neutral atoms or molecules
in the canonical ensemble. Its electronic partition function Z

(ignoring the translational, rotational, and vibrational partition
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functions) at temperature T is defined by

Z =

2kCN−1
∑

I=0

e−βEI , (1)

where β = (kBT )−1 and EI is the exact (i.e., zero-temperature-
FCI) energy of the Ith state (I = 0 for the ground state). The
sum is taken over all 2kCN states with N electrons occupying
2k spinorbitals spanned by a set of k basis functions. The
Helmholtz energy F, internal energy U, and entropy S are
related to Z by

F = −
1
β

ln Z, (2)

U = −
∂

∂β
ln Z, (3)

and

S = −kB

2kCN−1
∑

I=0

WI ln WI (4)

with

WI =
e−βEI

Z
. (5)

They are also related to one another by the identity,

S = kBβ(U − F). (6)

We call this computational procedure to determine the values
of F, U, and S the thermal FCI method [2], which constitutes
the numerically exact electronic thermodynamics of an ideal
gas within a basis set.

III. λ-VARIATION NUMERICAL BENCHMARKS

The nth-order correction X(n) of thermodynamic property X

(X = F, U, or S in this case) is defined [3] as the nth derivative
with respect to λ of the same property X(λ) determined exactly
by thermal FCI using a perturbation-scaled Hamiltonian Ĥ =

Ĥ0 + λV̂ ,

X(n)
=

1
n!
∂nX(λ)
∂λn

∣

∣

∣

∣

∣

λ=0
, (7)

where Ĥ0 is the zeroth-order Hamiltonian, V̂ is the perturba-
tion, and λ = 1 corresponds to the fully interacting system.
This exactly matches with the usual perturbation expansion of
X(λ),

X(λ) = X(0)
+ λX(1)

+ λ2X(2)
+ . . . , (8)

forming a converging series toward thermal FCI at λ = 1. A
finite-difference evaluation of X(n) for several low orders con-
sists in the λ-variation method [3], furnishing invaluable nu-
merical benchmark data for any perturbation theory with any
partitioning of Hamiltonian or any reference wave function.
There is a minimal risk of programming or formulation errors
with this method.

We applied this method to ideal gases of the hydrogen flu-
oride molecule (0.9164 Å, N = 10, k = 6), the boron hy-
dride molecule (1.232 Å, N = 6, k = 6), and the beryllium
atom (N = 4, k = 5) in the minimal (STO-3G) basis set.
We adopted the Møller–Plesset partitioning of the Hamilto-
nian, where Ĥ0 is the zero-temperature Fock operator plus the
nuclear-repulsion energy. Hence, the reference wave function
was the zero-temperature N-electron ground-state Hartree–
Fock wave function. Throughout the calculations, molecular
orbitals and orbital energies were held fixed.

We used the seven-point central finite-difference formula
[21] at λ = 0 with the grid spacing of ∆λ = 10−2 for the
first and second derivatives (yielding the first- and second-
order perturbation corrections) and ∆λ = 10−1 for the third
derivatives (furnishing the third-order perturbation correc-
tions). These parameter choices were made on the basis of
a numerical experiment using a wide range of their values.
Equations (4) and (5) were evaluated when computing S (n),
which were cross-checked against U (n) and F(n) using Eq. (6).

The zeroth- through third-order perturbation corrections to
the Helmholtz energy F, internal energy U, and entropy S

of the ideal gas of hydrogen fluoride in the canonical ensem-
ble are documented in Tables I, II, and III, respectively. They
are also compared with the perturbation corrections to grand
potential Ω, internal energy U, and entropy S of the iden-
tical system in the grand canonical ensemble [1]. Table IV
shows the convergence of the perturbation series towards ther-
mal FCI [2]. The results are discussed in Sec. V.

The data for the boron hydride and beryllium can be found
in the Appendix.

IV. SUM-OVER-STATES ANALYTICAL FORMULAS

In this section, sum-over-states analytical formulas for the
zeroth- through third-order perturbation corrections to F, U,
and S are presented. Tables V and VI compare the perturba-
tion corrections to F and U, respectively, calculated by these
analytical formulas with the λ-variation benchmark data.

These analytical formulas are derived by analytical λ-
differentiation of the exact (thermal-FCI) expressions of the
respective quantities as per Eq. (7). They are expressed in
terms of the perturbation corrections to the FCI energies,
{E

(n)
I
}, where E

(n)
I

is the nth-order correction to the zeroth-
order energy of the Ith state according to HCPT [15]; we
cannot rely on Møller–Plesset perturbation theory (MPPT)
[22] because many excited states are exactly degenerate at
the zeroth order. For nondegenerate states, HCPT reduces to
MPPT if the Møller–Plesset partitioning of the Hamiltonian is
adopted. In either case, these energy corrections conform to
the canonical definition of perturbation corrections as given
by Eq. (7) with X = EI .

We have not found the kind of drastic simplification which
brings these sum-over-states formulas involving long sums
over exponentially many states into more compact ones in-
volving much shorter sums over the molecular integrals and
Fermi–Dirac distribution function (as in the Fermi–Dirac and
perturbation theories in the grand canonical ensemble [14]).
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TABLE I. The zeroth- through third-order perturbation corrections to the Helmholtz energy F as a function of temperature T obtained from
the λ-variation method for an ideal gas of hydrogen fluoride in the canonical ensemble as well as the zeroth- through second-order perturbation
corrections to grand potential Ω in the grand canonical ensemble.

Canonical ensemble Grand canonical ensemblea

T/ K F(0)/Eh F(1)/Eh F(2)/Eh F(3)/Eh Ω
(0)/Eh Ω

(1)/Eh Ω
(2)/Eh

103 −52.5749 −45.9959 −0.0173 −0.0055 −53.4112 −45.9959 −0.4353
104 −52.5749 −45.9959 −0.0173 −0.0055 −53.5117 −45.9959 −0.4324
105 −52.6717 −46.1631 −0.1466 −0.0524 −55.6365 −45.2684 −2.5815
106 −62.5554 −46.7786 −0.0165 0.0003 −105.947 −44.5256 −0.9643
107 −176.802 −46.8574 −0.0024 0.0000 −686.703 −43.1991 −0.1970
108 −1368.93 −46.8576 −0.0004 0.0000 −6804.94 −41.9847 −0.0276
109 −13309.7 −46.8555 −0.0000 0.0000 −68084.5 −41.8264 −0.0029

a Reference 1.

TABLE II. The same as Table I but for the internal energy U.

Canonical ensemble Grand canonical ensemblea

T/ K U (0)/Eh U (1)/Eh U (2)/Eh U (3)/Eh U (0)/Eh U (1)/Eh U (2)/Eh

103 −52.5749 −45.9959 −0.0173 −0.0055 −52.5749 −45.9959 −0.0173
104 −52.5749 −45.9959 −0.0173 −0.0055 −52.5749 −45.9959 −0.0173
105 −52.2645 −45.6944 −0.0215 −0.1665 −52.0166 −45.9479 0.0984
106 −50.6228 −46.7166 −0.0342 0.0009 −50.5964 −46.1767 −0.2198
107 −46.0028 −46.8452 −0.0037 0.0001 −45.7891 −46.2355 −0.0326
108 −42.4046 −46.8596 −0.0008 0.0000 −42.3641 −46.1180 −0.0054
109 −41.9496 −46.8557 −0.0001 0.0000 −41.9453 −46.0975 −0.0006

a Reference 1.

TABLE III. The same as Table I but for the entropy S .

Canonical ensemble Grand canonical ensemblea

T/ K S (0)/kB S (1)/kB S (2)/kB S (3)/kB S (0)/kB S (1)/kB S (2)/kB

103 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
104 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
105 1.2856 1.4801 0.3949 −0.3602 2.8344 0.2288 1.1370
106 3.7680 0.0196 −0.0056 0.0002 4.9697 0.0122 −0.0336
107 4.1304 0.0004 0.0000 0.0000 5.3498 −0.0018 −0.0004
108 4.1889 0.0000 0.0000 0.0000 5.4060 −0.0000 −0.0000
109 4.1896 0.0000 0.0000 0.0000 5.4067 0.0000 0.0000

a Reference 1.

TABLE IV. The sum of zeroth- through third-order corrections and the thermal-FCI values of the Helmholtz energy F, internal energy U, or
entropy S as a function of temperature T for an ideal gas of hydrogen fluoride in the canonical ensemble.

T/ K F/Eh
a ∑3

n=0 F(n)/Eh U/Eh
a ∑3

n=0 U (n)/Eh S/kB
a ∑3

n=0 S (n)/kB

103 −98.5966 −98.5936 −98.5966 −98.5936 0.0000 0.0000
104 −98.5966 −98.5936 −98.5966 −98.5936 0.0001 0.0000
105 −99.0204 −99.0338 −98.1784 −98.1469 2.6590 2.8004
106 −109.350 −109.350 −97.3728 −97.3728 3.7822 3.7822
107 −223.663 −223.662 −92.8516 −92.8516 4.1307 4.1307
108 −1415.80 −1415.79 −89.2650 −89.2650 4.1889 4.1889
109 −13356.6 −13356.5 −88.8054 −88.8054 4.1896 4.1896

a Thermal FCI [2].
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However, they may still serve in practice at low temperatures,
where these long sums may be truncated aggressively with
minimal errors.

We use the following two Taylor-series expressions [14],

ea+b
= ea
+ bea

+
b2

2!
ea
+

b3

3!
ea
+ . . . , (9)

ln(a + b) = ln a +
b

a
−

b2

2a2
+

b3

3a3
+ . . . , (10)

which are rapidly convergent when a≫ b .

A. Zeroth order

The zeroth-order canonical partition function is given by

Z(0)
=

∑

I

e−βE
(0)
I , (11)

where E
(0)
I

is the zeroth-order HCPT energy of the Ith state. It
can also be written as

E
(0)
I
= Enuc. +

occ.
∑

i

ǫi, (12)

where Enuc. is the nuclear-repulsion energy, ǫi is the ith orbital
energy, and the summation runs over all orbitals occupied by
an electron in the Ith state (not to be confused with the “occu-
pied” orbitals of the ground-state HF wave function).

Then, according to Eqs. (2) and (3), we have

F(0)
= −

1
β

ln Z(0)
= −

1
β

ln
∑

I

e−βE
(0)
I , (13)

U (0)
= −
∂

∂β
ln Z(0)

=

∑

I E
(0)
I

e−βE
(0)
I

∑

I e−βE
(0)
I

=

〈

E(0)
〉

, (14)

where 〈. . . 〉 denotes a canonical ensemble average,

〈

X
〉

≡

∑

I XIe
−βE

(0)
I

∑

I e−βE
(0)
I

. (15)

The zeroth-order entropy is given by

S (0)
= kBβ

(

U (0) − F(0)
)

, (16)

according to Eq. (6).

B. First order

Applying Eq. (9) to Eq. (1) and collecting terms that are
first order in λ, we obtain

Z(1)
=

∑

I

(

−βE
(1)
I

)

e−βE
(0)
I , (17)

where E
(1)
I

is the first-order HCPT energy correction [15] of
the Ith state. Using Eq. (10), we can write the first-order cor-
rections to the Helmholtz and internal energies as well as en-
tropy as

F(1)
= −

1
β

Z(1)

Z(0)
=

∑

I E
(1)
I

e−βE
(0)
I

∑

I e−βE
(0)
I

=

〈

E(1)
〉

, (18)

U (1)
= −
∂

∂β

(

Z(1)

Z(0)

)

= −
∂

∂β

(

−βF(1)
)

=

〈

E(1)
〉

+ β
〈

E(1)
〉 〈

E(0)
〉

− β
〈

E(1)E(0)
〉

, (19)

and

S (1)
= kBβ

(

U (1) − F(1)
)

= kBβ
2
〈

E(1)
〉 〈

E(0)
〉

− kBβ
2
〈

E(1)E(0)
〉

, (20)

where we have used

∂

∂β

〈

X
〉

=

〈

X
〉 〈

E(0)
〉

−
〈

XE(0)
〉

. (21)

The last two terms of Eq. (19) individually scale quadrati-
cally with molecular size and are non-size-consistent. It is ex-
pected (albeit not proven) that these non-size-consistent con-
tributions cancel exactly across the two terms, leaving only the
size-consistent contribution. That this is the case is implied by
Eq. (21) because the left-hand side is size-consistent, provided
that the HCPT energy corrections are size-consistent.

Each of the terms that has at least one factor of β multiply-
ing 〈. . . 〉 vanishes in the high-temperature (β → 0) limit. On
the other hand, in the low- and high-temperature limits, we
have

lim
T→0

〈

X
〉

= X0, (22)

lim
T→∞

〈

X
〉

= X̄ ≡

∑

I XI

2kCN

, (23)

where X0 is the value of X for the ground (I = 0) state, and X̄

is a simple average. Therefore,

lim
T→0

F(n)
= lim

T→0
U (n)
= E

(n)
0 , (24)

lim
T→∞

F(n)
= lim

T→∞
U (n)
= Ē(n), (25)

lim
T→0

S (n)
= lim

T→∞
S (n)
= 0. (26)

where n = 1. In fact, they hold for n = 2 and 3 (see below)
and likely for all n ≥ 1.

C. Second order

Expanding Eq. (1) into the form of Eq. (9) and collecting
terms that are second order in λ, we obtain

Z(2)
=

∑

I

(

−βE
(2)
I
+
β2

2
E

(1)
I

E
(1)
I

)

e−βE
(0)
I , (27)
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where E
(2)
I

is the second-order HCPT energy correction [15]
of the Ith state. Using Eq. (10), we find

F(2)
= −

1
β

Z(2)

Z(0)
+

1
2β

(

Z(1)

Z(0)

)2

=

〈

E(2)
〉

−
β

2

〈

E(1)E(1)
〉

+
β

2

〈

E(1)
〉 〈

E(1)
〉

, (28)

and

U (2)
= −
∂

∂β

(

−βF(2)
)

= F(2)
+ β
∂F(2)

∂β

=

〈

E(2)
〉

− β
〈

E(1)E(1)
〉

+ β
〈

E(1)
〉 〈

E(1)
〉

+β
〈

E(2)
〉 〈

E(0)
〉

− β
〈

E(2)E(0)
〉

−
β2

2

〈

E(1)E(1)
〉 〈

E(0)
〉

+
β2

2

〈

E(1)E(1)E(0)
〉

+β2
〈

E(1)
〉 〈

E(1)
〉 〈

E(0)
〉

− β2
〈

E(1)
〉 〈

E(1)E(0)
〉

,(29)

where we have utilized Eq. (21). The second-order entropy
correction then reads

S (2)
= kBβ

(

U (2) − F(2)
)

= −
kBβ

2

2

〈

E(1)E(1)
〉

+
kBβ

2

2

〈

E(1)
〉 〈

E(1)
〉

+kBβ
2
〈

E(2)
〉 〈

E(0)
〉

− kBβ
2
〈

E(2)E(0)
〉

−
kBβ

3

2

〈

E(1)E(1)
〉 〈

E(0)
〉

+
kBβ

3

2

〈

E(1)E(1)E(0)
〉

+kBβ
3
〈

E(1)
〉 〈

E(1)
〉 〈

E(0)
〉

−kBβ
3
〈

E(1)
〉 〈

E(1)E(0)
〉

, (30)

according to Eq. (6).
Again, those terms containing a factor of β or β2 individu-

ally violate size-consistency, but the non-size-consistent con-
tributions are expected to cancel one another exactly, leav-
ing a size-consistent remainder. In fact, the foregoing expres-
sions are reminiscent of Brueckner’s bracket notation [22–24],
which was used to prove the diagrammatic linkedness and
thus size-consistency of zero-temperature MPPT.

The high- and low-temperature limits of the second-order
corrections are given by the same equations (24)–(26) with
n = 2. It will furthermore be shown that Ē(2)

= 0 (see Sec. V).

D. Third order

Following the same procedure, we obtain the third-order
correction to the canonical partition function, which reads

Z(3)
=

∑

I

(

−βE
(3)
I
+ β2E

(1)
I

E
(2)
I
−
β3

3!
E

(1)
I

E
(1)
I

E
(1)
I

)

e−βE
(0)
I .

(31)

The third-order corrections to the Helmholtz and internal en-
ergies are then given by

F(3)
= −

1
β

Z(3)

Z(0)
+

1
β

Z(1)

Z(0)

Z(2)

Z(0)
−

1
3β

(

Z(1)

Z(0)

)3

=

〈

E(3)
〉

− β
〈

E(1)E(2)
〉

+
β2

3!

〈

E(1)E(1)E(1)
〉

+β
〈

E(1)
〉 〈

E(2)
〉

−
β2

2

〈

E(1)
〉 〈

E(1)E(1)
〉

+
β2

3

〈

E(1)
〉 〈

E(1)
〉 〈

E(1)
〉

, (32)

and

U (3)
= −
∂

∂β

(

−βF(3)
)

= F(3)
+ β
∂F(3)

∂β

=

〈

E(3)
〉

− 2β
〈

E(1)E(2)
〉

+
β2

2

〈

E(1)E(1)E(1)
〉

+2β
〈

E(1)
〉 〈

E(2)
〉

−
3β2

2

〈

E(1)E(1)
〉 〈

E(1)
〉

+β2
〈

E(1)
〉 〈

E(1)
〉 〈

E(1)
〉

+ β
〈

E(3)
〉 〈

E(0)
〉

−β
〈

E(3)E(0)
〉

− β2
〈

E(1)E(2)
〉 〈

E(0)
〉

+ β2
〈

E(1)E(2)E(0)
〉

+
β3

3!

〈

E(1)E(1)E(1)
〉 〈

E(0)
〉

−
β3

3!

〈

E(1)E(1)E(1)E(0)
〉

+2β2
〈

E(1)
〉 〈

E(2)
〉 〈

E(0)
〉

− β2
〈

E(1)
〉 〈

E(2)E(0)
〉

−β2
〈

E(1)E(0)
〉 〈

E(2)
〉

− β3
〈

E(1)E(1)
〉 〈

E(1)
〉 〈

E(0)
〉

+
β3

2

〈

E(1)E(1)
〉 〈

E(1)E(0)
〉

+
β3

2

〈

E(1)E(1)E(0)
〉 〈

E(1)
〉

+β3
〈

E(1)
〉 〈

E(1)
〉 〈

E(1)
〉 〈

E(0)
〉

−β3
〈

E(1)
〉 〈

E(1)
〉 〈

E(1)E(0)
〉

. (33)

We will not give the lengthy expanded expression of S (3) here
because it is easily reproduced from

S (3)
= kBβ

(

U (3) − F(3)
)

. (34)

The non-size-consistent contributions (the terms multiplied
by a power of β) are, again, expected to mutually cancel one
another. The high- and low-temperature limits are also the
same as Eqs. (24)–(26) with n = 3 and Ē(3)

= 0 (see Sec. V).

V. DISCUSSION

Table I shows that the free energies in the canonical (F) and
grand canonical (Ω) ensembles [1] differ considerably from
each other. At any temperature, the nth-order (0 ≤ n ≤ 2) per-
turbation approximation to Ω (i.e., the sum of zeroth- through
nth-order perturbation corrections) is always more negative
than the corresponding perturbation approximation of F. The
majority of the difference is accounted for by the µN̄ contri-
bution (where µ is the chemical potential and N̄ is the average
number of electrons canceling the positive nuclear charge).
While these two ensembles should be equivalent in the limit
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TABLE V. Comparison of the zeroth-, through third-order corrections to the Helmholtz energy F obtained from the λ-variation (numerical)
method and sum-over-states (analytical) formulas as a function of temperature T for an ideal gas of hydrogen fluoride in the canonical
ensemble.

F(0)/Eh F(1)/Eh F(2)/Eh F(3)/Eh

T/ K Numericala Analyticalb Numericala Analyticalb Numericala Analyticalb Numericala Analyticalb

104 −52.5749 −52.5749 −45.9959 −45.9959 −0.0173 −0.0173 −0.0055 −0.0055
105 −52.6717 −52.6717 −46.1631 −46.1631 −0.1466 −0.1466 −0.0524 −0.0524
106 −62.5554 −62.5554 −46.7786 −46.7786 −0.0165 −0.0165 0.0003 0.0003
107 −176.802 −176.802 −46.8574 −46.8574 −0.0024 −0.0024 0.0000 0.0000
108 −1368.93 −1368.93 −46.8576 −46.8576 −0.0004 −0.0004 0.0000 0.0000
109 −13309.7 −13309.7 −46.8555 −46.8555 0.0000 0.0000 0.0000 0.0000

a The λ-variation benchmark, i.e., Eq. (7).
b The sum-over-states analytical formula, i.e., Eq. (13), (18), (28), or (32). The first-, second-, and third-order HCPT energy corrections were evaluated by the
λ-variation method as forward seven-point, seven-point, and five-point finite differences, respectively, with ∆λ = 10−3.

TABLE VI. The same as Table V but for the internal energy U.

U (0)/Eh U (1)/Eh U (2)/Eh U (3)/Eh

T/ K Numericala Analyticalb Numericala Analyticalb Numericala Analyticalb Numericala Analyticalb

104 −52.5749 −52.5749 −45.9959 −45.9959 −0.0173 −0.0173 −0.0055 −0.0055
105 −52.2645 −52.2645 −45.6944 −45.6944 −0.0215 −0.0215 −0.1665 −0.1665
106 −50.6228 −50.6228 −46.7166 −46.7166 −0.0342 −0.0342 0.0009 0.0009
107 −46.0028 −46.0028 −46.8452 −46.8452 −0.0037 −0.0037 0.0001 0.0001
108 −42.4046 −42.4046 −46.8596 −46.8596 −0.0008 −0.0008 0.0000 0.0000
109 −41.9496 −41.9496 −46.8557 −46.8557 −0.0001 −0.0001 0.0000 0.0000

a The λ-variation benchmark, i.e., Eq. (7).
b The sum-over-states analytical formula, i.e., Eq. (14), (19), (29), or (33). See the corresponding caption of Table V for the evaluation of the HCPT energy

corrections.

of large volume [25] (with a minimal volume containing one
molecule), the two sets of the results are far from convergence.
This suggests that the canonical ensemble may not be used in-
terchangeably with the grand canonical ensemble if there is
any possibility of an electron hopping from one molecule to
another, even though the charge neutrality of the system is al-
ways maintained in both ensembles [1].

Even in the zero-temperature limit, F(n) and Ω(n) generally
differ from each other except for n = 1. This is because we
can write the limits [14] as

lim
T→0

F(n)
= E

(n)
0 , (35)

lim
T→0
Ω

(n)
= E

(n)
0 − µ

(n)N̄, (36)

where E
(n)
0 is the nth-order correction to energy according to

MPPT in the case of a nondegenrate N-electron ground-state
wave function or HCPT in the case of a degenerate N-electron
ground-state wave function. Only in the first order for a non-
degenerate ground state, µ(1)

= 0 and, therefore, F(1)
= Ω

(1) at
T = 0 [14].

The incorrect formulas forΩ(1) andΩ(2) (not shown) in var-
ious textbooks [1] give values that are more similar to F(1) and
F(2) in the canonical ensemble, but are far from the correct val-
ues ofΩ(1) andΩ(2) reproduced in Table I. This is understand-
able because the grand-canonical theory in textbooks neglects
to vary µ to keep the system electrically neutral, while the
canonical ensemble does not have µ in the first place. How-
ever, it should be remembered that the canonical ensemble of

a neutral system is valid thermodynamics, whereas the grand
canonical ensemble for a massively charged system is not.

Comparing the Helmholtz (F) and internal (U) energies in
the canonical ensemble compiled in Tables I and II, we ob-
serve that F(n)

= U (n) at T = 0 for 0 ≤ n ≤ 3. In fact, since

F(n)
= U (n) − TS (n), (37)

this is expected to hold true for any n.
Table II shows that the internal energies U (n) in the canon-

ical and grand canonical [1] ensembles converge at the same
zero-temperature limit for any n. This is again expected be-
cause

lim
T→0

U (n)
= E

(n)
0 , (38)

in both ensembles.
As the temperature increases, U (n) tends to two distinct lim-

its depending on the ensembles. In the canonical ensemble,
the high-temperature limit of U (n) is the average of E

(n)
I

over
all N-electron states [2]:

lim
T→∞

U (n)
=

∑

I E
(n)
I

2kCN

, (39)

where the denominator is the total number of N-electron
states. In the grand canonical ensemble, U (n) has a different
limit [2],

lim
T→∞

U (n)
=

∑

I E
(n)
I
{N/(2k − N)}NI

∑

I{N/(2k − N)}NI
, (40)
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where I runs over all states whose electron count NI ranges
from zero to 2k (k is the number of basis functions) [2]; it is
not a simple average of energies. In either case, these limit-
ing behaviors are often an artifact of a finite number of basis
functions, and are dependent on k.

In the canonical ensemble, we observe

lim
T→∞

U (n)
= 0 for n ≥ 2. (41)

This is explained by the similarity-invariance of trace. Equa-
tion (39) means that U (0)

+U (1) is the trace of the Hamiltonian
in the complete N-electron determinant basis divided by 2kCN ,
which is already exact (i.e., equal to the FCI trace) in the fi-
nite basis set. Therefore, U (2) and higher-order corrections
are zero in this limit. We believe that this is not an artifact of
a finite basis set; an ensemble average of energy has indeed
less correlation because of mutual cancellation of correlation
energies among ground and excited states.

In a finite-basis theory [2], we have

lim
T→0

S = 0, (42)

lim
T→∞

S = kB ln 2kCN . (43)

The former follows from Nernst’s theorem and the latter (en-
tropy saturation) is a finite-basis-set artifact because there is
no upper bound for entropy in reality. These relations in con-
junction with Eq. (7) imply

lim
T→0

S (n)
= 0, (44)

lim
T→∞

S (0)
= kB ln 2kCN , (45)

lim
T→∞

S (n)
= 0 for n ≥ 1, (46)

which are numerically verified in Table III.
Entropy is greater in the grand canonical ensemble than in

the canonical ensemble at any temperature, which is intuitive,
but the behavior of its perturbation corrections is hard to pre-
dict.

Table IV compares the sum of zeroth- through third-order
corrections with the thermal-FCI value for F, U, and S at var-
ious temperatures. In all cases, it shows rapid convergence of
the perturbation series. An exception occurs at 105 K, where
the third-order perturbation theory has an error of 13 mEh for
F, 31 mEh for U, and 5% for S . The slow convergence co-
incides with the rapid rise in F, U, and S at around 105 K,
which roughly corresponds to the lowest excitation energy of
the hydrogen fluoride molecule in the minimal basis set [2].
Below this temperature, the convergence of F and U is es-
sentially the same as that of zero-temperature MPPT (which
also has an error of 3 mEh at the third order). Above this tem-
perature, the convergence is extremely rapid, which may be
interpreted to support the notion that strong correlation (i.e.,
quasi-degenerate ground state) can be more accurately de-
scribed at higher temperatures. At finite temperature, these
quasi-degenerate states are included collectively with the cor-
responding Boltzmann weights, which is not only easier but
also more appropriate than homing in on the very lowest-
energy state only.

Tables V and VI underscore the numerically exact agree-
ment between the sum-over-states analytical formulas and the
λ-variation benchmark data for F(n) and U (n) (0 ≤ n ≤ 3). It
mutually verifies the analytical formulas and the precision of
the λ-variation calculations at all temperatures studied.

Similar observations can be made to the benchmark data of
the perturbation corrections for the boron hydride and beryl-
lium atom, which are recorded in the Appendix.

VI. CONCLUSIONS

We have documented the benchmark data for the zeroth-
through third-order perturbation corrections to the Helmholtz
energy, internal energy, and entropy in the canonical ensemble
for several ideal gases of atoms or molecules in a wide range
of temperature.

We have also presented the sum-over-states analytical for-
mulas for these perturbation corrections expressed in terms of
HCPT energy corrections. These benchmark data and analyt-
ical formulas have been mutually verified by exact numerical
agreement. A kind of mathematical reduction has not been
found for the canonical ensemble, which has compressed the
sum-over-states formulas in the grand canonical ensemble to
those in terms of the molecular integrals and Fermi–Dirac dis-
tribution function [14].

The perturbation corrections to the internal energies are
close to each other between the canonical ensemble and grand
canonical ensemble, insofar as they both maintain the charge
neutrality [1]; they may be used interchangeably. The per-
turbation corrections to the free energies (Helmholtz energy
in the canonical ensemble and grand potential in the grand
canonical ensemble) are, on the other hand, rather different
because of the µ(n)N̄ contribution in the latter.

Perhaps the most important applications of electronic ther-
modynamics are metals and superconductors. For these sys-
tems, the utility of the canonical ensemble may be limited be-
cause of the aforementioned two reasons: the sum-over-states
analytical formulas in the canonical ensemble do not seem to
lend themselves to a further mathematical reduction and the
free energy of the canonical ensemble is poorly convergent at
the corresponding value in the grand canonical ensemble for
the smallest volume.
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TABLE VII. The zeroth- through third-order perturbation correc-
tions to the Helmholtz energy F as a function of temperature T ob-
tained from the λ-variation method for an ideal gas of boron hydride
in the canonical ensemble.

T/ K F(0)/Eh F(1)/Eh F(2)/Eh F(3)/Eh

103 −14.1712 −10.5816 −0.0295 −0.0134
104 −14.1712 −10.5816 −0.0295 −0.0135
105 −14.6289 −11.0154 −0.1712 −0.0166
106 −29.8911 −11.6495 −0.0370 −0.0003
107 −221.425 −11.7999 −0.0082 0.0000
108 −2167.32 −11.7767 −0.0009 0.0000
109 −21629.9 −11.7737 −0.0001 0.0000

TABLE VIII. The same as Table VII but for the internal energy U.

T/ K U (0)/Eh U (1)/Eh U (2)/Eh U (3)/Eh

103 −14.1712 −10.5816 −0.0295 −0.0134
104 −14.1712 −10.5816 −0.0295 −0.0133
105 −13.5208 −10.5793 −0.2592 −0.0402
106 −10.8720 −11.3909 −0.0507 −0.0013
107 −5.5759 −11.8196 −0.0156 0.0001
108 −4.8512 −11.7799 −0.0018 0.0000
109 −4.7785 −11.7740 −0.0002 0.0000

Appendix: λ-variation numerical benchmarks for BH and Be

Tables VII through IX document the zeroth- through third-
order perturbation corrections to the Helmholtz energy F, in-
ternal energy U, and entropy S , respectively, for an ideal gas
of the boron hydride molecule (1.232 Å) in the STO-3G basis
set in the canonical ensemble. Tables X through XII compile
the same for an ideal gas of the beryllium atom in the STO-3G
basis set in the canonical ensemble.

These data, along with the one presented in the main text,
are hoped to serve as a useful benchmark for testing or cali-
brating analytical formulas or other approximations.

TABLE IX. The same as Table VII but for the entropy S .

T/ K S (0)/kB S (1)/kB S (2)/kB S (3)/kB

103 0.0000 0.0000 0.0000 0.0000
104 0.0000 0.0002 0.0011 0.0054
105 3.4991 1.3772 −0.2777 −0.0746
106 6.0058 0.0817 −0.0043 −0.0003
107 6.8160 −0.0006 −0.0002 0.0000
108 6.8286 −0.0000 0.0000 0.0000
109 6.8287 −0.0000 −0.0000 0.0000

TABLE X. The zeroth- through third-order perturbation corrections
to the Helmholtz energy F as a function of temperature T obtained
from the λ-variation method for an ideal gas of beryllium in the
canonical ensemble.

T/ K F(0)/Eh F(1)/Eh F(2)/Eh F(3)/Eh

103 −9.4761 −4.8758 −0.0244 −0.0140
104 −9.4761 −4.8758 −0.0244 −0.0140
105 −9.9469 −5.2087 −0.0803 0.0065
106 −21.6451 −5.5326 −0.0238 0.0006
107 −172.736 −5.4445 −0.0048 0.0000
108 −1696.59 −5.4192 −0.0005 0.0000
109 −16936.4 −5.4165 −0.0001 0.0000

TABLE XI. The same as Table X but for the internal energy U.

T/ K U (0)/Eh U (1)/Eh U (2)/Eh U (3)/Eh

103 −9.4761 −4.8758 −0.0244 −0.0140
104 −9.4761 −4.8758 −0.0243 −0.0136
105 −9.0282 −5.0131 −0.1728 0.0091
106 −6.1047 −5.4802 −0.0289 0.0003
107 −3.5488 −5.4712 −0.0093 0.0000
108 −3.2885 −5.4221 −0.0010 0.0000
109 −3.2627 −5.4168 −0.0001 0.0000

TABLE XII. The same as Table X but for the entropy S .

T/ K S (0)/kB S (1)/kB S (2)/kB S (3)/kB

103 0.0000 0.0000 0.0000 0.0000
104 0.0001 0.0006 0.0035 0.0132
105 2.9011 0.6175 −0.2922 0.0081
106 4.9073 0.0166 −0.0016 −0.0001
107 5.3425 −0.0008 −0.0001 0.0000
108 5.3471 0.0000 0.0000 0.0000
109 5.3471 0.0000 0.0000 0.0000
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[12] S. Hirata, M. Keçeli, Y. Ohnishi, O. Sode, and K. Yagi, Annu.

Rev. Phys. Chem. 63, 131 (2012).

[13] Y. Levin, R. Pakter, F. B. Rizzato, T. N. Teles, and F. P. C.
Benetti, Phys. Rep. 535, 1 (2014).

[14] S. Hirata and P. K. Jha, Annu. Rep. Comput. Chem. 15, 17
(2019).

[15] J. O. Hirschfelder and P. R. Certain,
J. Chem. Phys. 60, 1118 (1974).

[16] T. Matsubara, Prog. Theor. Phys. 14, 351 (1955).
[17] G. Sanyal, S. H. Mandal, S. Guha, and D. Mukherjee, Phys.

Rev. E 48, 3373 (1993).
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