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Many-body effective interactions are commonly used in molecular dynamics simulation study of
gel networks formed by colloidal particles. Here, we report a new interaction potential that can be
used to investigate the mechanical response of colloidal gel networks under shear deformation. We
then investigate the dependence of the numerical simulation results on the form of mathematical
expression used to express the interparticle interactions. This work reveals new insight into particle
gel models by discussing the physical origins of their mechanical response.

Colloidal gels are ubiquitous in nature and find impor-
tant engineering applications because of their fascinat-
ing material properties. These gels are formed from the
aggregation of colloidal particles at low volume fraction
[1]. The physical features and mechanical behavior of
colloidal gels have been recently investigated using nu-
merical models that are based on the self-assembly of
particles [2-5]. Specifically, it has been shown that the
minimal particle based model, referred to here as Short
Range Gaussian (SRG) model, could generate in silico
gel networks whose microstructure resembles what typ-
ically observed in experiments [1, 6]. These molecular
dynamics (MD) numerical simulations have captured the
nontrivial mechanical response of colloidal gels and pro-
vided new insight into key aspects of their mechanical
response [7-11], However, only one specific form of inter-
particle potential function has been used. In particular,
N colloidal particles with position vectors r; are assumed
to interact with each other through the potential en-
ergy U =€ Zi>j Po(ri;/d)+e), Zif? Ps(rij/d, ri/d)
where € is the energy scale, r;; = r; —r;, d is the particle
diameter, 4,5,k = 1...N, ®, is a Lennard-Jones type
two-body term, and ®3 is a three-body potential that
confers angular rigidity to the interparticle bonds. The
potential U is written as the sum of the two-body and
three-body terms in order to form open network struc-
tures. Otherwise, phase separation occurs at low volume
fraction. One very specific mathematical expression has
been used for the three-body term in MD simulations
[7-11]. This is a significant drawback because the overall
behavior of colloidal gel networks is a function of physical
processes occurring at the length scale of interparticle in-
teractions, i.e. the strength and nature of interparticle in-
teractions, represented by the potential energy U in MD
simulations, define the overall mechanical properties of
colloidal gels. Thus, despite the important contributions
of SRG-based models to the field, their findings regarding
the relation between the network structure and nonlinear
mechanical response of colloidal gels may not be univer-
sal. This issue is made even worse by the fact that, be-
sides using a particular form of the potential function U,
only one convenient set of parameters, for which colloidal
particles self-assemble into persistent network structures,

has so far been used [7, 8, 10]. The primary objective of
the present rapid communication is to investigate how
this specific interparticle potential, that is not widely ac-
cessible to the research community, might have affected
the generality of microscopic explanations that MD sim-
ulations have provided for colloidal gel network proper-
ties at low volume fraction. To this end, we here pro-
pose a new effective interaction potential by modifying
the Stillinger-Weber (SW) potential function [12]. The
three-body SW potential was initially developed for crys-
talline silicon and then it has been applied to model dif-
ferent materials such as amorphous silicon, glasses, and
colloidal gels [13-15]. We choose SW potential because it
is well established and has already been implemented in
many open source MD packages, i.e. the proposed inter-
action potential could become a convenient tool for cre-
ating particle gel models in future, without complexities
involved in defining the SRG model in MD softwares [7].
After confirming that the proposed potential gives col-
loidal open spanning networks similar to those previously
generated using the SRG model, we conduct MD simula-
tions in order to characterize the mechanical response of
gel network models under large shear deformation. We
then discuss the dependence of the overall properties of
in silico gel networks on the potential function used for
representing the interactions between colloidal particles.

In this letter, we write the components of potential
energy U as ®y(r) = A(br™' —r~1%) exp (ﬁ) and

®3(r,r') = B(cosf + )’ exp (r1a> exp ( ) where r
is the distance in units of d between any two particles 4
and j, v’ is the distance between particles j and k, and 6 is
the angle formed by particles j and k at the site of parti-
cle i. Furthermore, A, b, a, B, a, and -y are dimensionless
quantities that are selected such that colloidal particles
could self-assemble into a network structure. Note that
the continuity of the interaction potential is ensured by
considering an exponential modulation function in the
definition of two-body and three-body terms. This mod-
ulation function increases exponentially as the distance
between particles decreases to their diameter. We se-
lect the parameters of the proposed potential such that
in silico gel models with geometries similar to those of
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FIG. 1: (a) mean value of the chain length, (b) proportion of bonds x participating in nodes of coordination 3, and
(c) bond angle distribution in chains of particles as a function of volume fraction for gel networks generated by
different models. The bond angle distribution for models with v = 1.8 is only shown for clarity. (d)

The variation of mean chain curvature as a function of mean chain length for different particle gel models. A power law

dependence with an exponent of about 0.45 is observed. The inset is a schematic showing how the curvature of wavy chains is
computed

the SRG model are obtained. In particular, particle gel
models with geometries similar to that of the SRG model
were found using A = 29.215, b = 0.896, a = 1.9, and
« = 1. The parameter B, which determines the strength
of the three-body term, and the parameter «, which con-
trols the rate of variation of the modulation function,
are varied in separate studies in order to investigate how
variation of model parameters could affect the results of
MD simulations.

LAMMPS MD software is used to create numerical
gel networks with different volume fractions from N
randomly placed colloidal particles in a simulation box
[3, 16]. For this purpose, the Nosé - Hoover thermostat
over 5x 108 timesteps is first used to bring the systems to
temperature €/kpT = 20. With decreasing the tempera-

ture, it is seen that the particles aggregate into clusters
and form arrested networks spanning the entire simula-
tion box. These gel networks are persistent because the
thermal energy kpT is small compared to the energy scale
of the potential interactions e, i.e. thermal fluctuations
cannot break the bonds between particles. After per-
forming a thermostatted run at the final temperature,
the systems are quenched using the damped dynamics
with the damping parameter \/md?/e until the thermal
energy becomes negligible compared to the potential en-
ergy [9, 10]. In the following, the length, mass, and en-
ergy are given in reduced units of particle diameter d,
particle mass m, and energy scale ¢, respectively.

The mean length of chains, I, (Figure 1a), the ratio of
bonds connected to nodes with coordination 3, x, (Fig-
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FIG. 2: (a) Homogenized shear stress-strain curves for gels with ¢ = 0.10, all models have an almost similar
maximum stress; (b) normalized differential modulus as a function of o /0. where o is the stress corresponding to
~e. An initial softening at low volume fraction followed by strain hardening is observed in all models; black lines
have a slope of one. The softening response disappears with increasing the volume fraction. The results for models
with v = 1.8 are only shown for clarity.

ure 1b), and the distribution of bond angles, 0, (Fig-
ure lc) are used to characterize the fibrillar topology
of gel networks as a function of volume fraction ¢. It
is noted that these quantities are correlated; for exam-
ple, a network of short chains is also densely connected.
However, the breakdown is not unique and depends on
the model parameters. The present model with B = 40
and v = 2 gives networks with nearly identical propor-
tion x as the SRG model but with longer chains. More-
over, the present model with B = 20 and v = 1.8 or
B =30 and « = 2.0 generates gels with chains of similar
length as those generated using the SRG model but with
larger connectivity. The important message of Figure 1
is that the present model gives researchers the flexibil-
ity to numerically generate particle gel models of differ-
ent topologies. It is desirable to have a general frame-
work for this purpose; nevertheless, the complex form
of the potential energy U makes this task very difficult
and future efforts are required to pursue this important
objective. Despite this, it can be stated that with de-
creasing the 3-body prefactor B, the repulsion between
particles becomes less strong allowing the formation of
denser regular assemblies of short chains. The effect of
parameter v in adjusting the mean chain length becomes
more important when the three-body term is strong, i.e.
B = 40. Increasing v from 1.8 to 2.0 in models with
B = 40 generates gels with shorter but higher connec-
tivity because the modulation function prevents forma-
tion of long chains, Figure 1. The existing flexibility in

generating particle gel models with different topological
features makes the proposed model suitable to be used
in synergistic experimental and computational efforts. In
such studies, imaging techniques will provide the essen-
tial information about the distribution of particle chains
inside the gel. Such information can then be used to
guide the numerical model parameter selection process.
The distribution of bond angles in the chains is relatively
similar for all models. We use the probability measure
‘'mode of the distribution function’ for representing the
dominant bond angle in chains of coordination 2 (Fig-
ure 1c). At low volume fraction, the mode is large and
distributions are narrow, which implies that local equi-
librium prevails and loosely connected long chains adapt
an almost straight configuration. Densely connected net-
works at high volume fractions have more constraint in
their configurations because of neighboring particles. As
a result, chains tend to be less straight, i.e. the mode for
these gels decreases and the distribution broadens. Mod-
els with B = 40 have longer chains, a narrower distribu-
tion, and larger mode for all volume fractions, confirming
the interrelation between the chain length and curvature.
In order to support this statement further, we plot the
mean chain length and mean chain curvature for all mod-
els in Figure 1d, showing that shorter chains have larger
curvature regardless of the model parameters.

Next, the nonlinear response of gel network models un-
der strain-controlled simple shear kinematics is investi-
gated. The shear deformation + is applied incrementally



(6y = 1072) until failure. The systems are first deformed
affinely at each increment before relaxing them to equilib-
rium by performing the damped dynamics using a finite
shear rate ¥ = 107°1p with 79 = &d?/e [9]. The virial
stress at each loading increment is taken as the homog-
enized mechanical stress o [17]. Figure 2a shows that
the overall shape of the stress-strain response is in agree-
ment with experimental results obtained for soft gels un-
der direct shear [18-20] and with that was previously
reported using the SRG model. This further highlights
the validity of our approach and demonstrates that dif-
ferent potential formulations can be used to model the
mechanical behavior of soft gels. At small strains, sys-
tems show an almost linear response, represented by their
initial shear modulus G. They then exhibit initial soft-
ening where the differential modulus K, corresponding
to the slope of the stress-strain curve, decreases. The
softening response continues up to the strain v, where K
reaches a local minimum. Afterwards, the response en-
ters a non-linear strain-hardening phase until the maxi-
mum strength is reached. In the final yielding phase, the
stiffness decreases because of the presence of irreversible
mechanisms and damage accumulations caused by local
interparticle bond breakings. Beyond that phase, the
systems undergo the shear flow [19].

Figure 2 shows that all models have almost the same
maximum stress, suggesting other mechanisms other
than the allowable variations in the mathematical ex-
pression used for the interaction potential control the
strength. The stiffness; however, behaves differently, i.e.
the maximum stress is reached at different strain values
for different models. This plot shows that the model pa-
rameters significantly influence the exact shape of the
stress-strain response. Furthermore, the behavior of sys-
tems built using B = 30 and v = 2.0 is very similar to
that of the SRG model. Although it is desirable to find
a master curve for the stress-strain response in terms
of model parameters, such studies are beyond the scope
of the present work. Nevertheless, several conclusions
can be made. At constant B, increasing the parameter
~ shifts the shear strain corresponding to the maximum
stress to the left. The normalized differential modulus
K/G is plotted against the normalized stress o/o. for
present models with v = 1.8 (Figure 2b); this plot clearly
shows the different phases of the mechanical response.
There exists a strain-softening response for low volume
fraction gels in which the normalized differential modu-
lus strictly decreases to values less than 1. This strain
softening response has been also observed experimentally
and numerically in soft gels of different nature and un-
der various loading conditions as well as systems whose
microstructure is fibrillar such as polymer fiber networks
[7, 10, 15, 21-26]. Similar to the SRG model, the varia-
tion of the normalized shear stiffness is significant at the
lowest volume fraction ¢ = 0.05 and becomes less signif-
icant with increasing the volume fraction. Considering

the results shown in Figure 1la, it can be stated that soft-
ening is controlled in part by the particle chain length and
should be due to uncoiling and straightening of long curly
chains in the initial stages of deformation. Figure 2b also
shows that the differential modulus K is initially con-
stant when ¢ = 0.15, indicating purely linear response at
small strain. The shift to the strain-hardening phase oc-
curs earlier with increasing volume fraction. During the
strain-hardening phase, the differential modulus scales as
a power-law with the stress K ~ o”%!; a typical feature
of structures with nonaffine behavior [24, 27-29]. Inter-
estingly, the scaling seems to depend only on the volume
fraction and is similar for all models. At ¢ = 0.05, the
exponent is larger than one while v =1 at ¢ = 0.10 and
0.15. The yield strain and the maximum value of differ-
ential modulus during the strain hardening phase also de-
crease with increasing the volume fraction. These obser-
vations indicate that microstructural reorganizations are
more important at low volume fractions where gel net-
works are loosely connected and more fibrillar. At higher
volume fractions, networks become denser and their de-
formation becomes more affine. The maximum strain re-
duction also indicates a transition toward a more brittle
behavior. In addition to the volume fraction, this transi-
tion directly depends on the potential model parameters
that are used to describe the interaction between col-
loidal particles. For example, gel models with B = 40
and v = 1.8 remain fairly ductile even at high volume
fractions.

We will now discuss fundamental mechanisms behind
the initial strain softening response of colloidal particle
gel networks by quantifying chain rearrangements in gel
network models during the deformation. Geometric re-
organization, i.e. rotation, uncoiling, and stretching, of
particle chains influences gel topology and in turn their
overall mechanical response. A new measure © = |i* - vy
is defined for determining the contribution of individual
bonds in bearing the applied deformation. This measure
quantifies the alignment of bonds, with unit bond vector
t = r/r, in the direction vy of the maximum principal
stress oy. It indicates the degree to which one particular
bond can participate in the overall response, i.e. bonds
with © = 1 are perfectly aligned in vy direction and
could directly participate in resisting the applied shear
strain. The participation of a bond in the overall re-
sponse also depends on whether that bond belongs to
the force chain formed in the structure. In other words,
bonds that both belong to the force chain and are aligned
in vy direction are expected to carry a significant amount
of stress, i.e. the axial stretch r/d for these bonds will
be large. We compute the Pearson correlation coefficient
(PCC) between the bond alignment measure © and the
bond stretch r/d for all interparticle bonds (Figure 3).
Note that isotropic systems show no correlation between
the stretch and alignment. Upon increasing the strain,
network chains are rearranged causing PCC to become
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FIG. 3: Pearson Correlation Coefficient between alignment © and stretch r/d for all interparticle bonds in models
with (a) B =40 and v = 1.8, and (b) B =20 and v = 1.8.

negative, i.e. an anticorrelation between the amount of
chain stretch and their alignment in the principal stress
direction exists. This anticorrelation provides additional
support for possible enthalpic origin of the initial soften-
ing phase observed in the stress-strain response, Figure
2. In particular, gels showing the most softening (Fig-
ures 2b) also have the largest anti-correlation (Figure 3).
The shear softening may therefore be, in part, due to
the disturbing the initial configuration of curly chains
whose preferred equilibrium form is straight. The po-
tential strain energy stored in curly chains is released as
their initial configuration is changed during the deforma-
tion; note that these new configurations do not neces-
sary align with the direction of the principal stress. The
important role of chain length is also validated by the
response of gels generated using B = 20 and v = 1.8
model at ¢ = 0.15; these systems have short chains and
show no initial anti-correlation. The PCC for these gels
is a strictly increasing positive function of v (Figure 3).
Thus, the enthalpic contribution to the strain softening
includes nonaffine processes as well as the release of resid-
ual stress of curly chains. Following the initial phase,
the PCC for all models increases to positive values and
reaches a maximum value when straight chains are pri-
marily aligned in the direction of principal stress. Upon
failure, major reorganizations occur due to interparticle
bond breaking and forming; thus, the PCC decreases.

In summary, this work introduces a new particle gel
model based on the Stillinger-Weber potential and con-
firms that it can successfully reproduce geometric and
mechanical features of existing numerical models in the
literature. Furthermore, this study demonstrates that
different mathematical formulations of the interparticle
interaction potential can be used in numerical simula-
tion studies of colloidal gel networks [7—11]. New insight

into microscopic origins of shear softening has also been
provided by quantifying the correlation between bond
stretch and bond alignment in the direction of princi-
pal stress. The present simulations suggests that the re-
laxation of residual stress in curly chains plays a signif-
icant role in the initial shear softening behavior of gels.
Although the present work determines the influence of
effective interaction parameters and quantifies their in-
fluence on the gel mechanical response, it does not pro-
vide a complete recipe, i.e. the model parameters are se-
lected such that disordered percolating networks are self-
assembled at temperature ¢/kpT = 20. Future work is
needed to extend this study and explore the possibility of
developing a general framework in which the macroscopic
properties of gels can be expressed in terms of physically
observables such as mean chain length and proportion of
three-coordinated nodes.
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