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Abstract

This work addresses the construction of a reduced order model based on a multi-group max-

imum entropy formulation for application to high-enthalpy non-equilibrium flows. The method

seeks a piece-wise quadratic representation of the internal energy state populations by lumping

internal energy levels into groups and by applying the Maximum Entropy Principle in conjunc-

tion with the method of moments. The use of higher order polynomials, allows for an accurate

representation of the logarithm of the distribution of the low lying energy states, while preserving

an accurate description of the linear portions of the logarithm of the distribution function that

characterize the intermediate and high energy states. The comparison of the quadratic and the

linear reconstructions clearly demonstrate how the higher order reconstruction provides a more

accurate representation of the internal population distribution function at a modest increase in the

computational cost. Numerical simulations carried out at conditions relevant to hypersonic flight

reveal that the proposed model is able to capture the dynamics of the non-equilibrium distribution

function using as few as three groups, thereby reducing the computational costs for simulations of

non-equilibrium flows.

∗ Corresponding author: mpanesi@illinois.edu
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I. INTRODUCTION

Over the past decade there has been renewed interest in high fidelity modeling of non-

equilibrium hypersonic flows. With the increasing availability of computational resources

it is now possible to compute state specific kinetic data by leveraging ab-initio potential

energy surfaces and quasi-classical trajectory calculations [1–11]. Although state-to-state

(StS) simulations [12–14] yield the most accurate description of the non-equilibrium popu-

lation distribution, they are prohibitively expensive and cannot be used in computational

fluid dynamics calculations [15–20]. To overcome the limitations of the StS methodology,

various researchers have developed reduced order models. The simplest method of reduction

is the multi-temperature model [21–25], where macroscopic rate coefficients and relaxation

energy parameters are expressed in terms of one or more temperatures. The need for an

accurate description of non-equilibrium phenomena (e.g., the dynamics of internal distri-

bution function), have led to the construction of a new class of models, where the internal

population distribution is described using functions that have local instead of global sup-

port over the internal energy space. To this aim, the energy states are lumped together

into groups and their population is prescribed in terms of a predetermined distribution (e.g,

uniform, Boltzmann etc.). Gordiets et al. [26] had first proposed the use of multiple distri-

butions patched together to represent the vibrational population during a non-equilibrium

chemical relaxation. In this work, the energy levels were grouped based on their relaxation

mechanisms, with the lower energy levels having a Treanor [27] like distribution, while the

intermediate and the high lying levels followed Boltzmann distributions at different temper-

atures. Kustova et al. [25] extended the model to include transport properties using kinetic

theory. The computed transport properties were then used to simulate nozzle expansion

flows [28, 29] and the population distribution function was shown to have good agreement

with the StS results. More recently, a number of papers on the complexity reduction for the

state-specific chemical kinetics have been published [16, 30–40]. The approach followed is

very similar in all the cases, a piece-wise distribution is used to reconstruct the population of

the internal levels. The main differences are related to the assumption on the specification

of the group distribution and temperatures, while some models assume fast equilibration of

the group temperature with the kinetic temperature, others determine the evolution of the

temperature within each group, by solving additional equations.
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This work addresses the extension of the Multi-Group Maximum Entropy method

(MGME) [31–33, 39] to allow for the reconstruction of the population distribution by

using high order polynomials. Traditionally, maximum entropy based methods [41–44] have

been used as a “scaling law” to generate large matrices of state-specific cross sections [43],

leveraging the maximum entropy functional form. For example, Kulakhmetov et al.[44],

used of Maximum entropy theory to derive analytical expression for the state specific cross

sections. The authors referred to this method as ME-QCT. Here, instead, the multi-group

maximum entropy method is used to derive a reduced order model. Following the work

of Liu et al. [31–33] the Maximum Entropy Principle subject to a series of constraints

(i.e., mass, energy etc.) is used to reconstruct the population of the energy states within

each group. Similar approach was used to derive conservation equations for poly-disperse

multi-phase flows [45]. The multi-group maximum entropy linear model (MEL) was first

published in 2010 [31]; there the macroscopic mass and internal energy equations for energy

groups were obtained in a coupled manner from the zeroth-order and first-order moments

of the master equations. The formulation was later extended to higher orders [32] and to

general collisional and radiative processes [33, 40]. Finally, Munafo et al.[39] modified the

formulation to introduce multiple temperatures per group. In its original formulation, the

MGME method requires a knowledge of the state specific rate coefficients, which for more

complicated systems can be prohibitively expensive. To overcome this problem, recently,

Macdonald et al. [46, 47] applied the MGME methodology to the quasi-classical trajectory

calculations for the direct determination of the grouped reaction rate parameters.

In strong non-equilibrium conditions, the linear multi-group maximum entropy method [33]

requires a large number of groups to accurately capture the dynamics of the distribution

function. To overcome the limitations of the previous models, the present work focuses on

the implementation of a robust and computationally efficient method using the multi-group

maximum entropy quadratic formulation. The introduction of a high order reconstruction

in the multi-group maximum entropy modeling technique allows one to capture curvature in

the population distribution function (i.e., low lying energy states) with a reduced number

of groups, thus addressing the limitations of the linear reconstruction model.

The paper is arranged as follows: Sec. II describes the state specific chemical kinetics
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of the N2(
1Σ+

g )-N(4Su) system, which includes inelastic collisions and chemical reactions of

the rovibrational energy states. The details of the master equations are also discussed. Sec.

III presents the formulation of the multi-group maximum entropy quadratic model. The

results of the numerical simulations and model validation are presented in Sec. IV. Finally,

concluding remarks on this work are given in Sec. V.

II. CHEMICAL SYSTEM

A. State-to-State Kinetics

The multi-group quadratic model developed is applicable for any system in thermo-

chemical non-equilibrium. To illustrate the methodology, we choose as an example a pure

nitrogen gas mixture, N2(
1Σ+

g )-N(4Su) system. In this system, rovibrational energy trans-

fer (excitation-deexcitation processes) and chemical reactions (dissociation-recombination

processes) between the molecules and atoms are considered.

The N2(
1Σ+

g ) molecule has 9390 rovibrational levels. The first 7421 levels are bound

levels and the remaining are pre-dissociated or quasi bound. Here, we limit our analysis

to the bound energy levels of the molecules, given that the quasi-bound levels are best

characterized by linear or even constant reconstruction [36, 48]. The StS kinetics data for

this system are obtained from ab initio calculations performed at NASA Ames Research

Center [1–4, 12]. The rovibrational levels are sorted in increasing order of their energy with

no distinction between the rotation and vibration levels. By treating every internal energy

state individually no decoupling of the rotation and vibration energy states is needed.

The StS chemical kinetics of the N2(
1Σ+

g )-N(4Su) system can be written as:

N2(i) + N⇐⇒ N2(j) + N, (1)

N2(i) + N⇐⇒ N + N + N. (2)

The indices i and j in the reaction represent the rovibrational level of the N2(
1Σ+

g ) molecule.

Reaction (1) includes inelastic and exchange reactions [17]. The other pair of reactions (2)

are the dissociation-recombination reactions. For some of the excitation processes the prob-

ability of occurrence is so small that they are not observed in the quasi-classical trajectory
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calculations and hence are ignored. These reactions, (1) and (2), lead to over 44 × 106 pos-

sible rovibrational dissociation and energy transfer interactions that comprise the chemical

kinetics of the N2(
1Σ+

g )-N(4Su) system.

B. Microscopic Governing Equations

Let ni, gi and εi denote the population, degeneracy and energy of rovibrational level i of

the N2 molecule, nN the population of N atoms and In the set of bound energy levels. The

microscopic master equation governing the population density of N2 molecules for reactions

(1) and (2) can be written as

dni
dt

=
∑
jεIn

[−ki,jninN + kj,injnN ]

+
[
−kdi ninN + krin

2
NnN

]
, i ∈ In. (3)

The concentration of the chemical species is a function of time alone, i.e. the mixture

is assumed spatially homogeneous, and the simulations are ODEs in time. The first two

terms in the master equation denote the excitation and deexcitation processes. The last two

terms denote the change in the individual state population density due to dissociation and

recombination processes.

The excitation rate coefficients from level i to j are denoted by ki,j and the dissociation

rate coefficients are denoted by kdi . These rate coefficients are calculated using an Arrhenius

fit where the fit parameters are obtained from calculations done at NASA Ames Research

Center. The deexcitation rate coefficients kj,i and recombination rate coefficients kri are

computed using the relations of detailed balance.

kj,i = ki,j
gi
gj

exp

[
−(εi − εj)
kBT

]
, (4)

kri = kdi
gi Q

tr
N2

(gN Qtr
N)2

exp

[
−(εi − 2εN)

kBT

]
, (5)

where

Qtr
N =

(
2πmNkBT

h2

) 3
2

, Qtr
N2

=

(
2πmN2kBT

h2

) 3
2

. (6)
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The symbol kB represents the Boltzmann constant and h is the Planck constant. Qtr is

the translation partition function with m being the mass of a single atom or molecule per

unit volume. The translational temperature of the gas is denoted by T .

The microscopic master equation discussed in this section is the pivotal point in the

development of the quadratic model characterizing chemical non-equilibrium. The model

order-reduction technique adopted in this paper is discussed in the following section.

III. MODEL FRAMEWORK

The maximum entropy formulation implies that the logarithm of the distribution function

can be represented by a polynomial of the internal energy. Using multiple groups indicates

that the representation is piece-wise. The formulation of the multi-group maximum entropy

method, using a linear reconstruction, was presented by Liu et al. [31], and later it was ex-

tended to higher orders using arbitrary degree polynomial representation [32, 33]. Although

the formulation was expressed in a general form, only a linear representation was actually

implemented. In this section we present the quadratic representation, for the purpose of

clarity and completeness.

A. Method of Moments and Maximum Entropy Principle

In statistics, the method of moments is a tool used to estimate population distributions

of random variables based on the law of large numbers. Here, this powerful technique is

applied to obtain governing equations that describe the internal energy space population

distribution in thermal and chemical non-equilibrium flows.

The energy value, X, is a discrete random variable whose possible realizations are εi,

the energy of the internal states of the molecule, and P{X = εi} is the probability that a

molecule chosen at random will belong to the ith state. When the system is in equilibrium,

P{X = εi} is given by the Boltzmann distribution:

P{X = εi} =
ni
ntot

=
gi exp[− εi

kBT
]∑

jεIn

gj exp[− εj
kBT

]
. (7)

6



where ni and gi are the population and degeneracy of energy state ‘i’, and ntot =
∑
iεIn

ni

is the total number of molecules. Since it is impractical to solve the microscopic master

equation (Eq. (3)), and in some cases the problem becomes intractable, the method of

moments is adopted to describe thermal and chemical non-equilibrium processes. The num-

ber of molecules in a macroscopic quantity of the gas is extremely large, of the order of

the Avogadro’s number, therefore, the law of large numbers can be applied to estimate the

population distribution function in energy space. The probability mass function (PMF) is

taken to be a quadratic function to obtain a good reconstruction of the trends observed in

typical non-equilibrium StS population distribution functions, Fig. 1.

FIG. 1. Non-equilibrium state-to-state population distribution function(blue triangles) and a 7

group quadratic piece-wise reconstruction(orange diamonds)

The form of the estimated PMF derived in this paper is based on the maximum entropy

principle which enforces the population distribution function of a system to be such that

the entropy of the system is maximized while satisfying some constraints. This results in

an (over-)constrained problem [See [33, 49] for a detailed derivation] for the most probable

macrostate of the system which maximizes entropy. To solve this constrained maximization

problem, the method of Lagrange multipliers is employed in order to satisfy the constraints.
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B. Constraints on the Distribution function

Since the population of the internal levels cannot be described accurately by a single

second order polynomial, the state space is divided into groups of equal energy intervals

each characterized by an independent distribution. The logarithm of the distribution is then

approximated using a piece-wise quadratic polynomial. The characterization of quadratic

function requires three parameters, which can be determined by taking moments of the

energy. The moments used in this work are:

• The zeroth order moment,
∑
i∈Ig

ni = ng, corresponds to the mass constraint within each

group.

• The first order moment,
∑
i∈Ig

niεi = eg implies the conservation of energy within each

group.

• The second order moment,
∑
i∈Ig

niε
2
i = fg, denotes the square of the energy within

each group. This constraint is required due to the choice of a quadratic reconstruction

function for the PMF.

While the first two constraints are related to conservation laws of nature, namely conser-

vation of mass and conservation of energy, the third constraint is necessary to allow for the

higher order reconstruction, and it does not have any immediate physical meaning. Further-

more, the group model parameters which characterize the PMF are functions of the group

moments, αg = αg(ng, eg, fg), βg = βg(ng, eg, fg) and γg = γg(ng, eg, fg) and they enter the

formulation of the quadratic model as Lagrange multipliers. As a result of applying the max-

imum entropy principle and using these Lagrange multipliers, the form of the PMF for the

most probable macrostate which maximizes the entropy of the system is as follows [32, 33],

ln
gi
ni

= αg + βgεi + γgε
2
i , i ∈ Ig, (8)

Ig = {i | εg−1 < εi ≤ εg}, g = 1, 2, ... (9)

The subscript g denotes the group index and the finite discrete set Ig is given by Eq. (9).

The energy of the highest lying state in group is represented as εg. As will be discussed in

the following subsection, the evolution of these moments in time is solved for in order to
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obtain the time dependence of the quadratic model parameters. Having obtained the model

parameters as a function of time, the transient non-equilibrium population distribution can

be reconstructed.

FIG. 2. Different types of reconstruction functions estimating the actual distribution function in

each group; constant (blue solid line), linear (red broken line) and quadratic (pink dotted-dashed

line); symbols denote the actual distribution function.

Before moving on to discussing the master equation for the multi-group maximum en-

tropy quadratic model, we take a look at the quadratic model parameters. Figure 2 is a

representation of form of the PMF shown for different approximations of the distribution

function with a 3 group maximum entropy model. The blue circles are a cartoon represen-

tation of the actual distribution in the energy states. The horizontal blue line corresponds

to the type of reconstructed population obtained when using only the constant term, αg,

in (8). Increasing the order of the approximation up to the linear term, we obtain a repre-

sentation as shown by the red lines. Finally, in the quadratic representation, we introduce

the quadratic parameter, γ, and the estimated PMF is represented by the pink quadratic

curves.

The constant term (blue line in Fig. 2) in the quadratic representation of the energy-state

population distribution, αg, comes from the first constraint, i.e. mass conservation within

each group. It can be shown to be related to the number of moles in the group and the

zeroth partition function (Eq. (11) for m = 0) by the following relations,
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ng =
∑
i∈Ig

ni,

ng =
∑
i∈Ig

gi exp[−αg − βgεi − γgε2i ],

exp[−αg] =
ng
Qg

. (10)

mQg =
∑
i∈Ig

giε
m
i exp[−βgεi − γgε2i ]. (11)

The linear (βg) and quadratic (γg) parameters are related to the slope and curvature of

the logarithm of the PMF by the following relations,

Slope = −βg − γgεi,

Curvature =
γg

(1 + (−βg − γgεi)2)1.5
.

(12)

Since αg can be written in terms of the other two model parameters, we are only required

to solve for βg and γg. Recalling that βg and γg are functions of the group moments, the

two conservation constraints on the energy and energy squared terms are used to obtain

the values of these model parameters. These constraints together form a system of coupled

non-linear equations in βg and γg, Eq. (13), which are solved simultaneously to obtain the

linear and quadratic parameters. In this work we use an iterative Inexact Newton algorithm

from the KINSOL Library of the SUNDIALS package [50].

eg = eg(βg, γg) =
∑
Ig

giεi exp[−βgεi − γgε2i ],

fg = fg(βg, γg) =
∑
Ig

giε
2
i exp[−βgεi − γgε2i ]. (13)

In Eq. (13), the LHS is obtained by evolving the moments in time as detailed in the

following subsection.
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C. Time varying non-equilibrium distributions

The method of moments along with the maximum entropy principle described above

is used to characterize the transient non-equilibrium internal energy population distribu-

tion. In order to arrive at the macroscopic moment governing equations, moments of the

microscopic master equation, Eq. (3), are taken [32, 33].

∑
i∈Ig

d(niε
m
i )

dt
=
∑
i∈Ig

∑
h∈N

∑
j∈Ih

[−ki,jεmi ninN + kj,iε
m
i njnN ]

+
∑
iεIg

[
−kdi εmi ninN + kri ε

m
i n

2
NnN

]
. (14)

Here, N denotes the number of permissible group indices such that union of all the groups

spans the whole energy state space of the molecule. The collision partner is chosen to be

atomic nitrogen and is assumed to be inert. The grouping strategy reduces the number of

ordinary differential equations to be solved from the order of the number of rovibrational

levels in the molecule to the order of the number of groups chosen to represent the energy

space of the molecule. Further, the group rate coefficients are computed and Eq. (14) is

rewritten using grouped macroscopic rate coefficients. Kg,h denotes the group excitation rate

coefficient for the excitation process occurring from group g to group h, and Cd
g represents

the group dissociation rate from group g. Similarly, Kh,g and Cr
g are the group de-excitation

and recombination rate coefficients, respectively. The numerical index ‘m’ on these rate

coefficients corresponds to the moment for which they are being defined. Equation (15) shows

the final form of the macroscopic equations that are solved in the multi-group maximum

entropy quadratic model.

dng
dt

=
∑
h∈N

[
−0Kg,hngnN +0Kh,gnhnN

]
−0Cd

gngnN +0Cr
gn

2
NnN ,

deg
dt

=
∑
h∈N

[
−1Kg,hegnN +1Kh,gehnN

]
−1Cd

g egnN +1Cr
gn

2
NnN ,

dfg
dt

=
∑
h∈N

[
−2Kg,hfgnN +2Kh,gfhnN

]
−2Cd

g egnN +2Cr
gn

2
NnN . (15)

The grouped rate coefficients are expectation values of the function, 〈
∑
j∈Ih

ki,jε
m
i |i ∈ Ig〉,

normalized by the moment values written as ntot〈Xm
g 〉 where ntot =

∑
g

ng. The macroscopic
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group rate coefficients for the mth moment are given by Equations (16) - (19). Equation

(16) gives the forward rates of a reaction, which lead to the depletion of the group moment,

whereas Eq. (17) gives the reaction rates for the reverse processes populating the particular

group. Note that, for m = 0, the group rate coefficient matrix is symmetric.

However, for higher moments the group rate coefficients need to be computed for both

the forward and reverse processes. mQg in these expressions denotes the mth moment group

partition function for group g and is a normalization parameter which is expressed as a

weighted sum of probabilities of finding a molecule in the energy levels belonging to a

particular group. Equation (11) gives the form of the partition function.

It should be noted that the superscript ‘m’ on εi is the mth power of the energy value.

The recombination rates are simply a summation of the individual microscopic recombina-

tion rate coefficients of the states belonging to a particular group since these rates do not

depend on the internal energy state population distribution of the molecules. It is worth

mentioning here that the principle of detailed balance for the grouped rates holds only when

the quadratic coefficient goes to zero and the internal temperatures corresponding to the β

parameters for all the groups are the same and equal to translational temperature. This

condition is achieved only when the system is in equilibrium and is an important validation

of the model since at equilibrium the forward and reverse processes should balance each

other out. A thorough derivation of detailed balance between grouped rates is given by

Macdonald in [51].

Group quantities are obtained by numerically integrating the equations (15) in time.

We used the backward differentiation scheme of the CVODE package from SUNDIALS [50]

for this purpose. At every time step, the macroscopic rate coefficients for each group are

calculated as follows,

mKg,h =
∑
i∈Ig

∑
j∈Ih

ki,jε
m
i ni

ntot 〈Xm
g 〉

=
1

mQg

∑
i∈Ig

∑
j∈Ih

ki,jε
m
i gi exp[−βgεi − γgε2i ],

(16)
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mKh,g =
∑
i∈Ig

∑
j∈Ih

kj,iε
m
i nj

ntot 〈Xm
h 〉

=
1

mQh

∑
i∈Ig

∑
j∈Ih

kj,iε
m
i gj exp[−βhεi − γhε2i ],

(17)

mCd
g =

∑
i∈Ig

kdi ε
m
i ni

ntot 〈Xm
g 〉

=
1

mQg

∑
iεIg

kdi ε
m
i gi exp[−βgεi − γgε2i ], (18)

mCr
g =

∑
i∈Ig

kri ε
m
i . (19)

This is required since the macroscopic group rate coefficients depend on the model pa-

rameters, and they change with time. To circumvent the actual summation, thermodynamic

tables can be computed for the rates over a range of the linear and quadratic parameters

which can then be used to obtain the group rate coefficients by interpolation.

IV. VALIDATION AND RESULTS

The multi-group maximum entropy quadratic model is validated by comparison of the

full state-to-state (StS) model with the solutions of the system of macroscopic governing

equations (15). The macroscopic governing equations represent a set of stiff, highly non-

linear ordinary differential equations (ODE) which are difficult to solve. To integrate these

equations in time, backward differentiation formulas from CVODE of the package SUNDI-

ALS [50] were implemented. Determination of the group moment values, Eq. (15), with

good accuracy is essential in the calculation of the quadratic model parameters, αg, βg and

γg, which are functions of the group moments. However, these functions represent a system

of coupled highly non-linear equations and can not be inverted to calculate the quadratic pa-

rameters directly. Therefore, it is necessary to use an iterative root-finding algorithm. Both

CVODE and KINSOL use a LAPACK based direct solver run in parallel using OpenMP.
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The thermally and chemically reacting system in a non-equilibrium state is studied by

carrying out isothermal simulations with no spatial variations. The translation temperature

of the mixture is initialized to 2,000K, and the mixture is assumed to consist of 95% N2

and 5% N. It is necessary to include some initial atoms to establish thermal excitation and

chemical reactions since molecule-molecule collisions are not considered. The translation

temperature of the reactor is then increased to a higher temperature. Two cases are studied,

one with 10,000K and the other with 20,000K. Translation modes of the N2-N system

equilibrate to the translational temperature instantly. The strong thermal and chemical non-

equilibrium state within the rovibrational levels of the N2 molecule arising due to collisions

is studied using the proposed model.

A. Comparison of State Population Distribution

A comparison of the state population distribution is done for the quadratic model at

various simulation times for two translational temperature cases, 10,000K and 20,000K. To

assess the quality of the reconstruction function, the results are plotted against the full

state-to-state solution. Simulations with 2 and 3 groups for the energy spectrum of the

molecule are studied. Energy based grouping [33] is employed for both linear and quadratic

groups.

The distribution function temporally evolves from a Boltzmann distribution at 2,000K

through transient non-Boltzmann distributions to a Boltzmann distribution at 10,000K or

20,000K. The slope of the initial distribution is higher than the final distribution since the

slope of the plot is inversely proportional to the temperature of the system: higher the

temperature lower the slope. During the initial phase, the higher levels start approaching

the Boltzmann distribution at the final translation temperature while the lower levels are in

strong non-equilibrium. The purpose of the proposed models is to accurately represent this

state of strong non-equilibrium.

Figure 3 shows the comparison of the population distribution for 2 groups at 10,000K

and 20,000K at two time instants, t = 0.25ns and t = 0.1µs. Looking at the population

distribution for the two translation temperatures, we observe that the population of the lower

states is of the same order of magnitude. This is expected since the lower states are initially

in a frozen state at the starting translational temperature of 2,000K. It is seen that the 1st
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group of the linear model deviates from the true distribution significantly. In contrast, the

1st group in the quadratic model provides a better representation of the StS population

distribution in both temperature cases. The ability of the quadratic model to account for

the “curvature” in the distribution function helps in obtaining a better description of the

distribution function.

(a) T = 10,000 K

(b) T = 20,000 K

FIG. 3. Comparison of the state population distributions obtained using the state-to-state (trian-

gles, blue at 0.25 ns and green at 0.1 µs) and two-group maximum entropy linear (black circles)

and quadratic models (yellow diamonds).

Figure 4 shows a comparison of the three models with 3 groups. Reconstruction using 3

quadratic groups shows a promising representation of the non-equilibrium behavior of the
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system at all times. As we march forward in time, it can be seen that the non-Boltzmann

distributions are more accurately reconstructed using the quadratic model at the two time

instants. The moment values and hence, the slope as well as the curvature values in the

quadratic formulation change continuously such that the probability mass function for the

energy states is reconstructed accurately as seen in Fig. 4. There are several advantages

and obvious improvement in the results when using three-groups instead of two. The most

striking improvement is the representation of the distribution in the lower energy states of

the molecule. The dynamics of the non-equilibrium distribution in chemical system with

dissociation in general is such that the energy space of the molecule is naturally divided

into three regions [12, 25, 52]. The first comprises of the lower energy states which slowly

relax to the final translation temperature, followed by the mid sloping region, and finally

the tail where dissociation facilitates quick equilibration to the translational temperature.

This makes three-groups a naturally good choice for the division of the energy space of the

molecule and leads to better representation when compared to 2-groups maximum entropy

quadratic model.

An observation worthy of mention is the reaction dynamics near the dissociation limit

of the N2 molecule, which is equal to 9.753 eV. Molecules which have energies very close

to the dissociation limit dissociate quickly due to high dissociation rates, as seen in Fig.

5, which is a plot of the state specific dissociation rates plotted against the energy of the

rovibrational levels. This causes the population to plummet at the dissociation limit as seen

in the population distribution as an almost vertical line.

Another interesting feature is observed in the full state population distribution at around

0.1 µs. In the lower energy states, distinct strands separate out [12]. As we move higher in

the energy space, the strands coalesce into a cloud of particles. It is noticed that the energy

states connected by these strands have the same vibrational quantum number. Moreover,

each vibrational strand is further divided into two different strands corresponding to the odd

and even rotational quantum numbers belonging to that vibrational quantum number. This

implies that the lower rotational states belonging to the same vibration energy state tend

to equilibrate faster, giving rise to these strands. The quadratic model using 2 or 3 groups

is able to provide an average representation of the curvature of these strands using equal

energy spacing groups. However, it is not able to mimic the strands individually because,

in the grouping strategy employed in this study, the kinetics of the chemical system is not
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(a) T = 10,000 K

(b) T = 20,000 K

FIG. 4. Comparison of the state population distributions obtained using the state-to-state (trian-

gles, blue at 0.25 ns and green at 0.1 µs) and three-group maximum entropy linear (black circles)

and quadratic models (yellow diamonds).

considered as a grouping parameter. Recently, effort has been underway to understand the

effect of kinetics on the grouping strategy as well as PMF reconstruction, e.g., by Sahai et

al. [53] and Venturi et al. [52].

At all times, the quadratic model outperforms the linear model in the reconstruction of the

full population distribution function. This can be attributed to the ability of the quadratic

model to estimate the population distribution of the first group that is highly under-predicted

by the linear model. From the figures, it can also be seen that the quadratic model is able

17



FIG. 5. State specific dissociation rate constants for rovibrational states of N2

to reconstruct the population distributions for different profiles, one corresponding to a final

translational temperature of 10,000 K and the other is for a translational temperature of

20,000 K.

To quantitatively prove the usefulness and accuracy of the quadratic model, we look

at the moment generating function of the probability mass function. It is a well known

fact in probability theory that in order to accurately estimate a distribution function it is

necessary to be able to reproduce the moment generating function (if it exists) accurately.

The moment generating function in general has the following form,

f(z) =
∞∑
m=0

1

m!
zm E[Xm], z ∈ R. (20)

Here, ‘X’ is the discrete random variable which is analogous to the energy as described

in Sec. III. Rewriting the moment generating function in terms of ni and εi we get,

f(z) =
∞∑
m=0

1

m!

zm

ntot

(∑
i

niε
m
i

)
, z ∈ R. (21)

In the case of the quadratic model, the summation is truncated at m = 2, while in the

linear model we have just the first order linear terms. Therefore, the error in the quadratic

function is inherently lower, O(3) for each individual group, which quantitatively proves

that quadratic model works much better than the linear model. The mean and variance of

the distribution function can be written as,
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FIG. 6. Percentage error in Mean and Variance of the PMF estimated using 3 linear and quadratic

groups

E[X] =
∑
i

ni
ntot

εi,

Var(X) =
∑
i

ni
ntot

ε2i −

(∑
i

ni
ntot

εi

)2

.

(22)

Figure 6, show a comparison of the error in the estimated mean and variance of the

distribution function compared for the two models. The error is calculated as a deviation
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from the actual distribution obtained from the StS solution. As expected, the mean is

estimated very accurately with both models with errors less than 4.5% throughout the

relaxation process, Fig. 6 (a), since the first moment is solved for explicitly in both models.

However, comparing the variance of the distribution, which gives a sense of the spread of

the distribution, we see that the quadratic model greatly outperforms the linear model with

the error being less than 2% while the linear model incurs errors up to 15% during the

excitation phase when there is a large spread/variance in the distribution function. Closer

to the dissociation phase, t ≈ 1µs, the population distribution is predominantly a straight

line and hence the error in Var(X) of both models reduces significantly.

B. Comparison of the Macroscopic Quantities

This subsection presents a comparison of the time evolution of macroscopic quantities

obtained with the quadratic model and the StS model for a heat-bath temperature of T =

20,000 [K]. In order to assess the sensitivity of the solution to the number of groups used in

the reduced order model, the simulations were run for 1, 2, 3, 5 and 7 groups.

In Fig. 7, the predicted time evolution of the molecular nitrogen concentration is pre-

sented. At these conditions, the bulk of the dissociation takes place only after a long

incubation period, during which the kinetic energy is transferred to the internal energy

modes. As a result, significant dissociation occurs only after t = 3× 10−7 s. As the system

evolves towards its final equilibrium state, the averaged internal energy of the system in-

creases (see Figure 8), and the high lying excited states become significantly populated, thus

increasing the effective macroscopic dissociation rate. The dissociation is completed and the

system reaches chemical and thermal equilibrium by 3 µs. Given the elevated temperatures,

a significant portion of the dissociation process does not occur in Quasi-Steady State (QSS)

conditions [12]. The modeling of dissociation in non-QSS conditions is extremely challeng-

ing due to rapid changes in the internal distribution function that take place throughout

the relaxation and the impossibility of defining a single macroscopic phenomenological rate

coefficient able to describe the entire dissociation process [54]. This constitutes one of the

main shortcomings of the state-of-the-art models built on the QSS assumption.
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Comparison of the composition profiles reveals that the reduced order model is able to

describe the entire relaxation with a single group. The results obtained using a single group

relax slightly faster as compared to the StS prediction. This behavior can be attributed to

inaccuracy in the description of the high lying levels in the distribution function. With the

curvature parameter, the one-group reconstruction function is simply a parabolic profile in

the internal energy space, Fig. 9. This leads to an over-prediction of the population of the

high energy states which have high dissociation rates, as seen earlier in Fig. 5, and results

in a faster averaged dissociation rate; this comes directly from Eq. (18). As the number of

groups is increased, the concentration profiles approach the StS solution. Figure 7 shows
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FIG. 9. State population distribution obtained from a one-group maximum entropy quadratic

model compared with the actual distribution from the state-to-state model

that the mole fraction values converge for groups 3 and 7. The excellent agreement obtained

with the quadratic reconstruction model demonstrates the flexibility and generality of the

method, and more importantly, its ability of describing both QSS and non-QSS regimes.

The analysis of the internal energy profiles, shown in Fig. 8, demonstrate the ability of

the reduced model to predict the total internal energy of N2 accurately. The internal energy

of the N2 molecules is initially almost a constant since there are very few excitation and

dissociation events occurring at 2,000 K. As the system evolves, the internal energy of the

nitrogen molecules increases, until the onset of dissociation which depletes the number of

molecules, thus reducing the internal energy of the molecular species in the gas. As discussed

in Fig. 3 and 4, some deviation from the full StS simulation exists due to the type of grouping

strategy (uniform energy grouping) employed in this paper. It is worth mentioning here that

during this time evolution simulation, the total energy of the system is conserved but not the

group energy. However, the time scales for the group internal reactions are assumed to be

much smaller than the time scales of inter-group processes and reactive processes, therefore,

when looking at the evolution of the moments, it is a safe assumption that the properties

within the group equilibrate with each other instantly. This leads to another approximate

collision invariant which is the group internal energy [51]. Since inter-group processes are

still taking place at slower time scales, as seen in the evolution of group internal energies,
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that is what drives the system to the overall equilibrium state as time evolves.

C. Comparison of Group Properties

For the sake of brevity, the comparison of the group properties is shown only for the

3-group quadratic model against the StS solution. Such a comparison has been done for

different numbers of groups, and all cases yield similar results. The group properties from

the StS simulation are calculated by taking moments of the actual distribution in the post

processing step since the output from the StS simulation directly gives the population in

each energy state.

Figure 10(a) shows a comparison of the number of moles of each group. The solid lines

represent the StS results and the markers represent the quadratic model. The prediction of

the quadratic model are in excellent agreement with the StS results. In the early stages of

the relaxation only the first group is significantly populated, and throughout the relaxation

its density decreases monotonically as the higher groups are excited. This trend is in contrast

to the evolution of the number of moles in higher groups. The initial number of moles in the

higher groups is very low because at a temperature as low as 2,000 K most of the molecules

are in the ground state or occupy the lower energy states. As time evolves, the excitation

reactions from the lower groups cause the mole fractions of the higher groups to increase and

eventually reach a maximum. In the early stages of the relaxation, excitation processes tend

to drive the populations of the groups towards their corresponding equilibrium values at

the final translational temperature. In the figure, these values are indicated as dotted lines.

Given the elevated temperatures, the thermal relaxation is not completed at the onset of

dissociation, indicating that thermal and chemical relaxation occur concurrently. The onset

of dissociation causes the number of moles to decrease, thus affecting the group populations.

It is important to note that the lower temperature case did not exhibit this behavior, and

the thermal and chemical relaxation were found to be decoupled.

Figure 10(b) shows a comparison of the internal energy of each group. All groups have

similar trends for the evolution of the group internal energy. Group 1 shows a higher in-

ternal energy at the start of the simulation because the lower energy states are most highly

populated. The second group gets populated significantly due to pumping of molecules from

the first group through excitation. It is important to note that the faster relaxation of the
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second group is mainly due to the presence of exchange reaction processes that favor the en-

ergy transfer between the levels characterized by energies between 3-8 eV. Furthermore, the

states belonging to the second group are characterized by higher energies, thus contributing

more to the total energy of the group. The last group is in general not very highly popu-

lated, furthermore its population is significantly depleted due to the very fast dissociation

processes. This explains its low energy content.
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FIG. 10. Time evolution of number of moles in each group and the group energy. The symbols

represent the quadratic model and the solid lines represent the full state-to-state model.

Another important physical macroscopic quantity studied is the internal temperature of

each group. The temperature for each group is computed using the energy state popula-
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tion distribution. To calculate the temperature, the following one dimensional non-linear

equation is solved,

eg
ng

=
1

Qg

∑
iεIg

gi εi e
−εi/kBTg , (23)

It is important to clarify that a linear reconstruction function is used to compute the mo-

ments of the distribution function where the linear term coefficient is inversely proportional

to the internal temperature of the group. The simulation starts at a temperature of 2,000

K and progresses to equilibrate at 20,000 K. In Fig. 11, a comparison of the temperatures

obtained from the StS and quadratic solutions at different times shows good agreement. All

groups attain a final temperature of 20,000 K, the temperature of the reactor.
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FIG. 11. Time evolution of group internal temperature. The symbols represent the quadratic

model and the solid lines represent the full state-to-state model

Group 2 and 3 quickly first reach quasi-steady state, at about 15,000 [K]. The onset of

dissociation alters the temperature of the three groups: group 1 and 2 are in QSS at the

same temperature, while the third group exhibits a significantly lower temperature due to

the effect of dissociation. All the three groups equilibrate at the final temperature at the

end of the relaxation.
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D. Comparison of Group Parameters

In this section, we present a discussion of the model parameters β and γ. These model

parameters are related to the slope and curvature of the population distribution. The values

of β and γ are of the order of the energy and energy squared respectively. Dealing with

model parameters of such different orders of magnitude poses computational challenges.

Hence, to work with more reasonable values of β and γ, the energy and model parameters

are normalized. The normalization constant used is the value of the dissociation limit of the

nitrogen molecule, 9.753 eV(≡ ε̂). These new normalized parameters are distinguished by a

hat, β̂ and γ̂, and are related to the actual values by the following equations,

β̂ = βε̂, (24)

γ̂ = γε̂2. (25)

Figure 12 shows the evolution of the quadratic parameters for 3 groups. The results

for β̂ are similar to the ones obtained for the internal temperatures, therefore similar con-

siderations apply to this parameter. The value of the first group is substantially frozen in

the initial stages of the relaxation, while groups 2 and 3 quickly reach lower values of β̂.

During dissociation, β̂ of group 3 reduces to a negative value. This negative value for group

3 should not be confused with a population inversion. This value of β̂ is just a parameter in

the quadratic model which is combined with the quadratic terms. These two terms together

define the population distribution of this group. A negative value is also observed for γ̂

due to the inverted parabolic shape of the population distribution near the dissociation limit.

Analysis of the time evolution of the γ̂ parameter reveals that significant curvature is

necessary for the first group, while the other two groups could could be treated using a

linear model. As seen in Sec. IV A, the population distribution follows a non-Boltzmann

distribution, where the lower lying states are frozen while the high lying states are signifi-

cantly excited.

From Fig. 12, it is seen that, as the system approaches equilibrium, the β̂ and γ̂ values of

all groups start to converge. When the system reaches equilibrium the distribution reaches
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the Boltzmann distribution. The value of βg of each group can be shown to be related to

the Boltzmann constant (kB) and the final equilibrium temperature of the system by,

βg =
1

kBT
, (26)

and we get,

ni
ntot

=
gi exp[− εi

kBT
]∑

jεIn

gj exp[− εj
kBT

]
. (27)

On the other hand, the value of γ̂ and by extension, the curvature of the distribution

functions, tends to zero as the system approaches equilibrium. This result is consistent with

the derivation of βg and physically means that the distribution approaches the Boltzmann

distribution at the final translational temperature. This constitutes an important validation

of the proposed method, since, in equilibrium, the molecules attain a Boltzmann distribution

and hence all higher order terms in the description of the population distribution must

become zero, i.e. γ̂ values for all groups approach zero.

V. CONCLUSION

In summary, this paper presents an advanced technique to model non-equilibrium flows

for thermal non-equilibrium and state-specific chemical kinetics based on the method of mo-

ments combined with an energy based grouping strategy. This model comprises a quadratic

reconstruction operator to represent the logarithm of the population distribution function of

the molecules in energy space. The kinetic and thermodynamic data are obtained from ab

initio calculations performed at NASA Ames Research Center [1–11]. In the computation

of group properties, no ad hoc assumptions are made, and hence this model retains most of

the physics of the system. From the results we see that this simple model is capable of accu-

rately representing the non-Boltzmann distributions occurring in strongly non-equilibrium

regimes. The key contribution of this model over previous non-equilibrium models [33–35] is

the introduction of the quadratic parameter in the PMF definition. This reduces the number

of groups required to estimate the non-Boltzmann distribution and makes the integration

into CFD applications [55] more feasible.

Although the model is used to characterize non-equilibrium in the N2(
1Σ+

g )-N(4Su) system

in this paper, the proposed approach is general and the framework presented in the paper
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FIG. 12. Time evolution of Quadratic parameters using 3 Groups

can be applied to any physical system for arbitrary physical conditions. Particular attention

is however required when dealing with interaction between polyatomic molecules. First steps

in this direction have been published recently by Macdonald et al. [46, 47]. In this work, the

authors have proposed the MGME-QCT method in which the grouped kinetic properties

can be calculated directly from scattering calculations , bypassing the need to compute

state to state rates. Future work shall address the extension of the quadratic model for its

application to MGME-QCT.
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[48] A. Munafò, M. Panesi, and T. Magin, Physical Review E 89, 023001 (2014).

[49] M. Sharma Priyadarshini, “Maximum entropy quadratic model to characterize chemical non-

equilibrium in reentry flows,” (2017).

[50] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S.

Woodward, ACM Transactions on Mathematical Software (TOMS) 31, 363 (2005).

[51] R. L. Macdonald, “Reduced-order model framework for thermochemical non-equilibrium hy-

personic flows,” (2019).

[52] S. Venturi, M. P. Sharma, and M. Panesi, , 2019 (2019), AIAA Scitech 2019 Forum, San

Diego, CA.

[53] A. Sahai, B. Lopez, C. Johnston, and M. Panesi, The Journal of Chemical Physics 147,

054107 (2017).
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