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Most treatments of electron-electron correlations in dense plasmas either ignore them entirely
(random phase approximation) or neglect the role of ions (jellium approximation). In this work,
we go beyond both these approximations to derive a new formula for the electron-electron static
structure factor which properly accounts for the contributions of both ionic structure and quantum-
mechanical dynamic response in the electrons. The result can be viewed as a natural extension of
the quantum Ornstein-Zernike theory of ionic and electronic correlations, and it is suitable for dense
plasmas in which the ions are classical and the conduction electrons are quantum-mechanical. The
corresponding electron-electron pair distribution functions are compared with the results of path
integral Monte Carlo simulations, showing good agreement whenever no strong electron resonance
states are present. We construct approximate potentials of mean force which describe the effective
screened interaction between electrons. Significant deviations from Debye-Hückel screening are
present at temperatures and densities relevant to high energy density experiments involving warm
and hot dense plasmas. The presence of correlations between conduction electrons is likely to
influence the electron-electron contribution to the electrical and thermal conductivity. It is expected
that excitation processes involving the conduction electrons (e.g., free-free absorption) will also be
affected.

I. INTRODUCTION

In a simple description of metals and plasmas, the
conduction electrons may be regarded as weakly inter-
acting because their kinetic energy is large compared
to their mutual Coulomb repulsion. Such is the case
in the limits of both low and high temperature, where
the respective kinetic energy scales are the Fermi en-
ergy and the temperature. Electron transport at each
extreme is modeled well by the Ziman theory of liquid
metals or the Spitzer-Härm theory of classical plasmas,
respectively[1, 2]. Warm and hot dense plasmas occupy
an intermediate regime where the Fermi energy and tem-
perature are of similar order, typically occurring at tem-
peratures from a few eV to a few keV and mass densities
ranging from fractions of solid density to hundreds of
times solid density. In the laboratory, such conditions
occur in inertial confinement fusion implosions[3–5], in
exploding wire arrays[6], and in pulse power devices[7, 8].
In Nature, one finds partially degenerate plasmas in the
envelopes of white dwarfs and in the solar interior[9, 10].
It is in this regime that the conduction electrons may
develop significant spatial correlations with one another,
and these correlations will impact electron transport and
optical processes.

The need for new theoretical descriptions of electron-
electron correlations in dense plasmas has been brought
to light by recent work highlighting the importance
of electron-electron scattering on electrical and ther-
mal conduction in partially degenerate plasmas[11–14].
Such conditions are challenging for quantum simula-
tion methods, the most widespread being density func-
tional theory molecular dynamics paired with the Kubo-
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Greenwood method for electron transport[13, 15–18].
These simulations scale poorly with increasing temper-
ature, and the use of the Kubo-Greenwood method in-
troduces an approximate treatment of electron-electron
scattering[13, 14]. It is not yet fully understood to what
degree the Kubo-Greenwood approximation affects QMD
predictions of transport properties, especially thermal
conductivity. This means that currently there is a wide
span in temperatures between warm dense matter condi-
tions and classical plasma conditions where quantum sim-
ulations are impractical and possibly inaccurate, yet the
influence of correlations on electron-electron scattering
is likely to affect transport in ways that classical plasma
theory cannot predict.

While electronic correlation in metals has been an ac-
tive area in condensed matter physics for decades, many
theoretical developments in that field do not transfer in
an obvious way to plasmas, where the high tempera-
tures mean that the ions are not arranged on a lattice
and the Fermi surface is not an especially useful con-
struct to understand the electron dynamics. For this
reason, theoretical treatments of electron-electron cor-
relations in dense plasmas commonly adopt the random
phase approximation (in which electron correlations are
ignored) and/or the jellium approximation (in which the
electron correlation properties are co-opted from those of
the homogeneous electron gas). More sophisticated ap-
proaches based on the Green’s function formalism have
also been explored[11, 19]. The limited knowledge of
electron-electron correlations in plasma also affects ex-
periments, since models of the plasma dynamic structure
factor are used to diagnose the plasma density and tem-
perature from x-ray diagnostics[20–22].

This work provides, to our knowledge, the first accu-
rate account of static correlations between the conduc-
tion electrons of dense plasmas. The main result is a new
expression for the electron-electron static structure fac-
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tor appropriate for dense plasmas, which goes beyond the
widely used random phase and jellium approximations by
accounting both for direct correlations between the elec-
trons as well as indirect correlations by the surround-
ing ions. The focus here is mainly on static electron-
electron correlations; however, this already should serve
as a useful starting point for building theories of dy-
namic correlations in dense plasma in the adiabatic ap-
proximation or in a generalized dynamic linear response
formalism[11, 12] Our results should also be useful in for-
mulating new approximations to the electron self-energy
via the inverse dielectric function, thereby facilitating the
application of Green’s function techniques such as GW
to study free-free excitations in dense plasma[23]. Sim-
ilarly, our results would be of use in constructing new
exchange-correlation functionals that accurately treat
the free electrons of dense plasmas within density func-
tional theory[24], or new adiabatic approximations to
the exchange-correlation kernel for time-dependent den-
sity functional theory[25, 26]. Specifically, the electron-
electron correlation functions predicted here contain the
ionic correlations explicitly, which are not directly ac-
counted for in exchange-correlation functionals based on
jellium. Developments along these lines would also have
applications to predicting the influence of electron corre-
lations on photo-excitation processes involving conduc-
tion electrons, e.g., free-free absorption[11, 27–29]

The expression for the structure factor derived here
differs from the result one would obtain classically by
the appearance of a term which accounts for quantum-
mechanical dynamic screening. The result follows from
general linear response considerations and naturally ex-
tends the quantum Ornstein-Zernike theory of ion-ion
and electron-ion correlations[30–32]. When suitably
paired with an average-atom treatment of electronic
structure, the quantum Ornstein-Zernike relations are
known to give a realistic description of both the ionic
and electronic structure of dense plasmas[32]. With mild
approximations, our result for the electron-electron struc-
ture factor is cast in a form that is amenable to practi-
cal calculations with average-atom models. From this,
we compute the pair distribution functions of warm/hot
dense hydrogen and aluminum and compare with avail-
able path integral Monte Carlo results on fully ionized
plasmas, finding good agreement when the notion of
“free” and “bound” electrons in the average-atom model
is well-defined, e.g., when there are no long-lived reso-
nance states. We also construct an approximate electron-
electron potential of mean force and contrast it with the
high-temperature limit where the plasma is weakly cou-
pled and the effective potential is described well by expo-
nential Debye-Hückel screening[33]. Mean-force poten-
tials are a promising means of modeling electron cor-
relations’ effect on the transport properties of dense
plasmas within the framework of binary-scattering ki-
netic theories[34–36]. In such a model, the electron-
electron mean-force potential would improve on Spitzer
and Härm’s treatment of electron-electron scattering at

dense plasma conditions within the static screening ap-
proximation. At lower temperatures, significant devia-
tions from exponential screening are observed and at-
tributed both to indirect correlations induced by the
strongly coupled ions as well as core-valence orthogonal-
ity.

II. THEORY

A. Quantum Ornstein-Zernike Description of a
Two-Component Plasma

We model a dense plasma as a two-component mix-
ture of classical point ions with mean number density
n0
I and conduction electrons with mean number density
n̄0
e. The plasma is assumed neutral so that the mean de-

gree of ionization is Z̄ = n̄0
e/n

0
I , which is density- and

temperature dependent and may be fractional. In this
work, the ionization and thus the electron density are
obtained from the average-atom two-component plasma
(AA-TCP) model[32]. The notation adopted for densities
and ionization is chosen to match Ref. [32].

The central equations governing the AA-TCP model
are the quantum Ornstein-Zernike (QOZ) equations.
These express the static structure factors of the TCP,
Sab(k), in terms of the unknown direct correlation func-
tions, Cab(k),

SII(k) =
1 + β−1χ0

e(k)Cee(k)

D(k)
(1a)

SIe(k) = Z̄−
1
2nscr

e (k)SII(k) (1b)

nscr
e (k) =

−β−1χ0
e(k)CIe(k)

1 + β−1χ0
e(k)Cee(k)

(1c)

D(k) = (1− n0
ICII)(1− β−1χ0

eCee)− n0
Iβ
−1χ0

e|CIe|2
(1d)

where χ0
e(k) is the static density response function of

noninteracting electrons, which is equal to −n̄0
eβ in the

classical limit and is the Lindhard function at zero tem-
perature. The solution of the QOZ equations for SII(k)
and SIe(k) requires closure relations for the direct corre-
lation functions CII , CIe, and Cee. These closures com-
plete the AA-TCP model. The specific closures used in
this work are described in the Appendix.

Observe that in the QOZ equations, Eq. (1), no ex-
pression is given for the electron-electron structure factor,
See(k). In the literature on the QOZ theory, one can find
equations for the electron-electron zero-frequency suscep-
tibility, χee(k, ω = 0)[31, 32, 37]. However, such for-
mulas are unsuitable for describing the electron-electron
static structure. This is because electron-electron cor-
relations must be treated quantum-mechanically. In
the quantum theory of correlation functions, the static
limit and the zero-frequency limits are not equivalent,
in marked contrast to the classical case[38]. A conse-
quence is that the calculation of See(k) – despite being a



3

static correlation function – still requires accounting for
the quantum-mechanical dynamic response of electrons.
Sec. II B will demonstrate this from completely general
linear response considerations. Then, with some mild
assumptions, an extended set of QOZ equations are de-
rived which include a relation for See(k) that is correct
quantum-mechanically.

B. Linear Response and Extended QOZ Relations

The dynamic density-density response functions for a
multi-species plasma obey[38–40]

X = X 0 + X 0UX (2)

where X is the matrix of response functions χab(k, ω),
X 0 is the matrix of free-particle response functions
χ0
a(k, ω)δab, and U is the matrix of polarization poten-

tials Uab(k, ω) = vab(k)[1−Gab(k, ω)] expressed in terms
of the Coulomb interaction vab(k) = 4πZaZbe

2/k2 and
the dynamic local field corrections Gab(k, ω). For a TCP,
we can explicitly solve for the response functions

χII(k, ω) = χ0
I(k, ω)

1− χ0
e(k, ω)Uee(k, ω)

D(k, ω)
(3a)

χIe(k, ω) = −χ0
I(k, ω)

χ0
e(k, ω)UIe(k)

D(k, ω)
(3b)

χee(k, ω) = χ0
e(k, ω)

1− χ0
I(k, ω)UII(k, ω)

D(k, ω)
(3c)

D(k, ω) = det
{
δab − χ0

a(k, ω)Uab(k, ω)
}
, (3d)

Taking all species to be fermions[41], the free-particle
response functions are given by

χ0
a(k, ω) = −βnaIa(k, ω) (4)

with[42]

Ia(k, ω) =
3Θ

3/2
a

4t

∫ ∞
0

ln
∣∣∣ (t2+2tu)2−(β~ω)2

(t2−2tu)2−(β~ω)2

∣∣∣
exp(u2 − βµa) + 1

u du, (5)

where Θa = kBT/EFa is the degeneracy parameter,
EFa = ~2(3π2na)2/3/2ma is the Fermi energy, µa is the
chemical potential, t2 = ~2k2β/2ma = Λ2

ak
2, and Λa is

the thermal de Broglie wavelength divided by 2π.
The dynamic response functions relate to the dy-

namic static structure factors through the fluctuation-
dissipation theorem[38–40]

Sab(k, ω) = − ~
2π

coth(β~ω/2) Imχab(k, ω) (6)

from which the static structure factors are obtained as
the integral over frequencies

Sab(k) =
1√
nanb

∫ ∞
−∞

Sab(k, ω) dω (7)

A convenient expression of this relationship is as a sum
over residues

Sab(k) = − kBT√
nanb

∞∑
l=−∞

χab(k, iωl) (8)

where ωl = 2πlkBT/~ are the Matsubara frequencies[42].
As will be shown below, this summation needs only to be
carried out for a jellium-like response function, so con-
vergence may be accelerated using the same technique
employed by Tanaka and Ichimaru, see Eqs. (27)-(31) of
Ref. [42].

At dense plasma conditions, the electron de Broglie
wavelength can be of similar order as the relevant den-
sity fluctuation wavelengths, while the ion de Broglie
wavelength is smaller by a factor

√
me/mI . This allows

for considerable simplifications and an important con-
nection to the quantum Ornstein-Zernike theory. Taking
ΛIk � 1 and βµI � 0, the ion free-particle susceptibility
for imaginary frequencies is

χ0
I(k, iωl) =

{
−βn0

I + O(Λ2
Ik

2) l = 0

−βn0
I

Λ2
Ik

2

2π2l2 + O(Λ4
Ik

4l−4) l 6= 0
. (9)

When this expansion is used in Eq. (3), one finds for l = 0

χII(k, 0) = −βn0
I

1− χ0
e(k, 0)Uee(k, 0)

D(k, 0)
(10a)

χIe(k, 0) = βn0
Iχ

0
e(k, 0)

UIe(k)

D(k, 0)
(10b)

χee(k, 0) = χ0
e(k, 0)

1 + βn0
IUII(k, 0)

D(k, 0)
(10c)

D(k, 0) = 1 + n0
IβUII(k, 0)− χ0

e(k, 0)Uee(k, 0)

− n0
Iβχ

0
e(k, 0)[UII(k, 0)Uee(k, 0)− |UIe(k, 0)|2]

(10d)

up to terms of order Λ2
Ik

2. The corresponding expansion
for l 6= 0 produces

χII(k, iωl) = −βn0
I

Λ2
Ik

2

2π2l2
(11a)

χIe(k, iωl) = βn0
Iχe(k, iωl)UIe(k, iωl)

Λ2
Ik

2

2π2l2
(11b)

χee(k, iωl) = χe(k, iωl)

− βn0
I [χe(k, iωl)UIe(k, iωl)]

2 Λ2
Ik

2

2π2l2

(11c)

up to terms of order Λ4
Ik

4l−4. In Eq. 11 we have defined

χe(k, ω) =
χ0
e(k, ω)

1− χ0
e(k, ω)Uee(k, ω)

(12)

which is similar in form to the response function of jellium
except that the polarization potential here should involve
the local field correction appropriate for a TCP.
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A classical treatment of the ions corresponds to ne-
glecting terms of order Λ2

Ik
2 and above. Doing so, the

evaluation of Eq. (8) for SII(k) and SIe(k) requires only
the zero-frequency (l = 0) contribution to χII and χIe,
whereas See(k) retains an l 6= 0 contribution from the
jellium-like first term of Eq. (11c)

SII(k) =
1− χ0

e(k, 0)Uee(k, 0)

D(k, 0)
(13a)

SIe(k) =
χ0
e(k, 0)UIe(k, 0)

Z̄
1
2D(k, 0)

(13b)

See(k) = − 1

βn̄0
e

∑
l 6=0

χe(k, iωl)

− χ0
e(k, 0)

βn̄0
e

1 + βn0
IUII(k, 0)

D(k, 0)

(13c)

In their static limit, the polarization potentials are syn-
onymous with the OZ direct correlation functions[38, 43]

Uab(k, 0) = −kBTCab(k) (14)

and it is easy to see that in fact Eqs. (13a) and (13b)
are just the QOZ relations, Eqs. (1). For the electron-
electron structure factor, a more physically illuminating
formula can be written by introducing the jellium-like
static structure factor,

Se(k) = − 1

βn̄0
e

∞∑
l=−∞

χe(k, iωl) (15)

in terms of which

See(k) = Se(k)+
χe(k, 0)

βn̄0
e

− χ
0
e(k, 0)

βn̄0
e

1− n0
ICII(k)

D(k, 0)
. (16)

The first term in See(k) is just the jellium structure fac-
tor, the second term removes the jellium zero-frequency
response, and the third adds back in the TCP zero-
frequency response, which accounts for correlations be-
tween the electrons induced by their attraction to the
ions. The ionic correction is substantial, as shown in
Fig. 1, especially at long wavelengths. Ion correlations
lift the jellium-like Se(k) → 0 behavior to a finite value
as k → 0, which is necessary to satisfy the charge-
density sum rule[44]. This new expression Eq. (16) for
the electron-electron static structure factor is the main
result of this paper, from which other useful quantities
describing electron-electron correlations can be derived.

A point of practical interest is that one can obtain ac-
curate predictions for the static structure factors without
the need for dynamic local field corrections, despite their
apparent need in Eq. (8). Of the three structure fac-
tors, only See(k) involves dynamic local field corrections,
and even then only in the calculation of its jellium-like
part, Se(k). Recent advances in computing the dynamic
structure factor of jellium[45] suggest that at high elec-
tron densities (n̄0

e & 1021cm−3), the dynamic local field
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FIG. 1. Electron static structre factors for hydrogen at 50eV
and 2.7g/cc. The solid line is the full electron-electron struc-
ture factor, and the dashed line is the jellium contribution
[first term of Eq. (16)].

correction can be replaced by its static (zero-frequency)
with little error in the dynamic structure factor and thus
also the static structure factor, viz. Eq. (7). Even though
the present case concerns the electron-electron dynamic
local field corrections for a TCP (not jellium), we take
it as a reasonable approximation that a similar result
should hold here. The results shown in Sec. III all make
use of a static electron-electron local field correction. Ap-
proximate dynamic response is still included through the
free-particle response functions, χ0

e(k, iωl), in Eqs. (12)
and (13c).

One way in which the theory could be refined con-
cerns self-consistency. Namely, the formulas derived in
this section assume the electron-electron direct correla-
tion function Cee is given. In the practical calculations
shown in Sec. III, the jellium approximation for Cee is
used, but clearly the resulting See will differ from that
of jellium due to the second term of Eq. (13c) which
couples to the ions. One could imagine constructing a
self-consistent closure for Cee in which one starts with
the jellium approximation and refines according to the
resultant See. However, it is unclear how to produce an
independent closure for Cee in terms of See or if correc-
tions beyond the jellium approximation would make any
practical difference in the resulting static structure fac-
tors. Since Cee is intimately connected electron-electron
exchange-correlation potential[37], this is an important
question to resolve if the present results are to be ap-
plied to the development of new exchange-correlation or
self-energy functionals.
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C. Pair Distribution Function and Mean-Force
Potential

The TCP pair distribution functions are related to the
static structure factors by

gab(r) = 1 +
1√
nanb

∫
[Sab(k)− δab] eik·r

d3k

8π3
(17)

The pair distribution functions may be used to construct
potentials of mean force using Percus’s theorem[30, 31,
46]. The theorem states that if a particle of species a is
inserted into the plasma at the origin, then the resulting
density profile of species b is given by

nb(r|vab) = nbgab(r) (18)

where the notation emphasizes that nb(r) is a functional
of the “external” potential vab(r). The potential of mean
force, vmf

ab (r), is introduced by constructing an auxiliary
system of non-interacting particles. One then asks what
external potential applied to the noninteracting system
would induce the same density profile in species b that
is obtained when the interacting system is acted on by
the external potential vab(r). This potential is the poten-
tial of mean force, and the above statement is expressed
mathematically as

n0
b(r|vmf

ab ) = nb(r|vab) (19)

where the superscript “0” denotes the density profile of
the non-interacting system.

An explicit formula for vmf
ab (r) follows from the identity

relating the chemical potential and intrinsic Helmholtz
free energy F of an inhomogeneous system exposed to an
external potential φb(r)[47]

δF

δnb(r)
+ φb(r)− µb = 0 (20)

This identity is applied separately to the interacting sys-
tem exposed to φb = vab and to the non-interacting sys-
tem exposed to φb = vmf

ab . Equating the two gives

vmf
ab (r) = vab(r) +

δF ex

δnb(r)
− µex

b (21)

where F ex and µex
b are the non-ideal parts of intrinsic

free energy and chemical potential. The excess intrin-
sic free energy may be developed in a functional Tay-
lor series about the densities of the uniform system,
n0
s = ns(r|vas)|vas=0, which, after making the identifi-

cations

δF ex

δnb(r)

∣∣∣∣
vab=0

= µex
b (22)

δ2F ex

δnb(r)δns(r′)

∣∣∣∣vab=0
vas=0

= −β−1Cbs(r − r′) (23)

ns(r|vas) = n0
sgas(r) (24)

obtains for the mean-force potential[31]

vmf
ab = vab − β−1

∑
s=I,e

ns(gsb − 1) ? Cas + β−1Bab (25)

where the star denotes convolution and Bab(r) is the
bridge function containing third- and higher-order func-
tional derivatives of F ex. We treat the ion-ion bridge
function using the variational modified hypernetted
chain approximation[48] and neglect the electron-ion and
electron-electron bridge functions, for which good ap-
proximations are not known, but should only be impor-
tant when the conduction electrons are very strongly cor-
related.

Calculations of vmf
II and vmf

Ie within the present TCP
model have already been applied to problems of diffusive
transport in dense plasmas[35, 36, 49]. Here, we compute
gee and vmf

ee as well. However before presenting results,
we first address an important conceptual point regarding
the application of Percus’s theorem to electron-electron
correlations.

The application of Percus’s theorem to the calculation
of vmf

ee introduces a semiclassical approximation. This is
because the procedure of placing a test electron at rest
at the origin violates Heisenberg’s uncertainty principle,
since the test electron’s position and momentum would
be simultaneously known with perfect certainty[50]. This
means that the potential of mean force computed using
Percus’s theorem represents a semiclassical calculation.
Since r/Λe is the expansion parameter in semiclassical
treatments of pair correlations in quantum gases [51, 52],
the validity of Eq. (25) for vmf

ee is not guaranteed at length
scales smaller than Λe. If the plasma temperature is given
in electron volts, this means that vmf

ee should be accurate

for r/aB & 5.2T−
1
2 , where aB is the Bohr radius. As will

be shown in Sec. III, the range of vmf
ee for solid density

plasmas is typically on the order of a few Bohr. For hot
dense plasmas with temperatures on the order of hun-
dreds of eV, the disrespect of the uncertainty principle
should only affect the potential at very short length scales
where vmf

ee differs little from the Coulomb potential.

III. RESULTS

A. Comparison with First-Principles Simulations

Electron-electron correlation physics in warm and hot
dense plasmas is difficult to assess by first-principles
means. In particular, while Kohn-Sham molecular dy-
namics (QMD) simulation is a useful methodology for
benchmarking theoretical models of ionic correlations,
the physics of electron correlation exists only in the choice
of exchange-correlation functional used to compute the
electron density. QMD is thus not a useful means of
assessing the present model’s accuracy. Path integral
Monte Carlo (PIMC) methods, however, offer a high-
fidelity description of electron-electron correlations. A
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FIG. 2. Pair distribution functions (upper) and static struc-
ture factors (lower) of jellium. Lines are the jellium model
used in AA-TCP. Circles are restricted-PIMC results by
Brown et al.[53]

challenge in connecting the present model with PIMC is
that PIMC studies in general treat a plasma as a system
of nuclei and electrons (both bound and free) whereas
the AA-TCP model assigns some fraction of the electron
density to the nucleus to construct ions. To compare with
PIMC results for gee(r), we are thus limited to materials
at high enough temperatures and densities that there are
no electrons bound to the nucleus.

The simplest such “material” is the jellium model. It is
important even in the present context, since the jellium
structure factor appears a term in the electron-electron
structure factor, as derived in Eq. (16). Fig. 2 affirms
that the jellium contribution to electronic correlations is
accurately treated in the AA-TCP model, as compared
with restricted-PIMC simulations by Brown et al. [53].
Comparisons are shown for electron densities correspond-
ing to rs = 1, where rs = ae/aB and ae = (4πn̄0

e/3)−
1
3 ,

which is typical of near-solid density plasmas.
Turning now to real matter, Fig. 3 compares the

pair distribution functions of the AA-TCP model with
those computed from PIMC by Militzer for warm dense
deuterium[54]. Due to computational constraints on the
number of particles at the time, the PIMC pair dis-
tribution functions do not asymptote to unity at large
separation, instead taking values up to a few percent
above or below unity. To best connect with the AA-

TCP model, which occurs in the thermodynamic limit,
the PIMC pair distribution functions have been rescaled
gab(r)→ gab(r)/gab(rmax), where rmax is the largest tab-
ulated separation. Furthermore, since the PIMC elec-
trons have spin, the overall electron-electron pair distri-
bution has been constructed as the mean of the two spin
orientations[55].

The conditions of Fig. 3 represent a stringent test of
the AA-TCP model because at the temperature shown,
10.8eV, the electronic structure of deuterium is sensitive
to the density. It is observed that the AA-TCP model
systematically underestimates the depth of the electron-
electron correlation hole, and that the disagreement is
greater at lower density. The tendency for the AA-TCP
model to underestimate the degree of electron-electron
correlation can be qualitatively understood by inspect-
ing the electronic density of states (DOS) of the average-
atom model. This DOS is obtained in an ion-sphere
average-atom calculation as an intermediate step to con-
structing the TCP (See the Appendix and Ref. [32] for
the distinction between the two). In contrast, the con-
duction electrons of the TCP should be thought of as
being nearly free with an ideal (∝

√
E) DOS.

The ion-sphere average-atom DOS exhibits a
resonance-like feature in the low-energy part of the
continuum, corresponding to electrons which are not
bound to the nucleus but still strongly interact with
it. This feature in the DOS is sharpest at the lower
densities shown, coinciding with the conditions where
AA-TCP model is in greatest disagreement with PIMC.
With increasing density, the non-free feature in the DOS
broadens and shifts further out into the continuum,
the electrons are less strongly correlated, and the
AA-TCP model is in good agreement with PIMC. The
exclusion principle offers a simple, if loose, explanation:
at higher density (smaller ion-sphere), the continuum
electrons’ spatial distribution compresses, so their energy
(momentum) distribution must broaden.

The onset of strong electron correlation features in the
the DOS is symptomatic of the breakdown of the TCP
concept, rather than our theory for the electron-electron
correlations specifically. This is because the presence
of barely-free electrons makes it difficult to unambigu-
ously define an “ion” as a distinct entity. Indeed, the ap-
pearance of these long-lived resonance-like states renders
all three AA-TCP pair distribution functions inaccurate
compared with PIMC, not just gee(r). The Appendix
gives a more quantitative discussion of this breakdown in
terms of the accuracy of the AA-TCP electron-ion clo-
sure.

Available PIMC results also allow for verification of the
high-temperature limiting behavior of gee(r) in higher-
Z materials. Figure 4 compares the electron-electron
pair distribution functions of solid-density aluminum (2.7
g/cm3) with the PIMC results obtained by Driver et
al.[56]. At the temperatures shown, both the PIMC sim-
ulations and the AA-TCP model predict the aluminum
is fully ionized, so direct comparisons between the two
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FIG. 3. Upper: pair distribution functions of warm dense deuterium. Black solid, blue dash-dotted, and red dashed lines are the
TCP model gII(r), gIe(r), and gee(r) respectively. Circles are PIMC results by Militzer[54]. Lower: average-atom electronic
density of states. Solid lines are the DOS of the average-atom model. Dashed lines are the free-electron DOS assumed in
constructing the TCP.

methods are possible. All departures from the classical
ideal gee(r) = 1 behavior are confined to distances less
than about one Bohr, which is much smaller than the rel-
evant interaction range, the Debye length. The AA-TCP
model and PIMC results are in good agreement with the
jellium treatment, in which the ionic correlations are ab-
sent. The electron subsystem of the TCP is thus effec-
tively decoupled from the ions. Additionally, neither the
PIMC results nor the TCP model differ much from the
analytic form for a nearly-classical ideal Fermi gas, for
which

g0
e(r) ≈ 1− 1

2
exp

(
−1

2

r2

Λ2
e

)
(26)

and all departures from the classical gee = 1 behavior
are due to exchange[57]. The PIMC results do exhibit
some slight fluctuation in regions where the theoretical
models predict gee to be unity. These result from a not-
quite-exact cancellation of the parallel- and antiparallel-
spin channels, which are resolved in PIMC but absent
from the TCP treatment. It is unclear whether this is
a physical effect or a consequence of simple statistical
variability intrinsic to the PIMC method. Even if these
spin-dependent fluctuations are physical, in this high-
temperature limit they are confined to relatively short
length scales (Bohr versus Debye lengths) and are un-
likely to make any difference in practical applications.

B. Potentials of Mean Force

Figure 5 shows the electron-electron potentials of mean
force for solid-density aluminum. The asymptotic e2/r
dependence as r → 0 is divided out to emphasize the
screening part of the potential. The AA-TCP model is
compared with two simplified treatments. The first is
to treat the electron-electron correlations in the random
phase approximation (RPA), corresponding to approxi-
mating the polarization potential by the bare Coulomb
interaction, Gee(k, ω) ≈ 0. The second limit shown is
that of high temperatures, where the potential of mean
force reduces to a simple screened interaction[47, 58]

vmf
ee (r)→ e2

r
exp(−κr) (27)

Here, the inverse screening length is given by κ =√
κ2
I + κ2

e, with κs =
√

4πZ̄2
s e

2βn0
s being the Debye

wavenumber of either species. This limit is reached when
all correlations are treated in the RPA and the dynamic
electron screening is treated classically, i.e., the first term
of Eq. (13c) is dropped.

At 1000eV, the aluminum is nearly fully stripped (Z̄ =
12.6) and essentially classical (Θe = 32.9). Simple expo-
nential screening is a very good approximation to the full
AA-TCP model at these conditions. At 100eV (Z̄ = 7.87,
Θe = 4.5), the temperature is high enough that the RPA
offers a good description of the electron-electron correla-
tions but the screening is distinctly non-exponential due
to indirect correlations with the ions, which are strongly
coupled due to their relatively high charge. At 10eV
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are for an ideal and nearly classical Fermi gas. Each set of
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(Z̄ = 3.02, Θe = 0.853), these indirect correlations dom-
inate the screening at distances less than the inter-ionic
spacing aI = 2.99aB . This occurs because in the average-
atom calculation underlying the TCP construction, the
continuum electrons are correlated to the ions’ bound
electrons by the condition that all orbitals be mutually
orthogonal. The RPA manages to qualitatively capture
this effect since the electron-ion correlations are still be-
ing treated fully, but it is quantitatively deficient com-
pared with the full AA-TCP treatment. At 10eV, it is
also clear that exponential screening is a completely un-
suitable description of the electron-electron mean-force
potential. The apparent attractive feature in vmf

ee (r) near
r ≈ 3.5aB is an ionic structure effect, whereby the accu-
mulation of ions at this distance induces electron corre-
lations.

IV. CONCLUSIONS

We have derived a new formula for the electron-
electron static structure factor that is suitable for plas-
mas of classical ions and quantum-mechanical electrons.
The formula naturally completes the quantum Ornstein-
Zernike relations which provide a unified description of
ionic and electronic structure but which could not have
been used to treat electron-electron correlations until
now. In the present work, we have focused on plas-
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FIG. 5. Screening part of the electron-electron potential of
mean force for solid-density aluminum at temperatures from
10 to 1000 eV. Solid lines are the AA-TCP model. Dash-
dotted lines are the AA-TCP model with Uee treated in the
RPA. Dashed lines are the high-temperature limit, given in
Eq. (27). Each pair of curves is offset vertically.

mas with a single ion species for definiteness, but the
final analytic formula for the electron-electron struc-
ture factor extends in a straightforward (if algebraically
cumbersome) way to the case of multiple ion species.
Evaluating the theory for mixtures using average-atom
models should give accurate results at similar condi-
tions as for pure plasmas, provided that molecular bonds
do not form[59]. With the static approximation for
the electron-electron local field corrections, the electron-
electron structure factor may easily be computed from
an average atom model. Comparison with path inte-
gral Monte Carlo results demonstrated that the result-
ing electron-electron pair distribution functions are ac-
curate provided that the conduction electrons are not
too strongly correlated with one another, e.g., due to the
appearance of resonances. However, such conditions rep-
resent a breakdown of the underlying concept of distinct
ions and conduction electrons rather than the theory it-
self.

Improved knowledge of static pair correlations between
the conduction electrons in dense plasma should stimu-
late interest in translating modern theories of electron
correlation in solids to the plasma state, which is more
commonly treated as a mixture of ions and free electrons



9

rather than nuclei and electrons. In particular, it seems
natural to use our results develop new approximations
in the vein of either Green’s function frameworks such
as GW or adiabatic time-dependent density functional
theory.

We have also constructed electron-electron potentials
of mean force which represent an effective electron-
electron interaction potential. Comparison with the
Debye-Hückel limit showed that the electron-electron
screening can be significantly affected both by the in-
direct influence of strongly coupled ions as well as due
to correlations induced by the orthogonality of the con-
duction electron states to the bound electrons. These
departures from weak-coupling behavior could signifi-
cantly affect the effective binary scattering physics of
the electrons and could influence the electron-electron
scattering contributions to electrical and thermal con-
ductivities of dense plasmas. Such effects could be in-
vestigated, for example, within a mean-force Boltzmann
approach[34, 60] or a dynamic-screening generalized lin-
ear response approach[11, 12].

Appendix: Closures for the AA-TCP Model

This Appendix summarizes the closures used to eval-
uate the AA-TCP model in this work. The formulation
and closure of the AA-TCP model is discussed at length
in Ref. [32].

The formally exact ion-ion closure is known from the
theory of classical fluids [47]

ln gII(r) = −β Z̄
2

r
+ gII(r)− 1−CII(r) +BII(r) (A.1)

where gII(r) = 1 + (8π3n0
I)
−1
∫

[SII(k) − 1]eik·r d3k is
the ion-ion pair distribution function, and BII(r) is
the bridge function. The bridge function here is com-
puted in the variational modified hypernetted chain
approximation[48].

For the ion-electron closure, we obtain CIe by iden-
tifying the screening density nscr

e in Eq. (1c) with that
from a sequence of two electronic structure calculations.
The first obtains ne(r), the density of electrons about
a nucleus assuming a homogeneous plasma of identical
surrounding ions. A fraction of the electron density is
assigned to the nucleus, which defines an “ion” through
the density nion

e . The second electron structure calcu-
lation obtains next

e (r), which is solved for in the same
way as ne(r), except that the central nucleus is omitted;
it is the density of electrons around the nucleus which
is due to the other ions. The screening density is then
formed as nscr

e = ne − next
e − nion

e , which is the density
of electrons responsible for screening an individual ion.
The screening density also determines the mean ioniza-
tion Z̄ =

∫
nscr
e (r) d3r and thus also the mean conduction

electron density, n̄0
e = Z̄n0

I . All the electronic structure
calculations performed for this work used Kohn-Sham-

FIG. 6. Perturbation in the electron density due to the ion for
hydrogen at 10.8eV and the same densities shown in Fig. 3.
The dotted line at unity indicates where the perturbed density
is equal to the reference uniform density.

Mermin density functional theory with the KSDT finite-
T exchange-correlation functional[61].

For the electron-electron closure, we set Cee to be the
direct correlation function of jellium with the same num-
ber density and temperature as the conduction electrons
of the TCP. The direct correlation function of jellium (or
equivalently its local field corrections) have been param-
eterized by many authors. Our implementation uses one
by Chabrier, which includes temperature dependence[62].
One could also interpolate the tabulated results of PIMC
simulations[63].

The electron-ion closure warrants a few additional
comments, since it is closely connected with the viability
of constructing a two-component plasma model from the
average-atom calculation. The closure can be expected
to be accurate wherever the density profile of free elec-
trons around an ion, n̄0

egIe(r), is small compared to the
mean electron density, n̄0

e. If this is not the case, the con-
cept of a plasma of ions and nearly free electrons breaks
down. The smallness of the perturbed electron density
∆ne(r) = n0

e[gIe(r) − 1] also serves as a rough indicator
for the convergence of the functional Taylor series expan-
sion of the free energy underlying the variational formu-
lation of the AA-TCP model, see Eq. (28) of Ref. [32].
In Fig. 6 we plot the relative density perturbation for
deuterium at the same conditions shown in Fig. 3. At all
conditions, the electron density perturbation is large near
the nucleus, but this represents only a small amount of
the total electron density. The relevant figure of merit is
to see how far, r∗, one must venture from the nucleus be-
fore the perturbation drops below unity. The fraction of
perturbed electrons within this range gives a good indi-
cation for the accuracy of the closure. For the conditions
plotted, these values are tabulated in Table I, computed
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ρ [g/cc] 1.0 1.6 2.8 5.4

r∗ [aB ] 0.761 0.663 0.464 0.293

f 0.335 0.277 0.198 0.110

TABLE I. Electron-ion closure figures of merit for deuterium
at 10.8 eV

as

f =

∫ r∗
0
r2∆ne(r)dr∫∞

0
r2∆ne(r)dr

(A.2)

At high densities, where the AA-TCP model is in fair
agreement with PIMC, only about 11% of the perturbed

electron density lies within r∗. At lower densities, where
the AA-TCP model is in poor agreement with PIMC,
about one third of the perturbed electrons are strongly
perturbed.
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