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We discuss a method to calculate with quantum molecular dynamics simulations the rate of en-
ergy exchanges between electrons and ions in two-temperature plasmas, liquid metals and hot solids.
Promising results from this method were recently reported for various materials and physical con-
ditions [J. Simoni and J. Daligault, Phys. Rev. Lett. 122, 205001 (2019)]. Like other ab-initio
calculations, the approach offers a very useful comparison with the experimental measurements and
permits an extension into conditions not covered by the experiments. The energy relaxation rate
is related to the friction coefficients felt by individual ions due to their non-adiabatic interactions
with electrons. Each coefficient satisfies a Kubo relation given by the time integral of the autocor-
relation function of the interaction force between an ion and the electrons. These Kubo relations
are evaluated using the output of quantum molecular dynamics calculations in which electrons are
treated in the framework of finite-temperature density functional theory. The calculation presents
difficulties that are unlike those encountered with the Kubo formulas for the electrical and thermal
conductivities. In particular, the widely used Kubo-Greenwood approximation is inapplicable here.
Indeed, the friction coefficients and the energy relaxation rate diverge in this approximation since
it does not properly account for the electronic screening of electron-ion interactions. The inclusion
of screening effects considerably complicates the calculations. We discuss the physically-motivated
approximations we applied to deal with these complications in order to investigate a widest range of
materials and physical conditions. Unlike the standard method used for the electronic conductivities,
the Kubo formulas are evaluated directly in the time domain and not in the energy domain, which
spares one from needing to introduce an extraneous undetermined numerical parameter to account
for the discrete character of the numerical density of states. We highlight interesting properties of
the energy relaxation rate not shared by other electronic properties, in particular its self-averaging
character. We then present a detailed parametric and convergence study with the numerical param-
eters, including the system size, the number of bands and k-points, and the physical approximations
for the dielectric function and the exchange-correlation energy.

I. INTRODUCTION

In a recent Letter [1], we presented first-principle calcu-
lations of the electron-ion temperature relaxation rate in
materials under warm dense plasma and liquid metal con-
ditions, including aluminum and several transition met-
als. We used quantum molecular dynamics simulations
to numerically evaluate a formal expression for the relax-
ation rate that is valid for physical systems ranging from
hot solid metals to plasmas. The justification and the
properties of this theoretical expression were presented
in detail in Ref. [2]. The goal of this companion paper is
to present the approach we followed to numerically eval-
uate this theory with quantum molecular dynamics.

The underlying theory can be summarized as follows
[2]. We consider a material of volume Ω composed by
a single atomic species. We assume that the mate-
rial can be described as an isolated, homogeneous, two-
temperature system comprised of ions (mass M = Amu,
number density ni = Ni/Ω, charge Ze) and of electrons
(mass me, density ne = Zni) that are characterized at all
times t by the temperatures Ti(t) and Te(t), respectively.
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Under mild assumptions suitable for physical conditions
ranging from hot solid metals to plasmas, it can be shown
that the temperatures evolve according to [2]

c0i
dTi
dt

= Gei (Te − Ti) , ce
dTe
dt

= −Gei (Te − Ti)(1)

where c0i = 3nikB/2 is the kinetic contribution to the
ionic heat capacity, ce is the specific heat capacity of
electrons at constant volume, and

Gei(Te, Ti) = 3nikBΓ(Te, Ti)

is the electron-ion coupling, which measures the rate
of energy exchanges between electrons and ions. The
electron-ion coupling is related to the average friction Γ
felt by an ion as a result of its non-adiabatic interactions
with the electrons. More specifically, the average friction

Γ(Te, Ti) =

〈
1

3Ni

Ni∑
a=1

3∑
x=1

γ[R]
ax,ax(Te)

〉
(2)

is given by the thermal average over ionic configurations
R = (R1, . . . ,RNi) at temperature Ti of the sum over
all ions and spatial dimensions of the electron-ion friction

coefficient γ
[R]
ax,ax(Te) felt by ion a along the x-direction as

a result of non-adiabatic interactions with the electrons.
The friction coefficients satisfy the Kubo relation

γ
[R]
ax,by(Te) =

1

2MkBTe
Re

∫ ∞
0

dt
〈
δF̂ax(t)δF̂by(0)

〉
e
,(3)
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where 〈. . . 〉e is the electronic thermal average at tempera-

ture Te, and F̂ax(t) = eiĤ
[R]
e t/~[−∂Ĥ [R]

e /∂Rax]e−iĤ
[R]
e t/~

is the electron-ion force at time t, where Ĥ
[R]
e =∑

i p̂
2
i /2me +

∑
i,a vie(r̂i −Ra) +

∑
i6=j e

2/|r̂i − r̂j | is the
electronic Hamiltonian and vie the electron-ion interac-
tion potential discussed in more details below.

In this paper, we explain how the friction coefficients
(3) and, in turn, the electron-ion coupling (2) can be cal-
culated using quantum molecular dynamics simulations
that treat the electrons within the framework of finite-
temperature density functional theory and the ions clas-
sically within the Born-Oppenheimer approximation [3].
Such simulations are widely used to evaluate the Kubo
formulas related to other electronic transport properties
such as the electrical or the thermal conductivity[4]. Al-
though we here follow an analogous approach, the calcu-
lation of friction coefficients (3) presents additional and
non-trivial difficulties that are addressed here.

The paper is organized as follows. In section II, we
recast the Kubo relations (3) in terms of the quanti-
ties directly calculated in quantum molecular dynamics
simulations. We comment on the important role played
by the shielding of electron-ion interactions due to all
the electrons and, as a consequence, the non applica-
bility of the widely-used Kubo-Greenwood approxima-
tion. In section II C, we present the physically-motivated
approximations we developed to account for the elec-
tronic screening effects in pseudopotential calculations
of electron-ion forces, including local and projected-
augmented-wave (PAW) pseudopotentials. In section III,
we discuss the method we used to evaluate the expres-
sion (3), which, unlike the popular method used for the
electronic conductivities, does not necessitate introduc-
ing an extraneous undetermined numerical parameter to
account for the discrete nature of the numerical density
of states. We highlight the self-averaging character of the
friction coefficient Γ, and discuss the statistical distribu-
tion of individual friction coefficients (3). In section IV,
we present a detailed parametric and convergence study
of the proposed method with respect to the main numer-
ical and physical parameters, including the system size,
the number of k-points and of energy bands, the dielec-
tric functions, etc. For clarity, many technical details are
included in the appendices; in particular, detailed formu-
las useful for the practical implementation of the method
are given in the appendices C and D.

Throughout the paper, ~ is the reduced Planck con-
stant, kB is the Boltzmann constant, and e2 = q2

e/4πε0,
where qe is the elementary charge and ε0 the vacuum per-
mittivity. ex (x = 1, 2, 3) denote unit vectors along the
three cartesian directions. When in the calculations we
assume the same temperature for the electrons and the
ions, Te = Ti, we denote this common temperature by
T . For simplicity, we restrict the exposition to materials
made of a single atomic species. Extension of the method
to multicomponent systems is straigthforward.

II. FRICTION COEFFICIENTS IN THE
KOHN-SHAM DENSITY FUNCTIONAL

THEORY FRAMEWORK

We first express the friction coefficients (3) in terms
of the basic quantities that are directly computed in
a quantum molecular dynamics calculation, namely the
Kohn-Sham wave functions and energies. This exact re-
formulation highlights the importance of the shielding
of electron-ion forces produced by all the electrons. In
practice, the inclusion of the shielding effect is challeng-
ing, and in Sec. II C we present the method we developed
for this purpose.

A. Exact reformulation

We assume to work with standard Quantum Molecu-
lar Dynamics (QMD) simulations in which electrons fol-
low adiabatically the classical motion of ions and are
treated quantum-mechanically within the framework of
finite-temperature Kohn-Sham (KS) Density Functional
Theory (DFT). For each instantaneous ionic configura-
tion R along a molecular dynamics trajectory, the elec-
tronic structure is obtained from the solution of the KS
equations

(
p̂2

2me
+ VKS [ρe,R]

)
|n〉 = εn|n〉, where εn and

|n〉 are the single-particle KS energies and states, and
VKS is the KS potential. The Hamiltonian is a func-
tional of the electron density ρe(r) = 2

∑
n pn|Ψn(r)|2,

where Ψn(r) = 〈r|n〉 and pn =
(
1 + e−(µ−εn)/kBTe

)−1
is

the Fermi-Dirac occupation number of state n, the factor
2 account for electron spin degeneracy. Here and in the
remaining of the paper, we often omit to indicate the de-
pendence of the quantities from the instantaneous ionic
configuration [R] in order to avoid cluttering the mathe-
matical expressions. We indicate the dependence on [R]
when it is useful to be reminded.

As shown in the companion paper [2], the friction co-
efficient γαβ defined by Eq.(3) can be exactly written in
terms of the KS spectrum as follows

γαβ = γ̃αβ + δγ̃αβ . (4)

where the indices α and β are of form ax, where a =
1, . . . , Ni labels the ions and x denotes one of the three
spatial directions. The first term in Eq.(4) reads

γ̃αβ = −π~
M

∑
n6=m

pn − pm
εn − εm

fα,Lnm f
β,R
mn δ(εn − εm). (5)

where fα=ax,L
nm and fα=ax,R

nm denote matrix elements be-
tween KS states of the screened force along the x direction
between ion a and an electron at r [5]. They are given
by the expressions

fax,L(R)
nm = ex ·

∫
Ω

drΨn(r)∗ fa,L(R)(r) Ψm(r) , (6)
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where fa,L and fa,R are the effective electron-ion forces
that result from the electronic shielding of the bare
electron-ion force (see Sec. III-C in Ref. [2] for details).

Fa(r) = ∇rvie(r−Ra) . (7)

The second term in Eq. (4) represents a correction due
to intricate, dynamical many-body correlations not in-
cluded in the first term (see Sec. III-C in Ref. [2] for
details).

B. Remarks

1. We stress that Eq.(4) is an exact representation
of the friction coefficient Eq.(3) and it does not corre-
spond to a Kubo-Greenwood approximation [6]. In the
Kubo-Greenwood approximation, the many-body elec-
tronic states that one should in principle use to evalu-
ate the Kubo formulas (3) are approximated by Slater
determinant of KS orbitals. This leads to an expres-
sion for γαβ that is analogous to Eq.(5) but where the
screened forces are replaced by the bare forces written in
Eq.(7). In other words, the dielectric functions εL and
εR are set to unity in this approximation. By discarding
the electronic screening, the Kubo-Greenwood approxi-
mation for γαβ can be shown to diverge logarithmically
due to the infinite range of the electron-ion Coulomb in-
teraction at large distances, an effect that is analogous to
the well-known infrared divergence that occurs in lowest
order calculations of scattering cross sections in Coulomb
systems.

2. Nevertheless, the Kubo relation (5) resembles
the Kubo-Greenwood expression for the electrical
conductivity[4]

σxy =
2π~q2

e

3Ωm2
e

∑
n,m

pn − pm
εm − εn

pxnmp
y
mnδ(εn − εm) (8)

where pxnm = 〈n|p̂x|m〉 and p̂x is the x component of
the linear momentum operator. Therefore, many fea-
tures of the standard method developed to calculate σxy
can be used to compute Eq.(5). Yet, there are additional
nontrivial complications arising from the necessity to ac-
count for the screening. According to Eq.(6), for each
ionic configurations R, one should in principle first eval-
uate the right and left inverse static dielectric functions,
calculate the screened forces and only then compute the
matrix element. The determination of the dielectric func-
tions is well-known to be rather challenging in itself. To
address these difficulties and reduce the cost of the algo-
rithm without compromising the physics, we developed
the approximations that are presented in Sec. II C.

3. The practical difficulties one faces to include the
screening effects strongly depend on the pseudopoten-
tial chosen to model the tightly bound, core electrons.
Below, we consider two different categories of pseudopo-
tentials, namely: the local, Embedded Core Electrons

(ECE) potentials, where the combined effect of a nu-
cleus and its core electrons is described by a local poten-
tial; the Projected-Augmented Wave (PAW) pseudopo-
tentials, which allow for a much more detailed account
of the effect of core electrons and give access to a wide
range of materials far beyond the reach of the simpler
ECE potentials.

4. In practice, the evaluation of Eq.(4) is limited also
by the approximate nature of DFT calculations. The
mapping between the real system and the KS system is
known only approximately and in practice the exchange-

correlation potential v
[R]
xc and kernel f

[R]
xc must be also

approximated. The dependence on R is poorly known
and, as usual, we use expressions based on the homoge-
neous electron gas. In Sec. IV E, we discuss the effect
of two common choices for vxc, namely the local density
(LDA) and the generalized gradient (GGA) approxima-
tions.

The full exchange-correlation kernel fxc(r1, r2, ω) re-
mains elusive although several important properties and
approximations have been recently reported. Here, in
Eqs. (5) and in the expression for δγ̃αβ , is essentially the
low frequency behavior of fxc(r1, r2, ω) that is needed.
Qian and Vignale [7] reported an explicit expression for
fxc ≈ fLDA,hxc for the homogeneous (h) electron gas and
in local density approximation, which is exact at low fre-
quencies to leading order in the Coulomb interaction.
The approximation was used by Nazarov et al. [8] to
compute the friction felt by a single charged impurity ion
X+Zimp in a degenerate electron gas with ne ∼ 1022−1023

cm−3. Because the frequency derivative of fLDA,hxc is neg-
ative definite, they find that the dynamical correlation
carried by fxc tend to systematically enhance the friction
coefficients, but the enhancement due to δγ̃αβ remains
rather small at low impurity charges Zimp. For instance,
at aluminum density, the enhancement for an aluminum-
like impurity X+3 is < 10 % (see Fig.1(b) in Ref. [8]).
In this work, we accordingly neglect the dynamical ex-
change correlation effects. However, in principle, given a
reliable approximation for fxc, this correction could be
numerically evaluated and added to γ̃αβ .

C. On the calculation of the screened electron-ion
forces

We first consider the simplest situation where, in
Eq.(7), a ECE local pseudopotential vie(r) is used to de-
scribe the interaction between valence electrons and an
ion with its unresponsive bound electrons. This approach
is limited to simple systems and physical conditions such
as aluminum at melting or dense hydrogen for which re-
liable pseudopotentials exist. For other elements, more
sophisticated descriptions are needed and we here con-
sider, as previously mentioned, the case of PAW pseu-
dopotentials due to their accepted suitability to warm
dense matter modeling.
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FIG. 1. (Color online) Local ECE pseudopotential (black
solid line) for Al3+ used in this work (see [9]) with core radius
rc = 1.8 a.u. . For comparison, the figure shows the celebrated
Ashcroft potential [10] vie(r) = −

(
Zve

2/r
)
θ(r−rc) with rc =

1.2 a.u. and the Coulomb potential −Zve
2/r with Zv = 3.

1. Calculation with ECE pseudo-potentials

In a hypothetical calculation in which all the electrons
of the system are included, the KS wave functions would
show very sharp features close to the nuclei in the so-
called core regions since all the states are non-zero there
and they are constrained by the requirement of orthogo-
nality. The strong oscillatory behavior of the wavefunc-
tions inside the core regions, would require a very large
set of plane waves to be described accurately. In contrast,
outside the core region only the valence states are non-
zero, resulting in much smoother wavefunctions in this
interstitial region. As already mentioned, the simplest
way of avoiding this difficulty consists in using a local,
spherically symmetric pseudopotential in which the het-
erogeneous system composed by a nucleus and its tightly
bound, unresponsive core electrons is described by an
effective, much smoother, potential vie(r) behaving as
−Zve2/r a large distances, where Zv is the number of
valence electrons per atom. Examples of two standard
ECE pseudopotentials used to describe the effective inter-
action betweeen the valence electrons and an Al3+ atom
with Zv = 3 are shown in Fig. 1.

The theory of section II A should be applied as follows
when such a ECE local pseudopotential is used. The KS
equations are solved for the valence electrons only, The
electron density ρe(r) is the one corresponding to the
Ni ×Zv valence electrons and the KS potential, for each
ionic configuration R, is written as

VKS [ρe](r) =

Ni∑
a=1

vie(r−Ra) + vHxc[ρe](r) . (9)

In addition, the dielectric functions εL and εR describe
the screening power of these valence electrons only. The

shielding effect of core electrons is embraced in the pseu-
dopotential. Because the core electrons strongly screen
the bare atomic charge and because of the Pauli principle,
the valence electron-ion interaction vie is often relatively
weak and a reasonable approximation for εL and εR is
the lowest order one given by the dielectric function of
the homogenous electron gas (jellium) [11],

ε
[R]
L (r, r′, ω) ' εeg(r− r′, ω), (10a)

ε
[R]
R (r, r′, ω) ' εeg(r− r′, ω) . (10b)

The static dielectric function εeg(r, ω = 0) or,
equivalently, its spatial Fourier transform εeg(k) =∫

Ω
dr εeg(r, ω = 0)e−ik·r, is given by

1

εeg(k)
= 1 +

v(k)χ0(k)

1− v(k)[1 +G(k)]χ0(k)
(11)

where χ0(k) is the density response function of the free
electron gas (at Te) and G(k) is the local field correc-
tion that accounts for exchange and correlation effects in
the interacting electron gas beyond the mean field ap-
proximation, v(k) = 4πe2/|k|2 is the Fourier transform
of the Coulombic interaction. From the approximation

(10), f
[R]
a,L (r) = f

[R]
a,R(r) ≡ fega (r) and

f eg
a (r) =

∫
Ω

dr′Fa(r′)εeg(r− r′, ω = 0)−1 . (12)

In practice, Eq.(12) can be efficiently computed by means
of three-dimensional Fourier transform.

2. Calculation with a Projected-Augmented Wave
pseudo-potential

The calculation of the matrix elements fα,Lnm and fα,Rnm

in Eq.(6) from a PAW pseudopotential-based QMD sim-
ulation is more tricky. The main reason being that in
this case we need to consider all the electrons in the cal-
culation and the screening does not affect the electrons
inside the ionic cores as it does outside the cores. In
this section, we present the physically-motivated approx-
imations that we have implemented, which result in the
formula (18) below. The precise definition of PAW pseu-
dopotentials is involved and we refer the reader to the
specialized literature for a detailed presentation [12, 13];
for convenience, important relations for the numerical
implementation of Eq.(18) are included in appendix C.
Here, we only recall the basic properties that are useful to
our discussion. Firstly, all the electrons of the system
are explicitely described by Kohn-Sham wavefunctions
in the PAW method. Yet, one still conveniently distin-
guishes between tightly bound core states and valence
states. The distinction is an informed choice of the user
based on the physical conditions under consideration. In
the standard frozen core approximation used in this work,
it is assumed that the Zc = Z − Zv core states of the
isolated atoms are not affected by the surrounding parti-
cles and are identical to the isolated atomic core states.
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FIG. 2. (Color online) Radial electron density 4πr2nie(r)
around a nucleus in liquid iron (upper panel) at melting tem-
perature T = 0.156 eV and solid density ρ = 7.87 g/cm3, and
in liquid copper at T = 0.2 eV and melting density ρ = 8.02
g/cm3. In both panels, the blue dotted line shows the radial
density of core electrons, the red dashed line shows the radial
density of valence electrons, and the black solid line shows the
total radial electron density. The density of valence electrons
was calculated by averaging in the region around each ion
the electron density obtained from the DFT calculation due
only to the valence electrons (see the introduction of Sec. IV
for details). A PAW pseudopotential was used in each case,
generated with Zv = 16 valence electrons and Zc = 10 frozen
(neon-like) core electrons for iron, and Zv = 11 valence elec-
trons and Zc = 18 frozen (argon-like) core electrons for cop-
per. The arrows indicate important distances discussed in the
text: the PAW frozen core radius rc, the neutral sphere radius
rn defined such that Z = Zv +Zc =

∫ rn
0

dr 4πr2nie(r) (nie(r)
is the total radial electron density), and the distance rg equal
to half the average distance separating two ions.

These states are naturally localized within a sphere of
radius rc around their parent nucleus. The KS atomic
core wave functions φcn(r) are calculated beforehand sep-
arately from the actual QMD simulations. The valence
electrons and their wave functions Ψn(r) are the only or-
bitals that are actually calculated and updated along the
QMD simulation with the Kohn-Sham potential

VKS[ρe](r) = Vei(r) + vHxc[ρe](r) , (13)

where Vei(r) = −Ze2
∑Ni

a=1 1/|r−Ra| is the bare

electron-nuclear potential and ρe(r) = ρv(r)+
∑Ni

a=1 ρ
a
c(r)

is the all-electron density. The latter consists of the con-
tribution ρv of all valence electrons and of the localized
core electron densities ρa

c around each atom a. These con-
tributions are illustrated in Fig. (2) for iron and copper
systems (details are in the caption) and in the cartoon
shown in Fig. (3).

Secondly, unlike with local ECE pseudopotentials, the
effect of a nucleus and its core electrons on the valence
electrons is not modeled by a local potential vie but is in-
stead directly parametrized in the wave functions. This is

rc

rn

FIG. 3. Cartoon representation of the spatial regions that
are identified in the main text in order to derive the approx-
imated expression (18) of the force matrix elements with a
PAW pseudopotential. The dark spheres represent the frozen
core of radius rc, in which core electron states are confined.
The light blue represents the valence electrons in the intersti-
tial region outside the frozen atomic core regions. The dashed
spheres indicate the neutral sphere of radius rn surrounding
each nucleus. Realistic electron densities found in these re-
gions are shown in Fig. 2 for iron and copper. For an elec-
tron at the red cross located at a distance greater than rn
from any nucleus, the bare Coulomb potential −Ze2/r that
it feels due to a given nucleus at a distance r is first reduced
to −(Z − Z̄)e2/r by the Z̄ electrons located inside the core
radius, and then it is further reduced by the screening effect
of the delocalized valence electrons (light blue). In this work,
the screening due to delocalized electrons is modeled with the
dielectric function of the homogeneous electron gas. For an
electron located at the black cross inside a core region, the
previous picture fails and, in this case, we appeal to an exact
sum rule to describe the shielding of electrons.

accomplished mathematically with a transformation that
maps the all-electron wave functions |Ψn〉 with their com-
plete nodal structure onto auxiliary smooth wave func-
tions that have a rapidly convergent plane wave expan-
sion,

|Ψn〉 = τ̂ |Ψ̃n〉

= |Ψ̃n〉+

Ni∑
a=1

∑
i

(|φai〉 − |φ̃ai〉) 〈p̃ai|Ψ̃n〉 , (14)

where the different terms, which are not essential to the
present discussion, are defined in the appendix C. This
transformation leads to a new set of transformed KS
equations for the smooth wave functions τ̂ †ĥKS τ̂ |Ψ̃n〉 =

εnτ̂
†τ̂ |Ψ̃n〉, which are actually solved by the QMD pro-

gram instead of the usual set of KS equations.
Thirdly, the true valence wave functions Ψn(r) are

identical to Ψ̃n(r) ouside the core regions, i.e. Ψn(r) =

Ψ̃n(r) when |r − Ra| ≥ ra
c for all a. This property is

conveniently written as follows

Ψn(r) = Ψ̃n(r)Πout(r) +

Ni∑
a=1

Ψn(r)Πin
a (r) (15)
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in terms of the indicator functions

Πout(r) =

{
1, if ∀a : |r−Ra| ≥ ra

c

0, otherwise
,

which indicates when r lies outside any ion cores, and

Πin
a (r) =

{
1, if |r−Ra| < ra

c

0, otherwise
,

which indicates instead when r lies inside the core of atom
a. Equation (15) implies the following decompositon of
the matrix elements,

fax,L
nm = ex ·

[∫
Ω

drΠout(r)Ψ̃n(r)∗ fa,L(r)Ψ̃m(r)

+

∫
Ω

drΠin
a (r)Ψn(r)∗ fa,L(r)Ψm(r)

+

Ni∑
b=1,b 6=a

∫
Ω

drΠin
b (r)Ψn(r)∗ fa,L(r)Ψm(r)

(16)

and similarly for the (R) components. In the following,
we successively discuss the approximations we propose to
evaluate the three terms in the right-hand side of Eq.(16).

First term. In this term, fa,L(R)(r) represents the
screened force between a nucleus a with a test electron
that is located at a position r lying outside all ionic cores
(see red cross in Fig. 3). At such a location, the core
electrons perfectly shield the bare nuclei, which appear to
the electron as a point-like charged particle with charge
Zv = Z − Zc. The remaining electronic screening is due
to the valence electrons. The situation is similar to that
described in the previous section on local ECE pseudopo-
tentials and we apply the same approximation. Namely,
we assume that the screening due to the delocalized va-
lence electrons in this interionic region (light blue area in
Fig. 3) can be described by the dielectric function of the
homogeneous electron gas model. This yields∫

Ω

drΠout(r)Ψ̃n(r)∗ fa,L(R)(r)Ψ̃m(r)

≈
∫

Ω

drΠout(r)Ψ̃n(r)∗ f eg
a (r)Ψ̃m(r)

where f eg
a (r) is defined as in Eq.(12). εeg is the dielec-

tric function of the homogeneous electron gas of density
ZvNi/Ω.

Second term. In this term, r lies inside the core of
atom a (see black cross in Fig. 3) where the core elec-
trons do not fully screen the bare nucleus, the electron
density varies widely and the homogoneous electron gas
model is expected to fail. This is illustrated in Fig. (2)
that shows the components of the radial electron density
surrounding an iron nucleus at solid density and melting
temperature and a copper nucleus at liquid density and
T = 0.2 eV (see caption). In order to deal with this term,

we appeal to the following exact sum rules

Ni∑
a=1

fa,L(r) =

∫
Ω

dr′∇r′Vei(r
′)εL(r′, r, ω = 0)−1

= ∇rVKS [ρe](r) (17a)

Ni∑
a=1

fa,R(r) =

∫
Ω

dr′εR(r, r′, ω = 0)−1∇r′Vei(r
′)

= ∇rVKS [ρe](r) (17b)

where VKS is given by Eq.(13); a proof of these sum
rules can be found in the companion paper [2]. In order
to use Eq.(17) we make two observations. First, at the
position r in the core of atom a, the effect of other nu-
clei is perfectly shielded by their own core electrons and
by the surrounding valence electrons. This is illustrated
in Fig. 2 that shows that every nucleus is typically sur-
rounded by a neutralizing electronic sphere of radius rn,
whose magnitude is typically of the order of or smaller
than half the average distance between two ions, which is
denoted by rg. At solid density and above, the distance
rg, which we set equal to half the distance r∗ to the first
peak of the ion-ion pair distribution function gii(r

∗) (not
shown), is typically of the order of ' 0.65a, where a =
(3Ω/4πNi)

1/3 is the average interparticle distance. As a
consequence, the KS potential VKS is equal to the “par-
tial” KS potential V a

KS(r) = −Ze2/|r−Ra|+va
Hxc[ρe](r)

with ρe(r) = ρv(r) + ρa
c(r). Second, we find intuitively

reasonable to assume that all the cores are identical and
contribute equally to the sum rules (17a) and (17b), i.e.
the state of a given ion is only weakly dependent on
the instantaneous configuration R. Overall, by apply-
ing both observations in Eq.(17), we obtain

Πin
a (r)fa,L(r) ≈ ∇r

[
−Ze2

|r−Ra|
+ va

Hxc[ρe](r)

]
Πin

a (r)

Πin
a (r)fa,R(r) ≈ ∇r

[
−Ze2

|r−Ra|
+ va

Hxc[ρe](r)

]
Πin

a (r) .

With this approximation, the second term in Eq.(16)
reads as∫

Ω

drΠin
a (r)Ψn(r)∗fa,L(R)(r)Ψm(r)

'
∫

Ω

drΠin
a (r)Ψn(r)∗∇rV

a
KS(r)Ψm(r) .

Third term. The position r lies in the core of an ion b
distinct from a. Due to the presence of the neutralizing
sphere surrounding atom a, as discussed above, it is legit-
imate to assume that the strength of the force fa,L(R)(r)
is generally negligibly small. We accordingly neglect the
third term in Eq.(16).

In summary, we propose the following final approxima-
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tion

fα=ax,L(R)
nm ≈ ex ·

[∫
Ω

drΠout(r)Ψ̃n(r)∗f eg
a (r)Ψ̃m(r)

+

∫
Ω

drΠin
a (r)Ψn(r)∗∇rV

a
KS(r)Ψm(r)

]
(18)

For convenience, we give a list of mathematical relations
that are useful to implement Eq.(18) in appendices B and
D.

Before going further, we feel that a word of caution is in
order regarding the use of the sum rules (17a) and (17b).
It may indeed be tempting to use the latter to approxi-
mate all the individual screened forces fa,L(r) and fa,R(r)

by their average 1
Ni

∑Ni
a=1 fa,L(r) and 1

Ni

∑Ni
a=1 fa,R(r) for

all positions r, namely setting

fa,L(r) = fa,R(r) =
1

Ni
∇rVKS [ρe](r) (19)

for all a. This apparently reasonable assumption, how-
ever, yields a goofy result for the electron-ion coupling
factor, namely Gie = 0. This can be understood as a

consequence of the exact sum rule
∑
α,β γ

[R]
αβ = 0 derived

in [2] that is physically related to the conservation of the
total linear momentum. We will see in Sec. III C that the
individual friction coefficients depend on the position of
the ions in the configuration R (see the dispersion of val-
ues around the average friction illustrated in Fig. 8).

D. First-principles calculation with a plane wave
basis set

In simulations of bulk systems, the Kohn-Sham equa-
tions are often solved by imposing periodic boundary con-
ditions and the wave functions are conveniently expanded
over a plane-waves basis set. In this section, we recast the
previous results for the friction coefficients and the force
matrix elements when periodic conditions are imposed.
This allows us to define some key numerical parameters
that will be varied in the next section in order to see the
dependence of the temperature relaxation, including the
number of k points and the number of bands.

a. Definitions and notations. We recall some useful
notions needed when dealing with periodic systems. A
neutral system consisting Ni ions and Ne electrons (see
Sec. II C on pseudopotentials for the meaning of ion and
of Ne) is placed in a parallelipedic cell of volume Ω = a1 ·
(a2 ×a3) with primitive vectors {a1,a2,a3}. We assume
that the system is replicated periodically along the three
primitive directions. Calculations for liquid metals or
plasmas are typically done assuming a cubic cell Ω =
L3 and ax = Lex. Yet, since the theory applies to a
solid metal with Ti significantly larger than its Debye
temperature [2], we here consider the case of a general
Bravais lattice.

The Bloch theorem allows one to write the Kohn-Sham
eigenstates in the form

Ψnk(r) = unk(r)eik·r,

where k is a wave vector in the first Brillouin zone, unk(r)
is a function with the periodicity of the Bravais lattice, n
is the band index. In practice, it is convenient to limit the
number of allowed vectors k by imposing the Born-von
Karman boundary conditions of macroscopic periodicity,
namely

Ψnk(r +Nxax) = Ψnk(r) , x = 1, 2, 3 , (20)

where the Nx are integers of order N 1/3
k , Nk = N1N2N3

is the total number of primitive cells. Indeed, the Bloch
theorem implies unk(r) =

∑
G cnk(G)eiG·r/

√
V with

V = NkΩ, the Bloch vectors are restricted to the form

k =

3∑
x=1

mx

Nx
bx ,

where the mx are all integers in the range 0 ≤ mx < Nx,
the bx are the primitive vector of the reciprocal lattice,
and G =

∑
x nxbx are vectors of the reciprocal lattice.

The ground-state single particle density is written as
ne(r) = 2

∑
n

∑
k∈BZ pn(k)|Ψ̃nk(r)|2 where the sum is

done over the first Brillouin zone k points. pn(k) corre-
sponds to the Fermi-Dirac occupation probability of the
KS state.

b. The friction coefficients. With these definitions,
the friction coefficients (5) read (see appendix A for a
complete derivation)

γ̃
[R]
αβ =− π~

M

val∑
n 6=m

∑
k∈IBZ

Wk
pn(k)− pm(k)

εn(k)− εm(k)
fαnm(k)fβmn(k)

× δ(εn(k)− εm(k)) , (21)

where the states n and m are valence states and the k
vectors belong to the irreducible Brillouin zone (IBZ) —
i.e., the first Brillouin zone reduced by all of the symme-
tries in the point group of the lattice — Wk is the weight
of each k points.

The form of the force matrix elements in Eq. (21) de-
pends on the type of pseudopotential used.

c. Matrix elements for a local ECE pseudopotential.
In this case the matrix elements read (see appendix B for
the complete derivation)

fα=a,x
nm (k) =

1

Ω

∫
Ω

dru∗nk(r)f eg
a,x(r)umk(r), (22)

f eg
a (r) is the gradient of the screened electron ion po-

tential from Eq. (12). Thanks to the periodicity of the
system this quantity can be easily computed in reciprocal
space

f eg
a (G) = iGe−iG·Ravie(|G|)ε̃−1

0 (|G|, ω = 0), (23)

where vie(|G|) is the Fourier transform of the local ECE
pseudo potential. f eg

a (|G|) can be then inverse Fourier
transform back to real space by using a Fast Fourier
Transform algorithm

f eg
a (r) =

1

Ω

∑
G

f eg
a (G)eiG·r , (24)
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and used into Eq. (22) to complete the calculation of the
matrix elements.

d. Matrix elements for a PAW pseudo-potential. By
using the approximation (18) for the screened interac-
tion together with the property (C13), valid inside the
core region of atom a, we easily obtain the following final
decomposition

fα=a,x
nm (k) =

1

Ω

∫
Ω

drΠout(r)unk(r)∗f eg
a,x(r)umk(r)+

+
∑
i,j

〈Ψ̃nk|p̃ai〉
∫

Ω

drΠin
a (r)φ∗ai(r)∇rxV a

KS(r)φaj(r)

× 〈p̃aj |Ψ̃mk〉 . (25)

The evaluation of the first term on the right hand side
of Eq. (25) proceeds analogously to the computation of
Eq. (22), the determination of the atomic core contri-
bution requires instead the evaluation of a set of one-
dimensional integrals described in appendix D.

III. REAL-TIME CALCULATION OF THE
KUBO FORMULAS

In this section, we describe the method we used to
evaluate the Kubo formulas for the friction coefficients
and the electron-ion coupling, and we discuss how this
differs from the approach that is generally used for the
calculation of electronic conductivities.

For convenience, we introduce the following notations.
The ensemble averaged friction coefficient Γ in Eq.(2) is
written as

Γ =

〈
1

3Ni

Ni∑
a=1

3∑
x=1

γ[R]
ax,ax

〉
=
〈
Γ[R]

〉
(26)

where

Γ[R] =
1

Ni

Ni∑
a=1

Γ[R]
a (27)

is the average friction coefficient felt by any ion when the

system is in the configuration R and Γ[R]
a =

3∑
x=1

γ̃[R]
ax,ax/3

is the spatially average friction felt by ion a in this con-
figuration. Using the formulas of Sec. II, the friction

coefficient Γ
[R]
a reads

Γ[R]
a =− π~

3M

3∑
x=1

val∑
n 6=m

∑
k∈IBZ

Wk
pn(k)− pm(k)

εn(k)− εm(k)
|fax
nm(k)|2

× δ(εn(k)− εm(k)) , (28)

where, as mentioned above, we neglect the correction
term δγ̃αβ in Eq.(4).

In the following, we first discuss the calculation of the

frictions Γ
[R]
a and Γ[R]. We then discuss in Sec. III B the

self-averaging character of the ensemble average
〈
.
〉

in
Eq.(26). Finally, in Sec. III C, we discuss the statistical

distribution of friction coefficients Γ
[R]
a .

A. Calculation of Γ
[R]
a and Γ[R] in the time domain

In this section, we omit the superscript [R] on all quan-
tities. In principle, in order to compute Γa, one could fol-
low the method generally used for evaluating the Kubo-
Greenwood formulas for the electrical and thermal con-
ductivities, which is a direct evaluation of the expression
(28). However, since the finite simulation volume results
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s−
1
)

×10 4

Γ

FIG. 4. (Color online) Illustration of the method used to
determine the average friction Γ. The black line shows the
time correlation function g(t) defined in Eqs.(31,33) (left y

axis) while the red dashed line shows
∫ t

0
ds g(s) (right y axis)

as obtained for warm dense aluminum at solid density and
T = 1160.4 K. g(t) decays rapidly to zero over a time scale of
∼ 1 fs. Beyond this time scale, the cumulative sum remains
constant at a plateau value corresponding to Γ according to
Eq.(32). Figure 6 shows another example in the presence of
a higher level of numerical noise.

in a discrete spectrum, the δ-function in Eq.(28) must
be broadened; this is typically achieved by replacing the
δ-function with a Gaussian or a Lorentzian distribution
with a finite width chosen ad-hoc. To avoid introducing
this extraneous parameter that needs to be determined
for each calculation, instead of Eq.(5), we consider the
equivalent expression [2]

γ̃αβ =
βe

2M

∫ ∞
−∞

dtKαβ(t) , (29)

in terms of the Kubo correlation function

Kαβ(t) =
1

βe

∫ βe

0

dλ
〈
eλĥKSδf̂β,R(0)e−λĥKSδf̂α,L(t)

〉
e
,

where f̂α,L(t) = eiĥKSt/~f̂α,Le
−iĥKSt/~ is the time-

dependent screened electron-ion force. We evaluate
Eq.(29) in stages by first calculating the force correlation
function in time domain and then by integrating it over
time; this approach is analogous to the standard method
used in classical physics to calculate the transport co-
efficients from the positions and velocities calculated in
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FIG. 5. (Color online) Another illustration of the method
used to evaluate the friction coefficient Γa of an ion in alu-
minum under the conditions indicated in the legend and for
T = 1160.4 K. The time correlation function ga(t) defined in
Eq.(31) and the corresponding cumulative sum are shown in
the upper and lower panels, respectively. In all three cases,
beyond a correlation time scale of the order of 1 fs, the cu-
mulative sums reach a plateau value equal to the friction co-
efficient Γa according to Eq.(30).

a classical molecular dynamics simulation [14]. By using
Eq.(29), Eq.(28) is replaced by the following time integral

Γa = lim
T→∞

∫ T

0

dt ga(t) , (30)

where

ga(t) =
βe

6M

3∑
x=1

Kax,ax(t) (31)

=
~

3M

3∑
x=1

∑
n 6=m

∑
k∈IBZ

Wk pn(k)
[
1− pm(k)

]∣∣fax
nm(k)

∣∣2
×e

βe(εn(k)−εm(k)) − 1

εn(k)− εm(k)
cos

(
εn(k)− εm(k)

~
t

)
.

Similarly, for the average friction, we use

Γ = lim
T→∞

∫ T

0

dt g(t) , (32)

where

g(t) =
1

Ni

Ni∑
a=1

ga(t) (33)

is the average over the ions of the temporal correlation
function. In both Eqs. (30) and (32), the cumulative
sum is expected to reach a plateau beyond the correlation
time scale of the screened electron-ion force correlation
function, i.e. the time beyond which ga(t) and g(t) vanish

0.0 0.5 1.0 1.5 2.0

0

1

2

g
a
(t

)
(f

s−
2
)

×10 3

t ∗

0.0 0.5 1.0 1.5 2.0

t (fs)

0

1

2

∫ t 0

d
s
g

a
(s

)(
fs
−

1
)

×10 4

FIG. 6. (Color online) Same as in Fig. 4 in the presence of a
higher level of numerical noise.

or are negligibly small. This is illustrated in Figs. (4) and
(5).

Figure (4) shows the average correlation function g(t)

(black solid line) and its cumulative sum
∫ t

0
ds g(s) (red

dashed line) for liquid aluminum at solid density and
T = 1160.4 K (the details of the simulations are discussed
in Sec. IV). The correlation function decays rapidly to
zero over a time scale of ∼ 1 fs. As a result, its cumula-
tive sum reaches a stable plateau beyond this correlation
time scale that, according to Eq.(32), corresponds to the
average friction coefficient.

Similarly, Fig. (5) shows the correlation function ga(t)

(upper panel) and its cumulative sum
∫ t

0
ds ga(s) (lower

panel) of a randomly chosen atom a in aluminum at
melting density ρ = 2.35 g/cm3 and at solid density 2.7
g/cm3, with T = 1160.4 K in all cases; for ρ = 2.7 g/cm3,
two ionic structures are considered: a disordered, liquid
structure and a superheated fcc crystal structure. We
again note the rapid decay to zero of the correlation func-
tions and the concomitant evolution of their integrals to
a plateau value corresponding to Γa.

The calculations shown in Figs. (4) and (5) are well
converged and plateau values can be identified unambigu-
ously. In general, it may happen that, due to numerical
inaccuracies, the force correlation function does not per-
fectly vanish and remains sligtly above or slighty below
the zero line, resulting in positive or negative drifts in its
cumulative sum. This is illustrated in Fig. 6. In all cases
we studied, a very good estimate of the desired plateau

value could be obtained by setting it equal to
∫ t∗

0
ds g(s)

where t∗ is the earliest time beyond which the correlation
function has nearly vanished, e.g. t∗ = 1 fs in the case
shown in Fig. 6. An alternative to this educated guess
consists in eliminating the apparent noise by multiplying
the correlation function with an exponential that does
not affect the short time behavior but forces the corre-
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lation function to vanish at later times. This approach
is equivalent to the standard method based on Eq.(28)
combined with the broadening of the delta function. We
remark that we never had to use this approach for the
calculations shown in this paper and in Ref. [1].

B. Self-averaging property.

In practice, the ensemble average in Eq. (26) becomes
an average over a finite numberNc of configurations {Rc}
selected along the trajectory followed by the ions during
a QMD simulation,

Γ ' 1

Nc

Nc∑
c=1

Γ[Rc] . (34)

According to the published literature, quantum molec-
ular dynamics calculations of the electrical and thermal
conductivities typically require Nc = 10 − 20 configura-
tions in order to get good estimates for these quantities.
However, the friction Γ differs from the conductivities in
the fact that, for each ionic configuration [Rc], Γ[Rc] is
already an average property: it describes a single par-
ticle property, namely the average over the ions of the
individual friction coeffcients. By contrast, the electrical
conductivity is a collective property: for each ionic con-
figuration [Rc], the electrical current is a non-averaged
sum over electrons. It is reasonable to expect that, if
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FIG. 7. (Color online) Illustration of the self-averaging char-
acter of Γ, Eq.(26). The figure shows the correlation func-

tions g[Rc](t) (red solid lines, upper panel) defined by Eq.(33),

and their cumulative sums
∫ t

0
ds g[Rc](s) (red solid lines, lower

panel) for Nc = 10 configurations taken during a QMD sim-
ulation of aluminum at 2.35 g/cm3 and T = 1160.4K; the
configurations are separated in time by 0.67 ps. The averages
over the Nc configurations are shown in black (dashed lines)
in both panels.

the system size, Ni, is sufficiently large, a single ionic

configuration Nc = 1 is enough to accurately determine
Γ; in other words, Γ is a self-averaging property.

As illustrated in Fig. (7), our calculations confirm
the self-averaging character of Γ. The figure shows
the correlation function g[Rc](t) and its cumulative sum∫ t

0
ds g[Rc](s) for 10 configurations equidistant in time

taken during a 6 ps long QMD simulation of aluminum at
2.35 g/cm3 and T = 1160.4 K. The correlation functions
(upper panel) are quite alike and it is hard to notice any
change in shape. The small differences are more apparent
in the long-time values Γ[Rc] reached by the cumulative
sums. Yet, the dispersion of different Γ[Rc] remains quite
small

∆Γ ≡

√√√√ 1

Nc − 1

Nc∑
c=1

(Γ− Γ[Rc])2 ≈ 4× 10−6 fs−1 ,(35)

with ∆Γ/Γ = 0.0217.
All the illustrative calculations discussed in the re-

maining of the paper use Nc = 1 configuration.
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FIG. 8. (Color online) Distribution of friction coefficients Γa

for an instantaneous ionic configuration in liquid aluminum
at 2.7 g/cm3 and T = 1160.4 K. The figure shows the time
correlation function ga(t) (dotted red, left y axis) and the cor-

responding cumulative sum
∫ t

0
ds ga(s) (dashed green, right y

axis) for a = 1, . . . , 32 randomly selected ions. The full black
line shows the average g(t) of the individual functions ga(t),

the full blue line shows its cumulative sum
∫ t

0
ds g(s).

C. Distribution of friction coefficients

We now discuss the statistical distribution of individ-
ual friction coefficients Γa around their average Γ . Fig-
ure (8) shows the correlation functions ga(t) (red dot-

ted) and the corresponding cumulative sums
∫ t

0
ds ga(s)

(dashed green) for 32 randomly chosen atoms in a QMD
simulation of liquid aluminum at 2.7 g/cm3 and T =
1160.4 K (the simulation contained Ni = 64 ions, we
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show results for only 32 of them in the figures for clarity).
The figure also shows the average correlation function

g(t) (black full line) and its cumulative sum
∫ t

0
ds g(s)

(blue full line).

All the correlation functions ga(t) and cumulative sums
show similar variations in time. We note, however, a
non-negligible spread in the initial value, which result in
a non-negligible dispersion of the individual friction co-
efficients (see later time behavior of dashed green lines).
Quantitatively, here, the average friction is Γ = 1.955 ×
10−4 fs−1, whereas the standard deviation of individual

frictions is σ =
√∑Ni

a=1 [Γa − Γ]
2
/(Ni − 1) = 1.94×10−5

fs−1, that gives σ/Γ = 0.0994.

IV. PARAMETRIC AND CONVERGENCE
STUDY

In this section we study the dependence of the cal-
culation of friction coefficients discussed above both
on the numerical parameters involved in plane-wave-
based QMD calculations and on the approximations used
for quantities such as the dielectric function and the
exchange-correlation energy.

All the QMD calculations presented in this paper were
performed by using the Quantum Espresso package, an
open-source plane-wave DFT code [15]. Given the sys-
tem’s chemical composition, its mass density ρ and its
ionic and electronic temperatures Ti and Te, a typical
calculation consists of two main parts. The first part is a
standard QMD simulation within the Born-Oppenheimer
approximation. Given a number of ions Ni and electrons
Ne in a cell of volume Ω, the electronic ground state is
computed by assuming Born-von Karman periodic con-
ditions for every ionic configuration and by solving the
set of KS equations at temperature Te. The ionic posi-
tions are then updated by using the instantaneous Born-
Oppenheimer force in the Newton equations. A thermo-
stat is used to ensure that during the dynamics the ionic
temperature Ti does not change, in all the calculations
the Andersen thermostat was employed. The system is
first carefully equilibrated and then it evolves for a suf-
ficiently long time (few picoseconds) in order to collect
enough ionic configurations. The number of electrons,
Ne, per atom that are directly accounted for in the sim-
ulation depends on the pseudopotential used. For all
calculations shown in this paper and in [1], only the va-
lence electrons enter explicitely the calculation with the
exception of the iron atom for which also semi-core states
(3s and 3p atomic shells) contribute to the self-consistent
evaluation of the electronic structure. At that stage, only
the Γ point is used for the representation of the Brillouin
zone (calculations with higher order k-point sets were
examined with no significant effect on the transport co-
efficients). At the end of the molecular dynamics sim-
ulation, a number of instantaneous ionic configurations
are selected. However, as we discussed in Sec. III B, while

tens of configurations may be necessary to determine col-
lective properties like electrical conductivity, one single
configuration is sufficient for the calculation of the av-
erage friction provided the number of atoms Ni in the
simulation box is large enough.
In the second part of the calculation we extract the aver-
age friction coefficient Γ from the knowledge of the tem-
poral correlation function g(t), which is calculated using
Eqs. (31,33) For a given selected ionic configuration, a re-
fined calculation of the electronic structure is performed
where the number of bands, the cut-off energy for the
plane waves expansion together with the number of k-
points are increased to ensure convergence of the sum-
mations (31) and (33). The details of all the parameters
used for the calculation of Γ in the case of different ma-
terial systems are shown in table (I), while a study of the
convergence of g(t) and Γ with respect to the choice of
these parameters is given in Sec. (IV A).

TABLE I. Typical values for the number of bands, number
of k-points, cut-off energy and number of atoms used in the
calculations for aluminum at solid and liquid density and for
melt iron and copper. If Te is changed, Nb needs also to be
changed in the way explained in the main text.

material Al Al Cu Fe
ρ (g/cm3) 2.7 2.35 8.02 7.87
Te,i (eV ) 0.1 0.1 0.2 0.156

Nb 250 250 620 750
Nk 8 8 8 8
Ecut (Ry) 150 150 150 150
Ni 64 64 64 64

A. Convergence with the number of bands and of
k-points.

We consider the dependence of the force correlation
functions and their cumulative sums on the number of
band Nb and of k-points Nk = N1 × N2 × N3 used
when evaluating Eq. (31). For this discussion, we con-
sider simulations of liquid aluminum at 2.7 g/cm3 and
T = 1160.4 K using the numerical parameters listed in
table (I) where either Nb or Nk is varied. Figure (9)
shows g(t) (upper panel) and its cumulative sum (lower
panel) obtained by using different number of bands vary-
ing between Nb = 100 and Nb = 250. By increasing the
number of bands, we notice the convergence of the cumu-
lative sum towards a stable limit. With a closer look at
the calculation, we observe that, with only 100 bands (red
line), there are states with a non-negligible occupation
number pn = 0.1 or even greater that are not included in
the calculation. As can be seen in the figure, these states,
which are then included as the number of bands increases,
significantly contribute to the correlation function. Inter-
estingly, here, as a result of a fortunate cancellation of
errors in the cumulative sums, the plateau values with
Nb ≥ 200 are less sensitive to the number of bands than
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FIG. 9. (Color online) Effect of the number of bands. The fig-
ure shows the time correlation function g(t) (upper panel) and

the corresponding cumulative sum
∫ t

0
ds g(s) (bottom panel)

for liquid aluminum at 2.7 g/cm3 and T = 1160.4 K using the
number of bands indicated in the legend. The other parame-
ters are fixed and listed in table (I).

the correlation functions. Figure (10) shows the time
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FIG. 10. Effect of the number N1×N2×N3 of k-points. The
figure shows the time correlation function ga(t) (upper panel)

and the corresponding cumulative sum
∫ t

0
ds ga(s) (bottom

panel) for a single atom randomly selected in liquid aluminum
at 2.7 g/cm3 and T = 1160.4 K using the number of k-points
indicated in the legend while the other parameters are fixed
and indicated in table (I).

correlation function ga(t) (upper panel) for a randomly
chosen ion a and its cumulative sum (lower panel) for
different numbers Nk = N1 ×N2 ×N3 of k-points. The
convergence with increasing Nk is much faster than with
the number of bands. We see that the Nk = 2 × 2 × 2
result may be considered already converged given that
its variation with respect to the fully converged 3× 3× 3
calculation is lower than the spread due to the different

atomic contributions (see Fig. 8).
The previous analysis is valid for all the calculations

considered here. At lower densities it may be necessary to
lower the number of atoms Ni in order to do not increase
too much the size of the simulation box; in this case, a
higher value of Nk may be required. At higher Te (see
below), we need instead to increase Nb given that more
states at higher energy will have non zero occupations.

B. Effect of the electronic structure in
two-temperature Te 6= Ti calculations

At a given ionic temperature Ti, the friction coefficients
(21) and the temperature relaxation Gie will depend
on Te explicitly through the Fermi-Dirac occupations

pn =
(
1 + e−(µ(Te)−εn)/kBTe

)−1
and implicitly through

the KS spectrum {Ψn, εn} since the KS Hamiltonian de-
pends on Te via the density ρe = 2

∑
n pn|Ψn|2. Given

that the determination of the KS spectrum and the cal-
culation of the force matrix elements are computationally
demanding, we wonder here about the importance of ac-
counting for the implicit dependence on Te of these quan-
tities. We shall refer to a calculation as self-consistent
when the KS spectrum is recalculated for each Te (by
increasing the number of bands with the temperature).
By contrast, we refer to a non self-consistent calculation
when the equilibrium KS spectrum at Te = Ti is used and
the electronic temperature is only varied in the popula-
tions (the number of bands is therefore fixed and given
in table (I)). Figure (11) shows both self-consistent and
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FIG. 11. (Color online) Effect of the self-consistency of the
calculation on the temperature relaxation rate for aluminum
(2.35 g/cm3, Ti =0.1 eV) (upper panel) and copper (lower
panel) at 8.02 g/cm3, Ti =0.2 eV.

non-self-consistent calculations of the electron-ion cou-
pling constant Gie(Te, Ti) for aluminum at liquid density
ρ = 2.35 g/cm3 with 0.1 ≤ Te ≤ 5 eV and Ti = 0.1 eV
(upper panel), and for copper at liquid density ρ = 8.02
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g/cm3 with 0.2 ≤ Te ≤ 2 eV and Ti = 0.2 eV. For
aluminum, the non-self-consistent calculations start to
significantly differ from the self-consistent ones beyond
Te = 10Ti. In copper, the calculations differ at a lower
temperature Te ≈ 2Ti but the difference remains of the
same magnitude up to Te = 10Ti, the non-self-consistent
calculation being ∼ 6% lower between 0.6 and 2 eV.
These findings can be understood from the dependence
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FIG. 12. (Color online) Density of states, g(ε), for alu-
minum (2.35 g/cm3, Ti =0.1 eV) at different Te (upper panel)
and copper (lower panel) at 8.02 g/cm3, Ti =0.2 eV. The
density of states without Te label are obtained with elec-
tronic temperatures in between the two extreme ones, for
aluminum Te = 0.1, 0.5, 1.0, 2.0, 5.0 eV and for copper Te =
0.1, 0.5, 1.0, 1.5, 2.0 eV.

of the electronic density of states g(ε) from Te shown in
Fig. (12). In the case of aluminum, since g(ε) increases
in magnitude with the energy of the state, a non-self-
consistent calculation using the density of states obtained
at Te = 0.1 eV at higher electronic temperatures will be-
come a bad approximation quite soon given that more
and more states contributing to the sum (31) will be ne-
glected. In the case of copper instead the number of
states increases only slightly with the energy and as a
consequence the non-self-consistent calculation does not
affect so drastically the final Gie value as in the case of
aluminum.

C. The importance of screening

In Sec. II, we pointed out the importance of accounting
for the shielding of the electron-ion interaction due to the
other electrons. Moreover, we suggested to approximate

the inhomogeneous dielectric functions ε
[R]
L,R with that

of the homogeneous electron gas εeg. In this section,
we illustrate quantitatively the effect of the screening by
using different models for the dielectric function εeg in
Eq.(12).

The left panel of Fig. (13) shows the matrix elements
fαnm(k) as a function of the energy differences |εn(k) −
εm(k)| for liquid aluminum at ρ = 2.7 g/cm3 and T =
0.1 eV (for the parameters used in the calculation see
table (I)), as obtained for three popular models of the
static dielectric function εeg, including: (1) εeg(k) ' 1,
i.e. the screening effect of valence electrons is neglected
and, as discussed in Sec. II B, this choice corresponds
to the popular Kubo-Greenwood approximation; (2) the
RPA approximation

εeg(k) ' εRPA(k) = 1− 4πe2

k2
χ0(k, ω = 0) , (36)

where χ0 is the free electron (Lindhard) density-density
response function at finite temperature; (3) the Thomas-
Fermi (TF) approximation

εeg(k) ' εTF(k) = 1− 4πe2

k2
χ0(k = 0, ω = 0)

= 1 +
k2
TF

k2
, (37)

where 1/kTF is the (finite-temperature) Thomas-Fermi
screening length, corresponding to the asymptotic limit
of εeg as k goes to zero. The effect of electron screening
is evident. The unscreened matrix elements are signifi-
cantly larger than the screened ones, by a factor 5 at the
lowest energy excitations, which are incidentally the most
important ones since low energy transitions dominate the
sum (31). The Thomas-Fermi and RPA screening give
similar results for the matrix elements, supporting the
idea that the chief effect of the valence electrons is to
shield the Coulomb tail of the bare electron-ion interac-
tions.

The effect on the corresponding correlation functions
and their cumulative sums is shown in the right panel
of Fig. 13. The magnitude of the unscreened correlation
function and of the corresponding friction is an order of
magnitude larger than the others; in particular we find
Γno screen = 25.9 , ΓRPA = 1.93 and ΓTF = 1.69 ×10−4

fs−1. It can be shown that the unscreened calculation
actually diverges but at a slow, logarithmic rate; the fini-
tude of our calculation results from the numerical trunca-
tion of the KS spectrum at large energies. The screened
calculations differ instead by only 12%, a difference that
we found for all the elements and conditions that we have
considered.

In order to try to quantify the error made in replacing

ε
[R]
L,R by εeg, we appeal to the following exact sum rule

satisfied by the set of friction coefficients γ̃
[R]
ax,by

Ni∑
a,b=1

γ̃
[R]
ax,by = 0 , (38)

for all directions x and y. As discussed in Ref. [2], this
sum rule is a direct consequence of the following relation
between the matrix elements of the screened forces and
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FIG. 13. (Color online) Left: Dependence of the force matrix elements fax
nm(k) from the dielectric function. The red curve

employs the Lindhard RPA screening, the blue curve uses the Thomas-Fermi screened interaction and the black curve neglects
screening effects.
Right: Effect of the dielectric function on g(t) (upper panel) and its cumulative sum (lower panel). The colors correspond to
the same type of screening shown in the left figure.

of the single-particle momentum p̂,∑
a

fax,L
nm = 〈n|∇xVKS |m〉 =

1

i~
〈n|p̂x|m〉(εn − εm)

(39a)∑
a

fax,R
nm = 〈n|∇xVKS |m〉 =

1

i~
〈n|p̂x|m〉(εn − εm)

(39b)

These relations are themselves a consequence of the
properties (17) discussed in Sec. II C.

When approximating the inhomogeneous dielectric

functions ε
[R]
L,R with εRPA or εTF in the expression of the

screened forces, the properties (39) and, in turn, the sum
rules (38) are not expected to hold perfectly. In order to
investigate the effect of these approximations on the sum
rule, we introduce the following quantity

G(t) =

~
3MNi

3∑
x=1

∑
n 6=m

∑
k∈IBZ

Wkpn(k)
[
1− pm(k)

]∣∣Fxnm(k)
∣∣2×

× eβe(εn(k)−εm(k)) − 1

εn(k)− εm(k)
cos
(εn(k)− εm(k)

~
t
)

(40)

defined such that its cumulative sum Σ(t) =
∫ t

0
dsG(s)

satisfies

lim
t→∞

Σ(t) =

Ni∑
a,b=1

3∑
x=1

γ̃ax,bx = 0 . (41)

In Eq. (40) we also introduced the total force matrix

elements Fxnm

Fxnm(k) =

Ni∑
a=1

fax
nm(k) = 〈Ψnk|

Ni∑
a=1

f̂ax,L(R)|Ψmk〉 . (42)

Figure (14) shows G(t) (middle panel) and Σ(t) (upper
panel) obtained by using the usual three different models
for the screening of the electron-ion interaction in the
case of liquid aluminum at 2.7 g/cm3 and T = 0.1 eV. We
first check numerically the validity of the sum rule (38),
the black lines show results obtained by using relation

(39), i.e. setting
∑Ni

a=1 f̂ax,L(R) = ∇rVKS in Eq. (42);
we denote by Gexact the resulting G. In practice, due
to the discrete character of the spectrum, the correlation
function and its sum do not vanish perfectly at late times.
Yet, the sum rule (38) is satisfied to very good accuracy:
the cumulative sum Σ(t) converges towards zero at large
times. We remark that the correlation time scale of G(t)
is ∼ 3− 4 fs and it is larger than that for g(t) discussed
earlier, which is ∼ 1 fs (e.g., see Fig. (4)). We believe that
this difference is indicative of the different physical nature
of these quantities: g(t) is related to energy exchange
while G(t) is related to momentum exchange. A detailed
study is beyond the scope of this work and we hope to
return to this effect in a future work.

Secondly, we consider the results obtained when using
either the RPA (red lines) or the Thomas-Fermi (blue

lines) dielectric functions to calculate f̂ax,L(R) in Eq.(42).
In both cases, the sum rule (38) is well satisfied, i.e. Σ(t)
tends toward zero a large times. Errors caused by the
approximation are clearly seen in the detailed temporal
variations of G(t), with the RPA case being closer to the
exact one. In fact, the differences between the curves are
less evident in the temporal behavior than in the initial
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FIG. 14. (Color online) Effect of the dielectric function
on the sum rule (38). The upper and middle panels show
G(t), Eq.(40), and the corresponding cumulative sums Σ(t) =∫ t

0
dsG(s) obtained by using

∑Ni
a=1 f̂ax,L(R) = ∇rVKS (black

lines), the RPA dielectric function (36) (red dashed line) and
the Thomas-Fermi approximation (37) (blue dotted line). In
the bottom panel, the RPA and Thomas-Fermi data shown
in the upper panel are re-scaled to match the initial value of
the ’exact’ case; the three curves are almost identical.

value G(t = 0). This is shown in the bottom panel of
Fig. (14) by defining the rescaled quantity

G(t) = G(t)
Gexact(t = 0)

G(t = 0)
, (43)

the rescaled G(t) computed by using different models of
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FIG. 15. (Color online) (top figure) Variation of the matrix
elements fax

nm(k) with the excitation energies |εn(k)− εm(k)|
for a randomly selected ion a and along the three spatial direc-
tions in liquid aluminum. For convenience, the figure shows
the absolute value of the matrix elements.
(bottom figure) Same as above for iron at melting tempera-
ture T = 1811 K and ρ = 7.874 gr/cm3 (see table (I) for the
parameters used in the calculation).

screening overlap nearly perfectly over the entire time
scale. This suggests that the time correlation function
could be renormalized by using an exact sum rule for
G(t = 0). By starting from Eq. (40) and after some
manipulation we can show that

Gexact(t = 0) =
~

3MNi

∫
Ω

dr ρe(r)∇2
rVKS(r), (44)

that used into Eq. (43) provides a more accurate rescaling
of G(t).
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D. Analysis of screened electron-force matrix
elements

In this section, we discuss the dependence of the force
matrix elements, fax

nm(k), Eq. (22) and (25), on the tran-
sition energies, |εn(k)−εm(k)|. Figure (15) shows fax

nm(k)
versus |εn(k)−εm(k)| for two distinct cases, namely solid
density aluminum at T = 1160.4 K (top panel) and solid
density iron at 1811 K (bootom panel). |fax

nm(k)| is com-
puted for a single atom a along the three different direc-
tions x, y, z.

In both cases, the force matrix elements are almost
identical in all the three directions, this isotropic na-
ture of the matrix elements suggests that the three x
directions in the sum (31) contribute equally to the final
correlation function ga(t). However, the dependence on
|εn(k)−εm(k)| is quite different in the two cases. For alu-
minum, the matrix elements appear to be approximately
constant up to a value of 13 eV in the energy excitations.
On the contrary, for iron, we note significant variations
with the transition energies. It is interesting to think
about these findings in the light of the reference model
due to Wang et al. [16] and popularized by Lin et al. [17]
for the temperature relxation rate in hot solids due to
electron-phonon scattering. As discussed in Ref. [2], this
simplified model also results from our theory (2), which
potentially extends the original model to liquid metals
and plasmas. As described in [17] and [2], in this simpli-
fied model, the detailed electron-phonon or electron-ion
matrix elements are factorized out of the sum of elec-
tronic transitions and are lumped together into a single
prefactor to be determined. Clearly, such a factorization
is justified for the aluminum system shown in Fig. (15)
as the low-energy matrix elements, which contribute the
most to Eq.(5), are nearly equal to one another. The suit-
ability of the approximation is much more questionable
in the case of iron.

E. Dependence on the exchange-correlation energy.

The exchange-correlation effects affect the friction co-
efficients γαβ in Eq.(4) in two main ways: through
the exchange-correlation potential vxc in the KS Hamil-
tonian, which affect the spectrum, and through the
exchange-correlation kernel fxc, which enters in both the
dielectric functions εL,R and the correction term δγ̃αβ . As
discussed in Sec. II B, this work neglects the effects of fxc.
In this section, we only consider the dependence of the
temperature relaxation rate on the exchange-correlation
energy potential vxc. For illustration, Fig. (16) shows
the correlation function g(t) and its cumulative sum∫ t

0
ds g(s) obtained with two standard approximations for

vxc[ρe], namely the local-density approximation (LDA)
of Perdew and Zunger [18], and the generalized-gradient
approximation (GGA) approximation of Perdew, Burke
and Ernzerhof [19], for liquid aluminum at melt den-
sity 2.35 g/cm3 and T = 0.1 eV. Both functionals
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FIG. 16. (Color online) Correlation function g(t) (upper
panel) and its cumulative sum (lower panel) for Aluminum
(2.35 g/cm3, T =0.1 eV), obtained using two popular approx-
imations for the exchange-correlation functional (see table (I)
for the calculation’s details).
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FIG. 17. (Color online) Comparison between the density
of states, g(ε), obtained from the same two calculations of
Fig. (16).

are strictly speaking zero-temperature approximations,
which is reasonable here since Te/TF ∼ 0.01. The
exchange-correlation functional has a negligible effect, a
result which we found also for the other calculations we
have done so far. This is supported by the density of
states obtained from the two calculations. As shown in
Fig. (17), both exchange-correlation functionals gener-
ate essentially the same g(ε). Overall, in all our present
calculations, the frictions coefficients, and more precisely
the force matrix elements, are generally more sensitive
on the choice of the screening model than on vxc.
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V. CONCLUSIONS

In this paper we have shown how to compute the tem-
perature relaxation rate Gei(Te, Ti) and frictions coeffi-
cients of plasmas and liquid metals by means of QMD
sumulations. Specific calculations of Gei(Te, Ti) for dif-
ferent materials were presented in a previous paper [1]
and others will be published elsewhere in the future.

The practical calculation presents difficulties that are
unlike those encountered with the Kubo formulas for the
electrical and thermal conductivities. In particular, the
widely used Kubo-Greenwood approximation is inappli-
cable here and the screening of electron-ion interactions
by all electrons must be carefully taken into account. We
have discussed the approximations we applied to deal
with these complications in pseudopotential calculations
based on either local or projected-augmented wave po-
tentials. We have presented a detailed parametric and
convergence study by analyzing the dependence of our
calculations from the system’s size, the number of bands
and k-points, and the physical approximations for the
dielectric function and the exchange-correlation energy.
Future useful extensions of this work should include a
better description of screening effects, e.g., using a self-
consistent calculation of the left and right dielectric func-
tions, and the inclusion of dynamical many-body corre-
lation effects modeled by the exchange-correlation kernel
fxc.
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Appendix A: Lehmann representation for the
Kohn-Sham friction tensor, Eq. (21)

The Eq. (5) in presence of periodic boundary condi-
tions may be straightforwardly rewritten as

γ̃
[R]
αβ = − π~

MNk

∑
n6=m

∑
k,k′∈BZ

pn(k)− pm(k′)

εn(k)− εm(k′)
fα,Lnk,mk′×

× fβ,Rmk′,nkδ(εn(k)− εm(k′)), (A1)

For both ECE and PAW pseudopotentials, the force ma-
trix elements satisfies (see next appendix)

f
α,L(R)
nk,mk′ ' δk,k′f

α
nm(k), (A2)

where we neglected the effect of the inhomogeneous ionic
background on the dielectric function, leading to

γ̃
[R]
αβ = −π~

M

∑
n 6=m

∑
k∈IBZ

Wk
pn(k)− pm(k)

εn(k)− εm(k)
fαnm(k)fβmn(k)

× δ(εn(k)− εm(k)), (A3)

where the sum is done only over the k-points of the ir-
reducible Brillouin zone weighted with the factor Wk.
From the previous expression we may reduce the friction
tensor to three different types of contributions

γ̃
[R]
αβ = γ̃

v→v[R]
αβ + γ̃

c→v[R]
αβ + γ̃

c→c[R]
αβ , (A4)

these correspond to electronic transitions between respec-
tively valence electrons only, valence and core electrons
and only core electrons. In particular the last term,

γ̃
c→c[R]
αβ , is exactly zero given that core states are always

fully occupied (pn(k) = pm(k)). The term γ̃
c→v[R]
αβ can

be neglected by assuming that the electron-ion scatter-
ing potential is weak enough to do not induce transitions
between core and valence states. We are then left with
the first term and the following final expression for the
friction tensor

γ̃
[R]
αβ = −π~

M

val∑
n 6=m

∑
k∈IBZ

Wk
pn(k)− pm(k)

εn(k)− εm(k)
fαnm(k)fβmn(k)

× δ(εn(k)− εm(k)), (A5)

that gives Eq. (21).

Appendix B: Proof of Eq. (22) for the force matrix
elements

Under the assumption of weak inhomogeneity of the
ionic background we can write the following expression

f
α,L(R)
nk,mk′ ' f

α
nk,mk′ = 〈Ψ̃nk|f̂ eg

α |Ψ̃mk′〉

=

∫
V

dr Ψ̃∗nk(r)f eg
α (r)Ψ̃mk′(r), (B1)

where Ψ̃nk(r) is the KS wave function and V = NkΩ.

fαnk,mk′ =
1

V

∫
V

dr e−i(k−k
′)·ru∗nk(r)f eg

α (r)umk′(r) .

(B2)
The term f(r) = u∗nk(r)f eg

α (r)umk′(r), that has the same
periodicity of the Bravais lattice, f(r+nxax) = f(r), can
be expanded in Fourier series over the reciprocal lattice
vectors

f(r) =
1

Ω

∑
G

f̃(G)eiG·r, (B3)

where {G} defines a set of reciprocal space vectors, i.e.
G =

∑
xmxbx, for the periodic Bravais lattice of primi-

tive vectors {ax}. By using this expansion into (B2) we
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obtain

fαnk,mk′ =
1

Ω

∑
G

f̃(G) · 1

V

∫
V

dr e−i(k−k
′−G)·r

= δk,k′ ·
1

Ω

∫
Ω

dru∗nk(r)f eg
α (r)umk′(r)

= δk,k′f
α
nm(k), (B4)

where we have used the following result

1

V

∫
V

dre−i(k−k
′−G)·r =

3∏
x=1

∫ L

0

dy

L
e−

2πi
L (nx−n′x−Nxmx)y

=
V

(2π)3

3∏
x=1

δnx,n′x+Nxmx

= δk,k′δG,0. (B5)

Nx was defined in Sec. (II D) as the number of unit cells
along the x direction of total length L = Nx|ax| and in
the last step we have used the fact that 0 ≤ nx, n′x < Nx.

Appendix C: Quick review of the PAW formalism

In Sec. (II C 2) we have briefly introduced the funda-
mental equations of the PAW method, here we look in
more detail at the PAW all-electron wave functions and
show how to build it. In (C 1) we explain how to compute
the screened electron-ion interaction in the core region
and in (C 2) we show how to generalize the calculation
of the force matrix elements to the PAW formalism by
proving Eq. (25).

The most general expression for the all-electron PAW
wave functions is

|Ψnk〉 = τ̂ |Ψ̃nk〉

= |Ψ̃nk〉+

Ni∑
a=1

∑
i

(|φai〉 − |φ̃ai〉) 〈p̃ai|Ψ̃nk〉 (C1)

where |Ψ̃nk〉 is the smooth function solution of the mod-

ified KS equations τ̂ †ĥKS τ̂ |Ψ̃nk〉 = εnkτ̂
†τ̂ |Ψ̃nk〉. The

second term on the right hand side corresponds instead
to an expansion over the atomic wave functions centered
around the different nuclei. It allows to correctly recon-
struct the nodal structure of the all-electron wave func-
tion |Ψnk〉 inside the core regions.

The symbol i is used here to label the set of quantum
numbers for the atomic functions |φai〉 and |φ̃ai〉. These
wave functions are the eigenstates respectively of the iso-
lated KS-DFT all-electron atom (Za below is the atomic
number of atom a and ρa

e(r) is the total electron density)[
− ~2

2m
∇2

r + va
KS(r)

]
φai(r) = εaiφai(r),

va
KS(r) = −Zae

2

r
+ vHxc[ρa

e](r), ρ
a
e(r) = ρa

v(r) + ρa
c(r),

(C2)

and of the isolated KS-DFT pseudo-atom that accounts
only for the valence electrons through an effective pseu-
dopotential va

ps(r) that coincides with the all-electron po-
tential outside the atomic core radius[

− ~2

2m
∇2

r + ṽa
KS(r)

]
φ̃ai(r) = εai φ̃ai(r),

ṽa
KS(r) = va

ps(r) + vHxc[ρa
v](r). (C3)

The KS potential of both systems is spherically symmet-
ric and therefore the principal quantum number n, the
orbital numbers l = 0, . . . , n− 1 and the magnetic num-
bers m = −l, . . . , l define a complete set i = {n, l,m}
of quantum numbers (the system is assumed to be spin
unpolarized, as always throughout the paper, therefore
the spin is neglected).

We may rewrite the mapping τ̂ between the all-
electron and the smooth wave functions as follows

τ̂ = 1̂ +

N∑
a=1

τ̂a, (C4)

this allows to simplify the notation since we can write
the action of the operators τ̂a on the smooth functions
as

τ̂a |Ψ̃nk〉 = |(φnk)a〉 − |(φ̃nk)a〉 , (C5)

here |(φnk)a〉 and |(φ̃nk)a〉 represent the expansion of the

smooth state, |Ψ̃nk〉, over, respectively, the all-electron
and the pseudo valence atomic functions localized around
the atom a

|(φnk)a〉 =
∑
i

|φai〉 〈p̃ai|Ψ̃nk〉 , (C6)

|(φ̃nk)a〉 =
∑
i

|φ̃ai〉 〈p̃ai|Ψ̃nk〉 . (C7)

The sum is performed over the set of quantum numbers
i. |p̃ai〉 are some fixed set of functions termed smooth
projector functions and satisfy the following duality con-
dition ∑

i

|φ̃ai〉 〈p̃ai| = 1̂, (C8)

inside each augmentation sphere implying also that

〈p̃ai|φ̃aj〉 = δi,j , for |r−Ra| < ra
c . (C9)

1. The screened electron-ion interaction V a
KS in the

core region

Here we want to explain how to compute the screened
electron-ion potential, V a

KS, appearing in Eq. (18) and
entering the expression (25) for the PAW force matrix el-
ements. We should notice that although the definition of
V a

KS introduced in Sec. II C 2 looks identical to the expres-
sion of va

KS from the previous section the two quantities
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should not be confused. While va
KS is the all-electron KS

potential of the isolated atom and ρa
e represents here the

electron density of the isolated atom, V a
KS is computed by

using the electron density of the full many atoms system
in the vicinity of atom a

V a
KS(r) = − Ze2

|r−Ra|
+ va

Hxc[ρe](r). (C10)

The first term on the right hand side of Eq. (C10) is the
all-electron Coulomb potential of atom a, the second one
is the Hartree plus exchange-correlation potential that
depends on the all-electron density around atom a, i.e.
ρe = ρv+ρa

c , where ρv is the valence density of the system
and ρa

c is the core electron density of atom a. In order
to compute this second term we need to make a couple
of assumptions 1) the electron density around each atom
may be considered approximately spherical; 2) the atom
becomes neutral at a certain distance ra

n smaller than the
average inter-atomic distance. At a distance r from the
atomic center Ra less or equal to the core radius ra

c , the
potential becomes

va
Hxc[ρe](r) ' vxc[ρv + ρa

c ](r)+

+ 4πe2

[ ∫ rac

0

dr′ r′2
ρa
c(r
′)

|r − r′|
+

∫ ran

0

dr′ r′2
ρv(r

′)

|r − r′|

]
.

(C11)

2. Calculation of the PAW force matrix elements
Eq. (25)

In this appendix we prove the expression (25) for the
PAW force matrix elements, fαnk,mk′ . We start by notic-

ing that the projectors |p̃ai〉 are non zero only inside the
augmentation sphere of the atom, while at distances from
the atomic center greater than the core radius ra

c pseudo
and all-electron atomic functions coincide, leading to

〈r|(φnk)a〉 = 〈r|(φ̃nk)a〉 , |r−Ra| > ra
c

a = 1, . . . , Ni (C12)

while inside each sphere we easily obtain

Ψnk(r) = 〈r|(φnk)a〉 , |r−Ra| ≤ ra
c

a = 1, . . . , Ni. (C13)

The previous relations are always satisfied given that we
have a complete basis of atomic functions allowing for
an accurate representation of Ψnk(r) inside the core re-
gions. In terms of these quantities the all-electron wave
functions may be rewritten as follows

|Ψnk〉 = |Ψ̃nk〉+

Ni∑
a=1

[
|(φnk)a〉 − |(φ̃nk)a〉

]
,

= |Ψ̃nk〉+

Ni∑
a=1

|(∆φnk)a〉 ,

by using the previous expressions the force matrix ele-
ments become (where we have omitted the L(R) labels)

fαnk,mk′ = 〈Ψ̃nk|f̂α|Ψ̃mk′〉+

Ni∑
a=1

〈(∆φnk)a|f̂α|Ψ̃mk′〉+

+

Ni∑
a=1

〈Ψ̃nk|f̂α|(∆φmk′)a〉+

Ni∑
a=1

〈(∆φnk)a|f̂α|(∆φmk′)a〉+

+
∑
a6=b

〈(∆φnk)a|f̂α|(∆φmk′)b〉

where the last term is exactly zero since the spheres do
not overlap and |(∆φnk)a〉 = 0 outside every atomic
sphere, after some rearrangements we arrive to

fαnk,mk′ = 〈Ψ̃nk|f̂α|Ψ̃mk′〉+

Ni∑
a=1

〈(∆φnk)a|f̂α|(φmk′)a〉+

+

Ni∑
a=1

〈(φ̃nk)a|f̂α|(∆φmk′)a〉

= 〈Ψ̃nk|f̂α|Ψ̃mk′〉+

Ni∑
a=1

∆fa,α
nk,mk′

with

∆fa,α
nk,mk′ = 〈(φnk)a|f̂α|(φmk′)a〉 − 〈(φ̃nk)a|f̂α|(φ̃mk′)a〉 ,

(C14)
in addition, by following an analogous procedure to that
outlined in (B) we obtain fαnk,mk′ = δk,k′f

α
nm(k). Fi-

nally, from the properties of the all-electron wave func-
tions (C12) and (C13) it is easy to show that the previous
expression is equivalent to Eq. (25).

Appendix D: Evaluation of the atomic sphere’s contribution to the force matrix elements in Eq. (25)

In this appendix we show how to compute the atomic sphere contribution to the force matrix elements in Eq. (25)

fa
ij =

∫
Ω

drΠin
a (r)φ∗ai(r)∇rV

a
KS(r)φaj(r), (D1)
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by integrating explicitly over the spatial projector Πin
a (r) we obtain

fa
ij =

∫
Sa
drφa

nlm(r)∗∇rV
a
KS(r)φa

n′l′m′(r) (D2)

where now the integral is computed over the atomic sphere of radius ra
c centered on atom a. Since both the wave

functions φa
nlm(r) and the potential V a

KS, as explained in C and C 1, are centered around atom a we can make a change
of variables r→ r′ = r + Ra and switch to spherical coordinates. By using for the potential gradient

∇r′V
a
KS(|r′ −Ra|) =

r′ −Ra

|r′ −Ra|
· d
dr
V a

KS(r) (D3)

where r = |r′ −Ra| the integral becomes

fa
ij =

∫
Sa
dr′ φa

nlm(r′ −Ra)∗
r′ −Ra

|r′ −Ra|
dV a

KS(r)

dr
φa
n′l′m′(r

′ −Ra)

=

∫
Sa
drRa

nl(r)
∗Ylm(n̂)∗

r

r

dV a
KS(r)

dr
Ra
n′l′(r)Yl′m′(n̂)

where we have rewritten the atomic functions in terms of the spherical harmonics φa
nlm(r′−Ra) = Ra

nl(r)Ylm(n̂). The
previous integral can be very naturally computed in spherical coordinates only one time for every atom a, direction
and atomic transition. We first consider the direction x

êx · fa
ij =

∫ rac

0

dr r2

∫ 1

−1

d cos θ

∫ 2π

0

dϕRa
nl(r)

∗Ylm(θ, ϕ)∗ sin θ cosϕ
dV a

KS(r)

dr
Ra
n′l′(r)Yl′m′(θ, ϕ)

= ClmCl′m′

∫ rac

0

dr r2Ra
nl(r)

∗ dV
a
KS(r)

dr
Ra
n′l′(r)

∫ 1

−1

d cos θ sin θPlm(cos θ)Pl′m′(cos θ)

∫ 2π

0

dϕ cosϕe−i(m−m
′)ϕ

(D4)

where in the last step we have rewritten the spherical harmonics in terms of Legendre polynomials Ylm(θ, ϕ) =
ClmPlm(cos θ)eimϕ. The integral over ϕ can be exactly computed reducing the expression to a simpler double integral

êx · fa
ij = πClmCl′m′(δm,m′+1 + δm,m′−1)

∫ rac

0

dr r2Ra
nl(r)

∗ dV
a
KS(r)

dr
Ra
n′l′(r)

∫ 1

−1

dx
√

1− x2Plm(x)Pl′m′(x). (D5)

Similarly along the y direction we find

êy · fa
ij =

∫ rac

0

dr r2

∫ 1

−1

d cos θ

∫ 2π

0

dϕRa
nl(r)

∗Ylm(θ, ϕ)∗ sin θ sinϕ
dV a

KS(r)

dr
Ra
n′l′(r)Yl′m′(θ, ϕ)

= ClmCl′m′

∫ rac

0

dr r2Ra
nl(r)

∗ dV
a
KS(r)

dr
Ra
n′l′(r)

∫ 1

−1

d cos θ sin θPlm(cos θ)Pl′m′(cos θ)

∫ 2π

0

dϕ sinϕe−i(m−m
′)ϕ

(D6)

leading to the final result

êy · fa
ij =

π

i
ClmCl′m′(δm,m′+1 − δm,m′−1)

∫ rac

0

dr r2Ra
nl(r)

∗ dV
a
KS(r)

dr
Ra
n′l′(r)

∫ 1

−1

dx
√

1− x2Plm(x)Pl′m′(x). (D7)

Along the z direction we have instead

êz · fa
ij =

∫ rac

0

dr r2

∫ 1

−1

d cos θ

∫ 2π

0

dϕRa
nl(r)

∗Ylm(θ, ϕ)∗ cos θ
dV a

KS(r)

dr
Ra
n′l′(r)Yl′m′(θ, ϕ)

= ClmCl′m′

∫ rac

0

dr r2Ra
nl(r)

∗ dV
a
KS(r)

dr
Ra
n′l′(r)

∫ 1

−1

d cos θ cos θPlm(cos θ)Pl′m′(cos θ)

∫ 2π

0

dϕ e−i(m−m
′)ϕ (D8)

that by integrating over ϕ gives

êz · fa
ij = 2πClmCl′m′δm,m′

∫ rac

0

dr r2Ra
nl(r)

∗ dV
a
KS(r)

dr
Ra
n′l′(r)

∫ 1

−1

dxxPlm(x)Pl′m′(x). (D9)
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In conclusion the entire calculation reduces to the evaluation of only three different types of one dimensional integrals,

namely
∫ rac

0
dr r2Ra

nl(r)
∗ dV a

KS(r)/dr Ra
n′l′(r), that needs to be computed numerically from the knowledge of the radial

all-electron wave functions Ra
nl(r) and of the gradient of the KS potential V a

KS(r), and
∫ 1

−1
dx
√

1− x2Plm(x)Pl′m′(x)

together with
∫ 1

−1
dxxPlm(x)Pl′m′(x) that can be instead computed analytically.
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