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Direct observation of a Rotating Detonation Engine combustion chamber has enabled the extrac-
tion of the kinematics of its detonation waves. These records exhibit a rich set of instabilities and
bifurcations arising from the interaction of coherent wave fronts and global gain dynamics. We de-
velop a model of the observed dynamics by recasting the Majda detonation analog as an autowave
process. The solution fronts become attractors of the engine; i.e., mode-locked rotating detona-
tion waves. We find that denotative energy release competes with dissipation and gain recovery
to produce the observed dynamics and a bifurcation structure common to other driven-dissipative
systems, such as mode-locked lasers.

I. INTRODUCTION

The Rotating Detonation Engine (RDE) is a thrust-
producing device in which self-sustained combustion-
driven shock waves, or detonations, travel azimuthally
in an annular combustion chamber. Pressure rises
through the detonation process, contrasting conventional
deflagration-based engines. Successful implementation of
so-called ‘pressure gain’ combustion implies mechanical
simplification of propulsion systems (for example, pump-
ing requirements for propellant can be reduced [1]) and
an increase of available work for a given propellant over
conventional engines [2], ultimately resulting in fuel sav-
ings. However, a diverse set of experimentally observed
instabilities and bifurcations are known to be ubiquitous
in RDEs [3–5], potentially compromising performance
and stable operation. In this article, we develop a mod-
eling framework that characterizes the underlying global
bifurcation structure of RDEs, showing that the nonlin-
ear dynamics are governed by the interaction physics of
global gain (fuel) depletion and recovery along with local
dominant balance physics characterized by the Burgers’
equation [6]. Our predictions capture the cascade of
bifurcations and flame-front solutions whose attracting
nature we term mode-locked rotating detonation waves
and which are observed experimentally within the RDE.
Further, the model shows that the underlying energy bal-
ance physics of the driven-dissipative RDE mimics those
of mode-locked lasers [7, 8], where global gain dynam-
ics produce a similar cascading bifurcation diagram of
mode-locked states [9].

Conventional RDEs use concentric cylinders to direct
the flow of propellant into a narrow annular gap (see
Fig. 1). Inside this gap, an igniter deposits concentrated
energy into the propellant mixture, creating an ignition
kernel that promotes the exothermal chemical reaction.
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FIG. 1. (Color online) Section view of the Rotating Detona-
tion Engine (RDE) used for this study. The engine geometry
is such that gaseous methane and oxygen is directed into a
narrow annular gap through a set of propellant injectors. A
spark plug ignites the mixture, which rapidly transitions to a
number of circumferentially traveling detonation waves.

By virtue of the narrow annular gap, the gradients in den-
sity and pressure caused by the heat release self-steepen,
eventually forming shocks strong enough to auto-ignite
the propellant. These combustion-driven shock waves,
now detonations traveling at speeds on the order of km/s,
continue to process propellant so long as there is suffi-
ciently fast refill and mixing of propellant within the pe-
riod of the traveling detonation wave to offset inhibiting
phenomena [10, 11]. In this manner, the steady operation
of the RDE is the point at which the rates of gain deple-
tion (combustion), gain recovery (injection and mixing),
and dissipation (exhaust and energy ejection) balance.
For these to exist in an unbalanced state induces a de-
gree of unsteadiness, typically manifested as a transition
to a different number of waves or modulation of wave
speed [3–5, 12]; i.e., the system bifurcates.

In laboratory experiments, typical observables are
wave count, speed, and direction as captured by pressure
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FIG. 2. (a) A high-speed camera frame from an experiment shows the location of rotating detonation waves in the annulus
of a RDE. Overlaid is a rendering of the propellant injection scheme. (b) Tracking the detonations through time yields a
spatial-temporal view of their kinematics. Line slopes correspond to speed. The vertical cut in (b) is synchronized with the
states of (a) and (c). (c) The phase difference Ψ for the waves seen in (a) is not π, though eventually the phase difference
approaches this stable value.

sensors or optical instruments. Common in experimen-
tal literature are a few themes: (i) the observed detona-
tion wave speeds are significantly less than the Chapman-
Jouget (CJ) velocity (the steady, shock-induced combus-
tion wave in which the combustion products are sonic
relative to the wave front) for the propellant mixture
[13, 14], (ii) the number of waves is tied to the mass
flux of propellant through the engine and the propel-
lant injection scheme [11, 15], and (iii) parasitic combus-
tion, meaning deflagration not associated with a travel-
ing wave, is ubiquitous [5, 12, 14]. We note that to fully
realize theoretical performance gains in RDEs, such non-
detonative heat release must be minimized. Additionally,
we acknowledge the prevalence of counter-propagating
waves in literature (see [5] and [14]). However, for the
present article we restrict our discussion to co-rotating
waves only as a means to simplify the modeling and anal-
ysis.

Computational fluid dynamic modeling of RDEs allows
for detailed investigations of the wave structure and en-
gine flowfield. Not only do these models agree well with
experiments, but they also produce many of the instabil-
ities and observed bifurcations of RDEs, including mode-
locked states [16–19]. However, these high-fidelity sim-
ulations are computationally expensive; i.e., to extract
limit cycle behavior of the wave dynamics and bifurcation
structures is not currently feasible. Additionally, they
fail to identify the leading order physics responsible for
producing the bifurcations. Our modeling efforts draw
on recent experimental observations of nonlinear dynam-
ics of rotating detonation waves to formulate a reduced-
order model that captures the bifurcations observed in
practice. We have identified the dominant energy bal-
ance physics responsible for producing the universally
observed physics of the mode-locked states and their in-

teractions in many RDEs. Indeed, the primary bifur-
cation parameter controlling the cascade of bifurcations
is easily identified as the propellant injection and mixing
rate. The energy balance physics is canonical in that it is
prevalent in a broader range of driven-dissipative physi-
cal systems, including mode-locked lasers [7–9, 20], Bose-
Einstein condensates (BECs) [21], and some biological
systems [22]. Such rich bifurcation structures pervade
spatio-temporal systems driven to instability [23].

In Section II, we describe the experimental appara-
tus and display recent observations of nonlinear dynam-
ics within the engine. Building on these observations, a
model system is proposed in Section III with a goal of
reproducing, qualitatively, the observed dynamics. Nu-
merical experiments of the proposed model are presented
in Section IV and follow with a discussion of the model
and observations in Section VI.

II. EXPERIMENTS

For the present study, an RDE (Fig. 1) and test
cell were designed and constructed to investigate rotat-
ing detonation wave dynamics. The engine used for this
study is unique in that the engine internal components
are modular. Engine cores can be swapped out to give
different annular gaps and combustor lengths. The injec-
tors can be similarly exchanged to investigate injector-
combustion coupling and mixing strategies. The test cell
is a backpressure controlled facility. Engine exhaust is
routed to an appropriately sized vacuum chamber with a
known backpressure. The test cell is optically accessible,
which allows for recording the complete kinematic history
of all detonation waves with high spatiotemporal resolu-
tion (Fig. 2a). Each experiment is a 0.5 second burn of a
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known proportion and feed rate of gaseous methane and
oxygen. In a successful experiment, a spark ignites the
mixture and produces an accelerating flame that tran-
sitions into a number of traveling detonation waves. A
complete description of the experimental apparatus and
procedures are detailed in [24].

A fundamental assumption of this study is that the
observed luminosity in these experiments correlates to
combustion progress, meaning brighter regions exhibit
higher heat release than darker regions. Supposing this to
be true, we examine example waveforms extracted from
the high-speed camera footage. For each experiment, the
azimuth-time history is extracted from high-speed video
footage through a pixel-intensity integration algorithm
[25]. The wave kinematics can be recorded in this man-
ner and displayed as a θ − t diagram, an example of
which is shown in Fig. 2b. Furthermore, these records
can be recast in the wave-attached frame, in which case
the phase differences between waves is an explicit out-
put (the tracked wave appears steady in this reference
frame). Figure 3a is the data in Fig. 2b shifted to the
wave reference frame. The corresponding velocity of the
tracked wave is displayed in Fig. 3c. For these figures, we
nondimensionalize time as τ = t (Dwave/L), where L is
the length of the periodic domain and Dwave is the speed
of the wave in its mode-locked state.

In Fig. 3a, an observed transition from one wave to
two waves during the startup transient is shown. In this
mode transition, after a point of criticality, a second det-
onation wave forms and begins to travel around the an-
nulus. However, the spacing between the two waves in
the annulus is asymmetric, causing an imbalance in the
amount of propellant consumed by each of the waves.
The wave with coordinate θ1 trailing the preceding wave
θ2 exists with a phase difference of Ψ = θ2 − θ1 < π
(see Fig. 2a). At that instant, assuming the propellant
refresh rate is approximately constant, the trailing wave
has less than half of available propellant in the cham-
ber for its consumption. The local balance of gain (heat
release), gain recovery (injection and mixing), and dissi-
pation (energy ejection processes) is not satisfied. Since
propellant heat release directly affects the speed of a det-
onation, the trailing wave begins to decelerate. The pre-
ceding wave, however, can process the remaining portion
of available propellant and accelerates through this ex-
cess. In this manner, these two waves behave dispersively,
where they seek a stable state with maximum and sym-
metric phase differences. For the single wave portion in
Fig. 3a, the quasi-steady wave has a velocity 20% to 30%
below the Chapman-Jouget velocity for the propellant
mixture. This metric is a direct observable of the energy
necessary to sustain the detonation wave subject to dis-
sipation and gain recovery in the combustion chamber.
As the transition to two waves occurs and the dynamics
settle to a steady state, the wave speed reduces to about
90% of the single wave speed.

The opposite scenario occurs upon ramp-down of pro-
pellant feed at the end of each experiment. Figure 4a
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FIG. 3. Representative wave nucleation process in a startup
transient in an experiment (a) and in a simulation of the pro-
posed model (b) displayed as pseudocolor plots of amplitude
(arb. units). As seen in the wave reference frame of (a) and
(b), the oscillatory phase difference between the two waves
immediately after nucleation decays through time as the two
waves become mode-locked. (b) corresponds to s = 3.5. The
instantaneous speeds of the waves along Ψ = 0 in (a) and (b)
are given in (c).

exemplifies a ramp-down transition of 2 to 1 wave over
the span of about 10 ms. The two waves compete for the
increasingly scarce propellant, as opposed to the case of
excessive propellant exhibited in Fig. 3a. Because of an
initial perturbation in phase difference, the waves begin
to exchange strength (speed and amplitude) in a regular
fashion producing the exponential instability growth. As
the phase difference oscillations grow, a catastrophic in-
teraction between the waves occurs, resulting in the over-
running of the weaker wave by the stronger wave during
one of the large-amplitude oscillations. After the bifur-
cation, the velocity of the remaining wave is about 10%
higher than that of the wave prior to the instability.

Wave instabilities that do not lead to a change in the
number of waves are common in the tested set of hard-
ware. Fig. 5 exhibits a periodic wave velocity and am-
plitude observed in an experiment with three co-rotating
waves. This is a clear modulational instability as spectral
sidebands accompany the carrier frequency correspond-
ing the the mean traveling wave velocity in the combus-
tion chamber. This mode of operation is stable in the
sense that it does not lead to a bifurcation of number of
waves unless the flow condition is perturbed significantly.

Pulsating modes of operation have also been observed
in some experiments with very large injector areas (rel-
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FIG. 4. Representative destruction of a wave in an experiment
(a) and in a simulation of the model (b) shown in the wave-
attached reference frame as pseudocolor plots of amplitude
(arb. units). Oscillations in Ψ grow exponentially until one
wave overruns the other. For a given injection function β and
loss ε, the oscillation period and phase difference growth rate
are parameterized by the change in s and up. (b) corresponds
to s = 2 with a −20% change in s applied to the mode-locked
state. The instantaneous speeds of the waves along Ψ = 0 in
(a) and (b) are given in (c).

ative to the area of the annular combustion chamber).
This mode of operation is characterized by a binary
‘on/off’ behavior of the injectors and subsequently mix-
ing and combustion. The oscillatory plane waves from
an example pulsating mode is given in Fig. 6.

III. A QUALITATIVE MODEL

We propose a model that captures the dominant
physics involved in the processes of wave formation,
mode-locking, and mode bifurcations for further study
of these phenomena. The detonation analogs of Majda
[6], Fickett [26], Rosales [27], and Faria and Kasimov
[28] have enabled the rigorous mathematical description
of detonation stability [29] and detonation dynamics in
one (limit cycles and chaos) and two dimensions (cells
and pattern formation). These analyses typically occur
in the Lagrangian, shock-attached framework under as-
sumptions of complete combustion. We use the formu-
lation of Majda’s analog as a starting point as it suffi-
ciently captures the dominant shock-chemistry interplay
found in detonation waves. Specifically, we aim to re-
cast Majda’s analog in terms of autowave-producing vari-
ables [30, 31]. Our model captures the dominant physics
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FIG. 5. Space-time history of mode-locked modulation of
wave speeds an experiment (a) and in a simulation (b) in
the wave reference frame. The instantaneous speeds of the
waves along Ψ = 0 in (a) and (b) are shown in (c). The
accompanying spectra show clear sidebands symmetric about
the carrier frequency. The frequency shown in the spectra is
scaled by the average transit time of the mode-locked wave,
L/Dwave. The abscissa magnitude corresponds to a count of
the waves in the domain. As shown, the dominant frequency
is three waves with sidebands near two and four waves.

of gain depletion, gain recovery, and dissipation whose
structure is given by:

∂η

∂t
+ η

∂η

∂x
= (1− λ)ω (η) q0 + εξ (η) (1a)

∂λ

∂t
= (1− λ)ω (η)− β (η, ηp, s)λ. (1b)

In keeping with the convention of the field of detonation
analogs, η(x, t) is an intensive property of the working
fluid (here taken to be specific internal energy - see [6]
and [32]) and λ is a combustion progress variable (λ = 0
is unburnt and λ = 1 is complete combustion). Gain
is modeled with a heat release function, ω (η) with heat
release q0 as a proportionality constant. Losses are mod-
eled with a generic loss function εξ (η) where ε is a loss
magnitude constant. Lastly, the gain recovery is dictated
by the injection model β (η, ηp, s), where ηp and s are in-
jection parameters. The domain is restricted to a 1-D
periodic line in the Eulerian reference frame. A control
volume-based derivation of the model system is provided
in Appendix A.

The exact functional forms of the gain depletion, gain
recovery, and loss terms are not critical to produce mode-
locked rotating detonation waves. However, the inclusion
of each of these terms in the model system is critical - to
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FIG. 6. Space-time history of plane wave pulsation mode of
operation in an experiment (a,b) and in a simulation (c,d).
Simulation parameters are those listed in Table I with q0 = 6
and ε = 1.0. The deactivation and reactivation of the injec-
tors gives rise to a resonance between the combustion and
propellant injection.

omit any one will destroy the balance required to provide
the necessary properties and dynamics relevant to RDEs.
In the opinion of the authors, presented herein are the
simplest viable functional forms to provide the dynamics
observed in real engines. These terms undoubtedly re-
quire modifications and/or parameter changes to mimic
a specific set of hardware, but the underlying physical
principles modeled by these terms are hypothesized to
persist among all RDEs.

Gain Depletion

The heat release function ω(η) is dictated by a sim-
plified version of Arrhenius kinetics with a explicitly de-
fined ‘ignition energy’ ηc, activation energy α, and pre-
exponential factor k:

ω (η) = ke(
η−ηc
α ). (2)

For a steadily traveling detonation wave, the expec-
tation is that this gain term dominates the dynamics,
providing a rapid release of energy into the domain sat-
urable only by exhaustion of fuel or another nonlinear
effect (such as a nonlinear loss term).

Losses

The loss of energy in the domain is taken to be a
generic restoring force to a natural state by thermal con-
duction or energy advection processes. Assuming the
working fluid has constant specific heat at constant vol-
ume (cv), one can relate states of internal energy (η) to
temperature (T ) by η2 − η1 = cv (T2 − T1). Therefore,
we model heat conduction by:

εξ (η, η0) = ε (η0 − η) , (3)

where the proportionality constant ε assumes responsi-
bility for the specific heat of the fluid and heat transfer
coefficient and η0 is the ambient state of the system.

Advection of energy away from the domain is modeled
by an imposed axial pressure gradient that ejects flow
from the combustor (see Appendix B) whose form is given
by:

εξ (η) = −εη2. (4)

These loss functions are generic in that the relative sig-
nificance of losses compared to gain can be modified by
the proportionality constant ε. In this paper, we explore
both linear (heat conduction) and quadratic (energy ad-
vection) losses independently. For simplicity, we take
η0 = 0 such that the loss terms become −εη or −εη2

in the linear and quadratic loss cases, respectively.

Gain Recovery

The gain recovery term β (η, ηp, s) works against gain
depletion to ‘refill’ the domain towards a λ = 0 state. In
gaseous injection, injectors are typically ‘choked’ orifices,
meaning that perturbations in the combustor cannot in-
fluence the injection process as no characteristics can
travel upstream past the choke point. However, in the
presence of large-amplitude pressure oscillations (such as
those present in detonation engines), the peak pressures
may be comparable to those of the propellant plenums.
This implies a loss of the sonic condition of the injectors.
Should this occur, the state of the combustor becomes
coupled to the injection scheme and can lead to unsteady
behavior. In RDEs, the pressures generated by the det-
onation waves can be an order of magnitude larger than
the propellant feed pressures. The injectors are period-
ically blocked (cutoff of injection) and backflow may be
induced into the plenum chambers, further disrupting the
injection process. To include these phenomena into the
model, we use an activation function-based injector term
that responds to the periodic forcing by the rotating det-
onation waves. The proposed activation function is given
by:

β (η, s) =
s

1 + er(η−ηp)
, (5)
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FIG. 7. The influence of the state of the domain, η, on
the gain recovery function β following the functional form
of Eq. (5). The solid line is the activation function used for
simulations in Section IV.

TABLE I. Simulation Parameters
L q0 α ηc η0 ηp k ε r DCJ

2π 1.0 0.3 1.1 0 0.5 1 0.11 5 2

where s is a parameter analogous to injection area, ηp
is the injector ‘plenum pressure’, and r is a parameter
adjusting the ‘steepness’ of the activation function. In-
creasing injection area (s), plenum pressure (ηp), or both
increases the mass flux into the engine. However, the
dynamic response to these increases differs significantly.
In the case of a high plenum pressure (a ‘stiff’ injector),
the influence of the detonation pressure becomes insignif-
icant and the injector can deliver a consistent supply of
propellant. In the case of a large injection area (holding
the plenum pressure constant), the injectors are suscep-
tible to large fluctuations of mass flux in response to this
periodic forcing. Example activation function-based in-
jector models are shown in Fig. 7. Mixing is assumed to
be exponential with time - in the absence of combustion,
λ asymptotically approaches 0.

IV. NUMERICAL EXPERIMENTS

Numerical simulations are performed with the PyClaw
open source finite volume software [33] on a converged
grid. The parameters used for the numerical simulations
in this article are given in Table I. Exceptions are noted
as appropriate.

Planar Fronts

We first examine the existence of planar solutions to
the model system, including limit cycle behavior. The
initial value problem was solved with initial condition
η(x, 0) = 1 and λ(x, 0) = 0.75. A plane wave oscillates
about the point in phase space where gain depletion and
gain recovery match (βλ = (1 − λ)ω(η)) subject to the
balance of energy input and energy rejection and dissipa-

tion (εξ = (1− λ)ω(η)q0). Low-energy oscillations decay
to a planar deflagration front without oscillations. Pul-
sating fronts, such as those seen in recent experiments,
are characterized by periodic ‘activation’ and ‘deacti-
vation’ of the injectors - first resonating with the heat
release, and subsequently saturated by the loss mecha-
nisms. An example of a plane wave pulsating front can
be seen in Figure 6d for a single location in the annu-
lus through time. The corresponding space-time history
for the pulsating mode of operation is given in Figure 6c.
Pulsating plane wave solutions of the full model are stable
for planar initial conditions, but are unstable to pertur-
bations as they grow into traveling detonation waves.

Traveling Waves

For traveling wave simulations, the initial value prob-
lem with initial condition η(x, 0) = (3/2)sech2 (x− xo)
and λ(x, 0) = 0 was solved under varying refill (s, hold-
ing ηp constant) conditions and with linear and nonlinear
loss terms.

As in [6], we find the analogous CJ velocity of the
reduced system (the inviscid, steady wave in which all
energy has been released to the wave in a infinitesimally
thin reaction zone). This steady wave speed is defined as
the minimum speed that fulfills the Rankine-Hugoniot
conditions for the prescribed heat release. In the ab-
sence of losses, this minimum speed (CJ velocity, DCJ)

is DCJ = (η1 + q0) +
√
q0 (q0 + 2η1), where η1 is the up-

stream state of a steady, shock-attached framework of
the Majda Model. In the case of η1 = 0, the speed of the
CJ wave becomes DCJ = 2q0. This speed is the metric
upon which the traveling waves in the proposed model
are benchmarked.

The evolution of a typical simulation is given in Fig.
8. Because the initial sech-pulse is well above ηc, the
medium locally and rapidly releases heat. The wave
steepens and forms a detonation. This initial pulse trav-
els at the CJ speed until it reaches its tail, at which point
the wave begins to rapidly dissipate and decelerate: the
limited amount of gain recovery cannot continue to sus-
tain the wave at DCJ = 2q0. Additionally, the rapid
heat release (compared to the time scale of the dissipa-
tion of energy) of the initial CJ wave acts to raise the
average η in the domain substantially above the ambi-
ent value η0 and ignition value ηc. In this manner, the
effective activation energy of the active medium is low-
ered and parasitic deflagration, or slow-scale heat release
not associated with the traveling waves, is promoted in
the entirety of the domain. Because the transit time
of the initial traveling wave has been increased through
dissipation, the parasitic deflagration has ample time to
complete the deflagration-to-detonation (DDT) process
and form multiple, lower amplitude detonation waves.

To induce a mode transition from an already mode-
locked state, a step change in s is applied to the steady
state, inducing a bifurcation. An example of such a tran-
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FIG. 8. Nucleation and mode locking of detonations from a single pulse initial condition (s = 3.5). Vertical lines in the θ − t
diagram correspond to simulation snapshots shown. The initial sech-pulse rapidly transitions to a CJ detonation. In regions
where η is low, the injectors behave steadily. However, as the wave reaches its tail, η is everywhere elevated and the injection
is severely curtailed. A second wave forms from the self-steepening of parasitic deflagration. After wave nucleation, the two
waves behave dispersively and their phase differences approach π.

sition is shown in Fig. 4b, where two initially mode-
locked rotating detonation waves become unstable and
destructively bifurcate. Low-amplitude phase difference
oscillations grow exponentially, much like the experimen-
tal observations in Fig. 4a. During the period of oscilla-
tions, the two waves exchange strength (amplitude) and
speed. For a given injection function β and loss ε, the
instability growth rate and oscillation period is parame-
terized by the severity of the applied step in s and ηp.

Upon nucleation of a new wave or destruction of an
existing wave, the collection of waves in the chamber
act dispersively, eventually forming a mode-locked state.
The spatial imbalance of gain and dissipation in the do-
main allows for the characteristic modulation of detona-
tion wave speed and amplitude. In transients of gain re-
covery, such as when the mass flow rate of an experiment
is not constant, seen is a local imbalance of the gain and
dissipation that either nucleates a new wave or ampli-
fies asymmetric perturbations between waves, eventually
causing a catastrophic destructive interaction.

Bifurcation diagrams showing the dependence of num-
ber of waves, wave speed, and wave amplitude on s and
the loss term is shown in Fig. 9 for the parameters of
Table I. As s is increased from zero, steady planar de-
flagration fronts form for small values. Once the value
of s can support a traveling wave, the waves follow the
staircase behavior in Fig. 9, where the wave speed in-
creases until another bifurcation occurs. These waves
nucleate from the parasitic deflagration through a DDT
process (as in Fig. 3b and 8). At each bifurcation to
an increased number of waves, there is a drop in wave

speed, though this drop in speed becomes less severe as
the number of waves increases. This phenomena is con-
sistent with the presented experiments as well as the ob-
servations of many in the literature [11]. In the limit as
s becomes large, the number of waves increases until the
wave fronts are low in amplitude (relative to the mean
state of the domain) and merge into a planar deflagration
front.

For sweeps of the bifurcation parameter s with an im-
posed quadratic loss, a series of period-halving bifurca-
tions increase order in the system (from chaotic propaga-
tion to constant wave phase differences) during the tran-
sition from one to two waves (Fig. 9d). In the regime
of chaotic propagation, there is aperiodic nucleation, de-
struction, and modulation of the waves. As the gain is
increased, the waves transition to periodic modulation
of wave speed and phase difference. This characterisitic
modulation is also seen in the transition from two to three
waves (as in Fig. 5). These intermediate modes are sta-
ble (persist for long durations). A significant degree of
hysteresis is also noted in the regions near mode changes.
Approaching criticality for any bifurcation-inducing pa-
rameter from above or below gives different behavior near
the bifurcation. For example, a portion of the chaotic re-
gion in Fig. 9 exhibits single-wave and dual wave chaotic
multistability depending on a single or double wave ini-
tial condition.
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FIG. 9. Number of waves and wave speed through a sweep
of the bifurcation parameter s for linear and nonlinear loss
terms. The final states have been approached from ‘above’;
i.e., via a relaxation of three waves to two or one waves. In
the transition from one to two waves for the nonlinear loss
case, a series of period-halving bifurcations increase order in
the system to eventually form two mode-locked waves with
zero oscillation in phase difference. The qualitatively similar
experimental bifurcation structure is published in Bykovskii
et al. [11]. The energy balance dynamics in laser cavities
produce a similar cascaded bifurcation structure, including
chaotic inter-pulse regimes [9, 34].

V. DISCUSSION

The model system presented in this paper qualitatively
reproduces the nonlinear dynamics of collections of rotat-
ing detonation waves observed in experiments. The pro-
posed system is an adaptation of the Majda detonation
analog to a periodic domain with gain depletion, gain
recovery, and generic restoring forces included in the sys-
tem. These terms sufficiently mimic real-engine processes
such as heat release, propellant injection, and rejection
of energy to an ambient condition. While we have not
explicitly captured all physical processes involved in real
engines, nor have we perfectly identified the functional
forms for the included terms, we do claim to have iden-
tified the dominant balance physics involved in the non-
linear dynamical behavior seen in real engines. These
phenomena include wave nucleation (Fig. 3), mode lock-
ing of multiple waves (Fig. 8), wave destruction (Fig.
4), wave modulation (Fig. 5), and pulsating plane waves
(Fig. 6).

In this section, we wish to emphasize several of the
key findings of this study. First is the establishment of
the communication pathways and dispersive properties
of the collection of waves within the domain. Second, we
establish the acceleration of chemical kinetics, subject
to weak loss terms, as the physical mechanism respon-
sible for parasitic deflagration and wave front bifurca-
tions. Lastly, we relate the rotating detonation wave phe-

nomenon to the more established field of mode-locking in
driven-dissipative systems.

A. Communication Pathways

In steady operation of an RDE and in the mode-locked
state of the proposed model system, a number of trav-
eling detonation waves co-exist in the periodic domain
with maximum possible phase differences between the
waves. Supposing these traveling waves to be detona-
tions, there is an implied lack of communication be-
tween the waves: detonations travel supersonically and,
if steady, in a condition where the combustion products
are sonic relative to the wave front. For the waves to
behave dispersively, as in Figs. 3 and 4 near the bifurca-
tion points, implies a significant communication pathway
or coupling mechanism in an apparent contradiction to
standard detonation theory. We note that the propel-
lant injection scheme is responsible for providing a consis-
tent combustible medium through which the detonations
can propagate. However, known is that detonations in-
duce blockages or backflow into propellant plenums. This
phenomena is captured in our proposed functional form
of β in Eq. (5), providing a necessary feedback mecha-
nism between the detonations and the injection scheme.
In this manner, the presence of all detonation waves is
impressed upon the dynamic response of the injection
scheme and long-range communication is established, al-
lowing for dispersive behavior of the detonation waves.
We therefore conclude that the coupling of the injectors
and the detonation waves is the physical mechanism that
drives the observed dynamics in both experiments and
in the proposed model, subject to the constraint of the
generic losses inside of the chamber. In the presence of
this non-locality, domain periodicity, and nonlinear en-
ergy balance, chaotic solutions have been found to exist,
as shown in Fig. 9.

B. Bifurcations and Arrhenius Kinetics

The presence of parasitic deflagration and weak restor-
ing forces are the key physical mechanisms identified in
the model system for inducing bifurcations. Within the
model system, the time scale for detonative energy re-
lease is significantly shorter than those of deflagration
and the generic losses. Therefore, at the onset of detona-
tion, there is local accumulation of energy that will take
a significant amount of time to dissipate to return the do-
main to a natural state (longer than the time-of-flight of
a traveling detonation wave). However, gain depletion is
governed by simplified Arrhenius kinetics Eq. (2), where
the base state of the domain, η, is now elevated because
of the slow-scale energy dissipation. In effect, the weak
restoring force acts to accelerate kinetics in the chamber.
Analogous physical mechanisms in real engines include
preheating of the propellant and insufficient expulsion of
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(a) (b)

(c) (d)

FIG. 10. Integrated pixel intensity displayed through θ for an
experiment through which a mode transition from one (a) to
two (b) waves occurs. A similar induced bifurcation in a simu-
lation is displayed in (c) and (d). Of note is (i) the decrease of
wave amplitude between one and two waves, (ii) the increase
in background luminosity (or, in the simulation, base state of
η), and (iii) the local increase of the magnitude of the state
preceding the waves. The wave speeds decrease about 10%
through the bifurcation, though this decrease is attributable
to both a reduction in wave amplitude and an increase in par-
asitic deflagration. Once the parasitic deflagration can self-
steepen to form a shock (see Fig. 8), a bifurcation of number
of waves occurs.

burnt propellant from the combustion chamber. These
phenomena lead to an increase of temperature in the do-
main and subsequently faster kinetics and an increased
susceptibility to parasitic deflagration.

To exemplify this phenomena, Fig. 10 includes snap-
shots in time of the waveforms within the domains of an
experiment and a simulation of the model system. Once
parasitic deflagration preceding the detonation can self-
steepen, a new wave is nucleated and begins the mode-
locking process. With an additional wave, the base state
of the domain is elevated further and parasitic deflagra-
tion is exacerbated. Although the wave speeds before
and after bifurcations in the model system are compa-
rable (on the order of 10% jumps in velocity), the de-
veloped speeds are the manifestation of both changes in
wave amplitudes and the mean combustor state. There-
fore, to increase wave speeds and proportion of heating
via detonation (compared to deflagration) is analogous
to increasing the strength of the restoring force. For
example, increasing the restoring force coefficient from
ε = 0.11 to 0.3 of the simulation in Fig. 8 results in a
single wave traveling at 117% of the CJ speed of the pro-

FIG. 11. Increasing the magnitude of the loss coefficient ε
from 0.11 to 0.3 increases the traveling wave speed to 117%
(up from 74%) of the CJ value referenced to an ambient state
of η0 = 0. The simulation is otherwise identical to that of
Fig. 8.

pellant (compared to two waves each traveling at 74% of
the CJ speed). The waveform is shown in Fig. 11. Note
that this is not an over-driven detonation but rather a
reference to the CJ wave with a non-elevated base state
of the domain (η0 = 0).

C. Mode-locking and Bifurcations in Laser Systems

The electromagnetic field in an optical fiber laser cav-
ity is described by the nonlinear Schrödinger equation
(NLS) - a slowly-varying envelope field approximation
that relates the dominant balance physics of wave dis-
persion and nonlinearity [8]. The NLS equation admits
soliton solutions, or waveforms where nonlinearity and
dispersive phenomena exactly balance, allowing for sta-
ble and steady wave propagation. In ring fiber lasers
(Fig. 12), these soliton pulses are subject to localized
gain and loss, as imposed on the system by an external
energy feed source (pump) and energy sink (an output
coupler and saturable absorber, for example).

In such laser configurations, the time scales of gain
absorption can be significantly different than that of
the gain recovery. The implication is that an intensity
discrimination exists: the pulses in the cavity experi-
ence pulse-shaping phase shifts biased towards higher-
intensity gain due to a saturable absorption mecha-
nism [8]. In this manner, should multiple pulses exist
in the system, the pulses establish a communication link
via the gain and loss mechanisms. The pulses become
mode-locked in that they experience phase shifts (once
per round trip through the ring fiber) that adjust the
inter-pulse spacing such that through time, the pulses
experience equivalent amounts of gain [35].
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FIG. 12. Ring fiber laser configuration with localized gain
(pump) and loss (output coupler where a fraction of the en-
ergy is directed out of the system). The collection of soliton
pulses within the cavity are formed by the intensity discrim-
ination (nonlinear loss) provided by the saturable absorber.
The solitons seek maximal and symmetric phase differences
between one another in an analogous process to that of rotat-
ing detonation waves.

Should the gain in the system be increased, the local
balance of nonlinearity and dispersion no longer holds
and the soliton is destabilized. Specifically, as a soli-
ton pulse is subject to increasing gain, its spectral width
grows beyond the gain bandwidth and becomes unsta-
ble. After a point of criticality, the pulse will destabilize
and split into two separate pulses of lower amplitude and
smaller bandwidth. These pulses become mode-locked
through the same phase-shifting processes.

The balance between gain, losses, dispersion, and non-
linearity in the fiber ring laser system dictate the quasi-
steady behavior of the pulses and the inter-pulse dy-
namics, including bifurcations. Each component of this
canonical balance physics has an analogous counterpart
in the RDE. The balance between dispersion and non-
linearity of the soliton pulse is analogous to the soli-
tary detonation wave - a stably traveling wave whose
shape is governed by heat release and injection dynam-
ics. Laser cavity losses via dissipation and output cou-
pling are analogous to ejection of energy through advec-
tion and/or heat conduction. The competition for gain
between pulses is also present in both the laser cavity [35]
and the RDE.

VI. CONCLUSION

The significance of the proposed model is twofold.
First, although we claim no engineering predictive ca-
pabilities, our model does relate the dominant physics
of gain depletion, gain recovery, and energy dissipation
of rotating detonation waves in a simple mathematical
framework that recovers, qualitatively, the nonlinear dy-
namics and bifurcation structure of these waves. Our
model is a significant departure from the state-of-the-
art computational fluid dynamic simulations of rotating

detonation engines. However, this departure allows for
a broad and comprehensive exploration of the physics
governing wave behavior in a context that is hardware
independent. Such an investigation is not currently fea-
sible with high-fidelity, hardware-specific computational
fluid dynamic simulations.

Second, the experimental observations and model ex-
tend the well-established physical phenomenon of mode-
locking to rotating detonation waves. The energy balance
in the RDE combustion chamber is generic, producing
mode-locked states that interact through the global gain
dynamics. These dominant balance physics are also ob-
served in well-established laser systems where an analy-
sis of the energy balance produces the global bifurcation
structures [9]. Possessing knowledge of the mode-locking
process and bifurcation structure of the waves is crucial
to the development and deployment of the rotating det-
onation engine. Because the amount of performance-
inhibiting parasitic deflagration is directly tied to the
mode of operation, effective performance metrics can be
defined (ratio of heating from detonation versus deflagra-
tion, for example) and optimized with respect to model
parameters. Furthermore, although the presented model
is primitive, stability criteria can be derived and actua-
tion and control schemes can be conceptualized to drive
the system to a stable, high-performing state.
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Appendix A: Control Volume Derivation

We follow a derivation process laid out by Mi and Hig-
gins [32] with the key difference being our inclusion of
a second dimension, as depicted in the control volume
in Fig. 13. The aim is to capture the dynamics of an
intensive property, here taken to be internal energy (de-
noted η), through time. The time rate of change of η
in the control volume is equal to the difference in fluxes
into and out of the volume. Additionally, a source term
mimicking chemical heat release releases energy within
the domain. Mathematically:

Ėcv = ∆x∆y
[
qλ̇

]
+∆y [f (ηx)− f (ηx+∆x)]

+∆x [f (ηy)− f (ηy+∆y)] , (A1)

where x and y are coordinates in the circumferential (pe-
riodic) and axial directions, respectively, q is the propel-
lant specific heat release, λ is a combustion progress vari-
able, and f(η) is the flux of η across a boundary. The
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Source: Qλ̇

∆x

∆y

f (ηy)

f (ηy+∆y)

f (ηx) f (ηx+∆x)

6

6
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FIG. 13. 2-D control volume for model derivation.

property η is defined to be the specific internal energy
E

∆x∆y .

Dividing by the dimensions of the control volume, one
arrives at:

η̇cv = qλ̇+
f (ηx)− f (ηx+∆x)

∆x
+
f (ηy)− f (ηy+∆y)

∆y
.

(A2)
As in Majda’s original paper [6] and in Mi and Higgins’
derivation [32], we choose the simplest flux to satisfy the
convexity required for the Lax entropy condition; i.e.,
that f(η) = 1

2η
2. Taking the limits as ∆x → 0 and

∆y → 0 and moving the spatial terms to the left hand
side yields:

∂η

∂t
+
∂ 1

2η
2

∂x
+
∂ 1

2η
2

∂y
= q

∂λ

∂t
. (A3)

Appendix B: Quadratic Losses

Because of the restriction of the domain to the periodic
1-D line in the x co-ordinate, the axial (y) gradient will be
modeled. The control volume is chosen to exist adjacent
or attached to the front endwall of a RDE. At this front
endwall, the flux of η entering the domain is assumed to
have a negligible effect on the evolution of energy in the
domain when compared to the circumferential flux terms
and source term. As such, f (ηy) = f (ηy=0) ≈ 0, so the
approximation of the gradient becomes:

∂ 1
2η

2

∂y
≈ lim

∆y→0

1
2η

2
y+∆y − 0

∆y
. (B1)

To simplify further, we assume that the detonation
waves in real engines are approximately planar and the
properties immediately before and after the passage of
a wave are approximately uniform. Therefore, we as-
sume that from the axial location y = 0 (attached to the
front end wall of the engine) to y = yc (where yc is the
height of the detonation wave) the properties are uni-
form. Exploiting this approximate uniformity, the limit
of Eq. (B1) is taken to ∆y → yc (instead of zero). Any
further reduction in the value of ∆y will, in effect, over-
predict the magnitude of the gradient. This simplified
limit now takes on a polynomial form:

lim
∆y→0

1
2η

2
y+∆y

∆y
≈ lim

∆y→yc

1
2η

2

∆y
= ε0

1

2
η2 = εη2, (B2)

where ε = 1
2ε0 are constants reflecting the severity of the

axial gradient of flux through the engine. Note that the
flux function f(η) = 1

2η
2 acts as an equation of state

relating the property η to another whose gradient drives
flow - this derived property 1

2η
2 is analogous to pressure

in the momentum equation for fluid flows. In real engines
whose axial flow is thermally choked (the Mach number
at the exit of the engine is 1), the axial pressure gradient
near the front wall of the RDE is proportional to pressure
at that location; i.e. ∂p

∂y |y=0 = cpy=0, where c is some

parameter intrinsic to the engine. Experimental evidence
supports this assumption - for this we refer to [36]. The
proposed functional form of the axial gradient in Eq. (B2)
enforces the same behavior.

The equation governing the evolution of energy in the
circumferential domain is now given as:

∂η

∂t
+ η

∂η

∂x
= q

∂λ

∂t
− εη2. (B3)

This is equivalent to the inviscid Burgers’ Equation with
a chemical reaction source term and loss of energy to an
ambient condition. The physical mechanism for the loss
is the lateral relief from lack of confinement on one side of
the traveling waves. Regularization with a viscous term

(ν ∂
2η
∂x2 ) completes the comparison to the classic Burgers’

equation, though for this study we exclude viscous effects.
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