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In this article we propose a minimal model for the cooking-induced deformation of spaghetti and
related food products. Our approach has parallels to the use of rod theories for the mechanics
of slender bodies undergoing growth and is inspired by a wealth of experimental data from the
food science literature. We use our model to investigate the cooking of a single strand of spaghetti
confined to a pot and reproduce a curious three-stage deformation sequence that arises in the cooking
process.

I. INTRODUCTION

The deformation of spaghetti is a topic that has re-
ceived a surprising amount of attention in the mechanics
community. Of particular interest has been the peculiar
inability of a dry spaghetti strand to be broken into just
two pieces, a puzzle that even caught the interest of the
physicist Richard Feynman. Noteworthy among several
academic works on the problem is an elegant explana-
tion by Audoly and Neukirch [1]. Mechanicians have also
found interest in the problem of slurping a cooked noodle
into one’s mouth [2] as well as spitting it out [3].

The present work studies the deformation of a single
strand of spaghetti as it cooks. Our efforts are inspired
by the following dinnertime experiment familiar to any
home cook: boil a pot of water and submerge a handful
of dry spaghetti in it. A given strand will initially lie
diagonally. After a short period of time it will sag under
the action of gravity as in Figure 1a. The strand will
thereafter begin to settle along the bottom of the pot as
it sags further, shown in Figure 1b. If sufficient out-of-
plane constraint is imposed to prevent the noodle from
tipping over, it will curl over onto itself as Figure 1c
depicts.

The natural question arises of what drives the
spaghetti to deform as they are cooked. A naive answer
would be that the cooking process weakens the noodles,
allowing them to deform to an increasing extent under
gravity. Such an explanation is certainly part of the
story, but does not account for a further experimental
observation: take a few spaghetti out of the pot dur-
ing the sagging stage and place them on a flat surface.
If they have not been cooked for too long and have re-
tained sufficient elasticity to overcome adhesion with the
surface, one can observe a curvature to the noodles that
persists even as they are left to dry. Thus the cooking
process endows the initially straight unstressed state of
the spaghetti with curvature, a behavior which any at-
tempt to model their deformation during cooking must
take into account.

∗ oreilly@berkeley.edu

II. BACKGROUND

Before we begin our modeling efforts, we review the
relevant scientific aspects of the production and cooking
of spaghetti. Like most pasta, the predominant ingredi-
ent of spaghetti is semolina, a flour made from durum
wheat (Triticum durum). In commercial pasta produc-
tion, semolina is mixed with water to form a paste that is
then extruded through a die to create the desired profile.
The final step of production is drying, which is consid-
ered very challenging due to induced residual stresses and
consequent cracking [5]. Many theoretical [6–8] and ex-
perimental [9–11] studies have explored methods of char-
acterizing and improving the drying process.

The familiar task of cooking dried spaghetti involves
little more than submerging the noodles in boiling wa-
ter and waiting for a specified period of time. A typi-
cal spaghetti strand reaches the temperature of the sur-
rounding water within a few seconds [12]. Water mi-
gration through the starch matrix occurs on a much
slower time scale and in a strongly non-linear fashion.
Numerous experiments indicate that radial water imbi-
bition in spaghetti is a non-Fickian process character-
ized by a sharp moving interface that separates a dry
core from a hydrated annular region [13–16]. Hydration
causes swelling in the annular zone which in turn in-
creases the observed diameter and length. It also enables
starch depletion, in which small quantities of the starch
component amylose leech into the surrounding water. As
time progresses, the outermost portions of the hydrated
zone where the water concentration is sufficiently high
undergo starch gelatinization1, a chemical process that
is responsible for the textural changes during cooking of
starchy foods and is accompanied by additional swelling
[17]. Spaghetti noodles are generally considered opti-
mally cooked when the penetrative water front reaches

1 If the temperature is not above approximately 50 ◦C, gelatiniza-
tion does not occur [17, 18], and the spaghetti do not “cook” in
the traditional sense, but they do still swell and soften consid-
erably. Nevertheless, the texture is qualitatively different from
that of spaghetti cooked in the usual way, as the reader can expe-
rience by attempting to enjoy a plate of spaghetti that has been
soaked for several hours in room-temperature water.
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(a) Stage 1: sagging (b) Stage 2: settling (c) Stage 3: curling

Figure 1: Three stages of the cooking process. The black bar in the upper left corner of each image is 1 cm in length.
These images of an experiment have been color-corrected for clarity. A video of the experiment is included in the

Supplemental Material for this paper [4].
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Figure 2: The effect of hydration on a typical spaghetti
strand’s cross section.

the central axis [19].
Our goal is to develop a tractable model that reliably

describes the purely macroscopic, mechanical behavior of
spaghetti as they are cooked. To this end, we hypothe-
size that the evolution of several mechanical properties
during cooking is largely independent of the noodles’ de-
formation. We therefore abstract away the numerous rel-
evant phenomena described above and partially depicted
in Figure 2 by considering the following to be their me-
chanical resultant:

1. the length is a prescribed function of time L(t);

2. the diameter is a prescribed function of time d(t);

3. the linear density is a prescribed function of time
ρ(t);

4. the elastic modulus is a prescribed function of time
E(t); and

5. the intrinsic curvature κ0 evolves in time accord-
ing to a flow rule depending on a time-dependent
parameter α(t) to be discussed shortly.

The food science literature contains an abundance of data
on the hydration of initially dry spaghetti under various
conditions. The Appendix contains details about how we
use these data to inform our prescriptions for Postulates
1 through 4 listed above. We must postpone discussion
of Postulate 5 until after the model has been introduced.

III. MODEL DEVELOPMENT

We first develop a framework for studying the cooking-
induced deformation of spaghetti under general planar
circumstances and then specialize by investigating the
three-stage deformation sequence shown in Figure 1. Our
approach is based on Euler’s elastica and draws inspira-
tion from work on the mechanics of growing rods [20–
22]. We note that an extension to spatial deformations
is readily achieved by introducing additional kinematic
quantities in the same vein as Kirchhoff’s rod theory and
its generalizations [22–24].

A. Preliminaries

Consider an inextensible elastic rod (modeling a
spaghetti noodle) described at time t by the current con-
figuration L, with t = 0 denoting the instant “cooking” of
the rod begins. By conceptually removing all of the forces
applied to L at time t, we generate the reference configu-
ration L0

2. Material points along L are marked with an
arc-length coordinate s ∈ (0, L(t)). As the length L(t) is
treated as being known a priori, it will be occasionally
convenient to mark material points instead by the di-
mensionless arc-length z := s/L(t) ∈ (0, 1). Introducing

2 Whereas works in the growth and plasticity literature draw a
distinction between the reference configuration and the so-called
growth or intermediate configuration obtained by unloading the
current configuration, such a formalism is not required here.
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the fixed Euclidean basis {E1,E2,E3}, the placement of
a material point corresponding to the dimensionless arc-
length z is

r = r̃(z, t) = x̃(z, t)E1 + ỹ(z, t)E2 . (1)

It is convenient to introduce an angle θ from the horizon-
tal at each point along the rod, i.e.

cos θ =
∂x

∂s
and sin θ =

∂y

∂s
. (2)

The signed curvature of L is then κ = ∂θ/∂s. An analo-
gous procedure defines the signed curvature of L0, known
as the intrinsic signed curvature and denoted by κ0.

Two types of internal forces act on the elastica: contact
forces n and contact moments m. The former have the
relevant components n1 = n·E1 and n2 = n·E2, while the
latter have just m = m ·E3. Applied forces and moments
act in a distributed sense on the rod, the only such force
in the present case being the gravitational force per unit
length −ρgE2.

The constitutive response of an inextensible elastica
depends on the flexural rigidity EI which can be regarded
either as a constitutive parameter in its own right, or, un-
der certain circumstances, the product of the material’s
elastic modulus E and the cross section’s second moment
of area I.

When the intrinsic curvature κ0 at a given time is
known and quasi-static conditions prevail, the following
equations fully determine the forces acting on, and the
current position of, the rod at said time [23]:

n′1 = 0 , (3a)

n′2 = ρg , (3b)

m′ = n1 sin θ − n2 cos θ , (3c)

θ′ = κ0 +
m

EI
, (3d)

x′ = cos θ , (3e)

y′ = sin θ , (3f)

where ()′ = ∂()/∂s. At any given point s = β on the rod
where θ′ is discontinuous or a singular force Fβ acts, the
following set of jump conditions must be satisfied [23]:

JnKβ + Fβ = 0 , (4a)

JmKβ = 0 . (4b)

The rod in question does not suffer kinks, so r′ and con-
sequently θ are continuous functions of s.

Equations (3a) and (3b) are the projections of the bal-
ance of linear momentum onto E1 and E2 respectively,
while Equation (3c) is the projection of the balance of
angular momentum onto E3. Equation (3d) is the con-
stitutive law for the moment m. Lastly, Equations (3e)
and (3f) are collectively the definition of the angle θ. Im-
portantly for numerical implementation, Equations (3)
are ordinary differential equations in the canonical form
u′ = f(u, s; t), the dependence on t being only parametric.

B. Flow Rule

It remains to be discussed how one would come to know
κ0 = κ̃0(z, t). Imagine that the rod is sitting at time
t + ∆t, just having updated its length to L(t + ∆t), its
diameter to d(t + ∆t), its density to ρ(t + ∆t), and its
elastic modulus to E(t+ ∆t) as dictated by the cooking
process. If m = m̃(z, t) is large enough in magnitude3 at
a given z, the hydrated annulus depicted in Figure 2 can
undergo a certain amount of flow, which causes the rod
to behave as a viscoelastic solid in bulk despite its purely
elastic inner core. We might reasonably assume that κ0
increments by an amount instantaneously proportional
to m = EI(κ− κ0), and hence to the strain κ− κ0, i.e.,

κ0(z, t+ ∆t) ≈ κ0(z, t) + α(t)∆t [κ(z, t)− κ0(z, t)] . (5)

In the limit ∆t→ 0 we find

κ̇0 = α(t)(κ− κ0) (6)

which was first introduced in the context of the growth
of a plant stem by Goldstein and Goriely [25]. A suitable
prescription for α(t) is discussed in the Appendix.

C. Numerical Implementation

Given suitable initial and boundary conditions as well
as prescriptions for L(t), d(t), ρ(t), E(t), and α(t), Equa-
tions (3) and (6) form the complete set of equations de-
scribing general deformations of a single spaghetti noodle
during cooking. Notice that Equations (3), which we pre-
viously noted are of the form u′ = f(u, s; t), contain no
time derivatives. In fact, the only time derivative among
the governing equations occurs in the flow rule (6). It
is therefore particularly straightforward to implement an
explicit semi-discretization scheme in which a series static
problems are solved at discrete instances in time.

We introduce the discretization t →
{0, t1, . . . , tk, . . . , tN} and let uk denote the approx-
imate solution vector at time step k. In order to
determine uk+1, we first update the approximation to κ0
by an approximation to the flow rule (6):

κ̃0,k+1(z) = κ̃0,k(z) + α(tk)∆tk

[
∂θk
∂s

(z)− κ0,k(z)

]
(7)

where ∆tk = tk+1 − tk. Once κ0,k+1 is known, u′k+1 =
f(uk+1, s; tk+1) can be solved using any one of the many
numerical techniques for ordinary differential equation
boundary value problems. We use MATLAB’s bvp4c
routine.

3 No yield criterion is used in our computations in the spirit of
simplicity.
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s = 0

s = L

D

(a) Stage 1: sagging

s = γ1

s = L

(b) Stage 2: settling

s = γ1
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(c) Stage 3: curling

Figure 3: Images of the deformed rod at each of the three stages of the simulated process: (a) sagging, (b) settling,
and (c) curling. The points s = 0, s = γ1, s = γ2, and s = L are highlighted. The images in this figure should be

compared to the experimental results shown in Figure 1.

IV. APPLICATION TO A SINGLE STRAND

We now apply our model to the specific situation
shown in Figures 1 and 3 in which a noodle confined
to a transparent, planar “pot” of width D hydrates with
time. The purpose of our analysis is not to capture every
relevant effect, but rather to reproduce the core behavior
of the noodle. As such, we make three key simplifying
assumptions that imply certain boundary conditions in
the sequel:

• the endpoint s = 0 remains pinned for all time;

• there is no adhesion or friction between the
spaghetti and the pot; and

• the thickness of the spaghetti strand is negligible.

A careful review of the video provided in the Supplemen-
tal Material [4] shows that each of these assumptions is
violated to a certain extent. However, we demonstrate
that even when we take them for granted, our model
faithfully reproduces the primary features of the three-
stage deformation sequence.

A. Stage One: Sagging

In the sagging stage (cf. Figure 3a), the spaghetti
strand is pinned at the left end and free to slide vertically
at the right under the action of gravity. We therefore
have the boundary conditions

m = 0

x = 0

y = 0

at s = 0 (8)

and 
n2 = 0

m = 0

x = D

at s = L . (9)

The governing equations can be solved precisely in the
manner discussed in Section III C, subject to the bound-
ary conditions (8) and (9). Sagging is over once θ = 0 at
s = 0.

B. Stage Two: Settling

The settling stage of the deformation (cf. Figure 3b)
sees the noodle split into two segments separated by the
a priori unknown point s = γ1. The segment (0, γ1)
lies flat on the bottom of the pot with its left end still
pinned in the corner. It is vital to note that although
κ = 0 in (0, γ1), κ0 6= 0 as the intrinsic curvature con-
tinues to evolve according to Equation (6), and hence
m = −EIκ0 6= 0 at s = γ1.

Though the shape of the rod in (0, γ1) is known triv-
ially, its shape in (γ1, L) must be determined by solving
u′ = f(u, s; t) together with the flow rule (6). The princi-
pal difficulty in doing so can be traced to the fact that the
domain on which the problem is to be solved is variable.
One method of overcoming such difficulties is defining a
new dependent variable

q =
s− γ1
L− γ1

(10)

and noting that

u′ =
1

L− γ1
du

dq
. (11)

Hence, we solve the equations

du

dq
= (L− γ1) f(u, s; t) (12)

on q ∈ (0, 1) alongside the flow rule (6), substituting
s = γ1 + q(L − γ1) where necessary. We require the
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boundary conditions
m = −EIκ0
θ = 0

x = γ1

y = 0

at q = 0 (13)

in addition to 
n2 = 0

m = 0

x = D

at q = 1 . (14)

.
Using the semi-discretization technique discussed pre-

viously, we have six scalar Equations (12) to solve as well
as one unknown parameter γ1 to determine, all subject
to seven boundary conditions (13) and (14). Again, such
a task is readily handled by a solver such as bvp4c. Once
θ = π/2 at q = 1, the settling stage is considered com-
plete.

C. Stage Three: Curling

Three distinct sections emerge during curling (cf. Fig-
ure 3c). In addition to the familiar (0, γ1), there are
(γ1, γ2) and (γ2, L), γ2 being the as-of-yet unknown point
where the spaghetti strand touches the right wall, which
can be determined in several ways.

One method, similar to that employed for the set-
tling stage, involves writing the governing equations for
both segments (γ1, γ2) and (γ2, L), then performing two
changes of variables—one on each set of equations—that
make the new domain (0, 1). However, such a method is
cumbersome as it doubles the number of equations to be
solved.

An alternative method is to consider a multi-point
boundary value problem defined on (γ1, γ2) ∪ (γ2, L).
With the change of variables (10), the domain becomes
(0, G) ∪ (G, 1), where G is the image of γ2, which like
γ1 is unknown a priori. The solution must satisfy the
boundary conditions

m = −EIκ0
θ = 0

x = γ1

y = 0

at q = 0 , (15)

interface conditions

θ = π/2

x = D

Jn2K = 0

JmK = 0

JθK = 0

JxK = 0

JyK = 0

at q = G , (16)

and additional boundary conditions


n1 = 0

n2 = 0

m = 0

at q = 1 . (17)

One then ignores a single condition, say θ = π/2 at q =
G, and treats G as an known value to be iterated over
until said suppressed boundary condition is satisfied to
a chosen tolerance. Such a method can once again be
implemented in MATLAB with bvp4c.

Once the rod has curled over on itself enough, it tends
to begin to pull on the wall. To accommodate this, we
simply release all conditions at γ2 and use the same nu-
merical technique as for the settling stage, albeit with
the boundary conditions (17) at q = 1 rather than (14).
When the endpoint q = 1 reaches y = 0, we assume that
the noodle-to-noodle adhesion is strong enough that the
endpoint is thereafter essentially fixed in this position.
We consider the curling stage complete when any part of
the rod re-initiates contact with the wall at x = D.

D. Results

To demonstrate the predictive capacity of our model,
we took a time-lapse video of a spaghetti noodle hydrat-
ing over the course of approximately two hours in room-
temperature water (20 ◦C). The purpose of perform-
ing the experiment at room temperature rather than in
proper cooking conditions was to simplify the experimen-
tal apparatus required. It should be noted that a quali-
tatively similar deformation sequence can be observed in
spaghetti placed in boiling water, though imaging such
an experiment is more challenging. The noodle was se-
lected at random from a package of Trader Joe’s brand
spaghetti. The selected strand had an initial diameter of
approximately 1.5 mm and was cut to a length of 17.5 cm.
Snapshots were taken at intervals of 15 s and the position
of the right endpoint monitored using the open-source
software Tracker.

Simulations were performed according to the proce-
dure outlined in Sections III C and IV. As further dis-
cussed in the Appendix, prescriptions for L(t), d(t), and
ρ(t) were extracted from the food science literature, while
E(t) and α(t) were prescribed to be logistic functions and
their parameters tuned to achieve qualitative agreement
with experiment. In particular, the parameters t0, τ , and
α∞ were varied.

Figure 4 compares the experimental measurements to
the results of the model. The full time-lapse video with
the numerical results superimposed can be found in the
Supplemental Material [4].
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Figure 4: Evolution of the height y(L) of the right
endpoint of a spaghetti noodle according to the model

(solid) and experiment (dashed). The inset images show
typical shapes predicted by the model during each stage

of the deformation. Asterisks are used to distinguish
the points s = γ1 and s = γ2. A video comparing the

experiment to the simulation can be found in the
Supplemental Material accompanying this paper [4].

V. CONCLUSION

In this publication, we have developed a rod-based
model for spaghetti undergoing cooking or similar hy-
dration processes and applied it to the special problem of
a single strand being soaked in room-temperature water
while confined to a pot. We have demonstrated both ex-
perimentally and numerically that the noodle’s peculiar
ability in this case to develop intrinsic curvature allows
it to curl over on itself, evolving toward a configuration
that is considerably more geometrically complex than its
starting state. Our model was shown to provide good
agreement with experimental results both qualitatively
and quantitatively, despite the fact that it neglects ef-
fects such as friction, adhesion, and inertia.

Several areas exist for improvement of the present
model. Further incorporating concepts from the liter-
ature on the mechanics of growth would provide valuable
improvements to our constitutive assumptions, as would
additional experiments on the bending of spaghetti at
various temperatures and cook times. Additionally, one
could adapt the discrete elastic rod (DER) numerical
framework to take the essential features of our approach
into account, thereby reducing the considerable theoret-
ical effort required to formulate specific boundary value
problems.

Aside from being of theoretical interest to the mechan-
ics community, our model might be of use in commercial
food production as a means of quantifying the degree
of cooking of noodles by way of merely observing their
deformed shape. Future research could extend our mod-
eling approach to spatial deformations of spaghetti, or

even to the deformation of shell-like pasta products such
as lasagna or rigatoni.
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Appendix: Time Evolution of L, d, ρ, E, and α

Let us begin with L(t) and d(t), restricting attention to
hydration at room temperature (20 ◦C). Several studies,
generally performed by placing short spaghetti strands
in thermally controlled baths, have shown a qualita-
tively sigmoidal time-length relationship [18, 26]. Figure
5 shows data by Del Nobile and Massera [27] together
with a logistic fit of our own. Direct measurements of
the diameter as a function of cooking time are absent
from the aforementioned publication. However, it does
contain data on the diameter-to-length aspect ratio as a
function of time. Knowing the initial length of the au-
thors’ samples, the diameter-versus-time relationship can
be back-calculated. Figure 6 shows the result of such a
calculation.

Additional data are available on the mass increase-
versus-time relationship, to which a square-root fit ap-
pears to be a suitable model. Taking the previously ob-
tained fit for L(t), it is possible to compute of ρ(t) from
the mass data. The result of this calculation is shown in
Figure 7.

Unfortunately, the literature on spaghetti cooking ap-
pears not to contain any data on the evolution of the
elastic modulus E at 20 ◦C. Absent more definitive mo-
tivation, we appeal to the approximately sigmoidal data
collected by Cafieri et al. at 100 ◦C [28] and choose a
logistic form for E(t):

E(t) = E0e
−t/τ · 1 + et0/τ

1 + e−(t−t0)/τ
, (A.1)

where E0 > 0, t0 ≥ 0 and τ > 0 are parameters that
must be prescribed or determined from experiment. We
note from Equation (A.1) that E(t)→ 0 as t→∞, as a
dry spaghetti noodle is much stiffer than a fully hydrated
one, i.e. E(∞)/E0 � 1.

A sensible form of the time-dependent flow rule param-
eter α(t) would have α(0) = 0 due to the dry strand be-
ing incapable of viscoplastic flow. Furthermore, it would
increase in time as more and more of the cross section be-
comes hydrated, eventually settling at a value such that
1/α is on the order of the characteristic relaxation time
of maximally hydrated spaghetti. For the sake of simplic-
ity, we choose a logistic curve with the same time scale
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Figure 5: Experimental length strain versus time at
20 ◦C as reported by Del Nobile and Massera [27]. A fit
based on a logistic curve is superimposed on the data.
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relationship at 20 ◦C according to Del Nobile and

Massera [27] with a superimposed two-term exponential
fit. Right: diameter d as a function of time as calculated
from the two-term exponential fit in combination with

the logistic curve fit for ∆L in Figure 5.

and offset as Equation (A.1), namely

α(t) = α∞ ·
1− e−t/τ

1 + e−(t−t0)/τ
, (A.2)

with α∞ > 0 being a phenomenological parameter.
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