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One of the outstanding problems in the dynamical systems approach to turbulence is to find a
sufficient number of invariant solutions to characterise the underlying dynamics of turbulence [1]. As
a practical matter, the solutions can be difficult to find. To improve this situation, we show how to
find periodic orbits and equilibria in plane Couette flow by projecting pseudo-recurrent segments of
turbulent trajectories onto the left-singular vectors of the Navier-Stokes equations linearised about
the relevant mean flow (resolvent modes). The projections are subsequently used to initiate Newton-
Krylov-hookstep searches, and new (relative) periodic orbits and equilibria are discovered. We call
the process project-then-search and validate the process by first applying it to previously known
fixed point and periodic solutions. Along the way we find new branches of equilibria, which include
bifurcations from previously known branches, and new periodic orbits that closely shadow turbulent
trajectories in state space.

I. INTRODUCTION

A complete understanding of the mechanisms at work
in turbulent flows is one of the most important and fasci-
nating problems of classical physics. It is difficult to pre-
dict exactly how a turbulent flow will behave over time
despite the governing Navier-Stokes equations (NSE) be-
ing fully deterministic. The NSE are a set of nonlin-
ear partial differential equations which describe velocity
fields with spatio-temporal complexity.

A typical turbulent flow looks unstructured, hence
finding patterns in the flow field is difficult. Neverthe-
less, coherent structures do exist in a seemingly unstruc-
tured flow field and indicate some degree of spatial or-
ganisation. Recent studies have tried to model coherent
structures in wall-bounded flows to understand the quasi-
cyclic mechanism that dictates their formation, prop-
agation, decay and reformation, see Panton [2] for an
overview and Hamilton et al. [3] for details of the near-
wall regeneration cycle.

An approach to understanding the dynamics of wall-
bounded flows has emerged recently, based on the com-
putation of steady (equilibrium) or exactly recurring (pe-
riodic) solutions of the NSE. The solutions are often re-
ferred to as ‘exact coherent states’ since they are repre-
sentative of coherent structures seen in turbulent flows,
but lack the complex spatio-temporal intermittency ob-
served in experiment and numerical simulations. Given
the recurrent nature of coherent states in wall-bounded
shear flows, one could suggest that their dynamics lie on
low-dimensional state space attractors [4]. Cvitanović [5]
states that these solutions are embedded within turbu-

∗ arslan@caltech.edu
† a.sharma@soton.ac.uk

lence and are likely to be dynamically important. Peri-
odic orbit theory [6] dictates that the importance of a
solution is inversely proportional to the sum of the mag-
nitudes of the unstable eigenvalues. Studying the solu-
tions can give further insight into the properties and be-
haviour of coherent motions, as well as shedding light on
the dynamics and self-sustaining nature of wall-bounded
turbulent flows. For these reasons, Kawahara et al. [1]
pose the finding of sufficiently many invariant solutions to
fully describe a turbulent flow as one of the outstanding
problems in the field. Unfortunately, with current meth-
ods, computing exact solutions involves trial and error
and computational searches often fail.

Trivial homogeneous equilibrium solutions of the NSE,
such as the stable laminar flow state in plane Couette and
Poiseuille flow, can be found with very little effort; these
solutions are easy to find analytically as well as numer-
ically. Less symmetric solutions on the other hand are
more difficult to find. The most commonly used method
for finding invariant solutions is the Newton search be-
cause it converges quadratically. However, as typically
implemented the convergence is only local; to guarantee
convergence, an initial guess that is close to a solution
must be provided. Finding suitable initial states for the
algorithm is the tricky task. Farazmand [7] developed
a hybrid adjoint-Newton algorithm that provides global
convergence from any given initial condition to find equi-
libria of two-dimensional Kolmogorov flow; in addition,
Otero [8] found a family of periodic orbits in compressible
cavity flow using an adjoint-based optimal flow control
framework.

There are various methods that can be used to generate
initial guesses for searches, the most widely used of which
we list below.

1. Bisection:
This approach involves varying the initial ampli-
tude of a velocity field depending on its temporal
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evolution. The time-evolved flow field which sits
on the boundary between the laminar and turbu-
lent states (a flow field that neither laminarises nor
becomes fully turbulent, a so-called edge state) is
used as an initial guess for a Newton search. This
method is used by [9–12]. A related but more so-
phisticated method, which modifies the Reynolds
number with on-line feedback control to automati-
cally achieve the same effect, is used by [13].

2. Homotopy:
In this method a convergence control parameter is
introduced and solutions are found as the parame-
ter changes via continuation. Waleffe[14] describes
it as smoothly deforming the base flow into the de-
sired flow while tracking the solutions with New-
ton's method. Several studies have successfully
used this approach to build solution connections
between Taylor-Couette, plane Couette and plane
Poiseuille flow, see [14–19].

3. Recurrence plots:
This technique involves studying the time-evolution
of a perturbed flow field for periodic patterns. The
most dynamically important fields are then used as
initial guesses in a Newton search. The method has
been successfully used to find equilibria, travelling
waves and periodic orbits of the NSE, see [20–22].
For a comprehensive review of the technique refer
to the work of Marwan et al. [23].

4. Projections:
Introduced here, low-rank projections of pseudo-
recurrent segments of turbulent trajectories are
used as initial guesses in the search for equilibria
and periodic orbits. The projected velocity fields
maintain their dominant flow characteristics (in the
sense of the norm used to define the projection)
and have structures derived from nearby solutions,
making them good initial guesses for the search al-
gorithm.

Nagata [15] was the first to discover non-trivial high-
dimensional nonlinear solutions of the NSE at moderate-
Reynolds number, who computed a pair of unstable
three-dimensional equilibria in plane Couette flow using
homotopy and bifurcations from a wavy vortex solution
of Taylor-Couette flow. The same solutions were found
independently by [14, 24, 25]. Continuing the two solu-
tions downwards in Reynolds number reveals that they
originate from a saddle-node bifurcation and contain a
wavy low-velocity streak flanked by counter-rotating vor-
tices; the upper branch solutions consist of weak streaks
with strong vortices whereas the lower branch solutions
consist of weak vortices but stronger streaks. Their struc-
ture persists at higher Reynolds numbers and resembles
coherent structures observed in the near-wall region of
wall-bounded turbulent flows [26, 27].

A multitude of equilibria that are not related to Na-
gata’s solutions but exhibit similar flow structures in

plane Couette flow have also been found [16, 22, 28–
30]. Relative equilibria have been found using the ho-
motopy approach in plane Poiseuille flow [31, 32], pipe
flow [18, 33] and square ducts [34–36]. For a comprehen-
sive review refer to Kawahara et al. [1].

In the dynamical systems conceptual model low-
dimensional periodic orbits derive their structure from
nearby equilibria and underlie turbulence. In plane Cou-
ette flow Clever and Busse [24] were the first to find a
quasi-steady periodic orbit and Kawahara and Kida [37]
were the first to find an unstable periodic orbit which re-
produces the full near-wall regeneration cycle of Hamil-
ton et al. [3]. Viswanath [38] added five periodic orbits
(four of which are relative periodic orbits) to the cata-
logue of periodic solutions in plane Couette flow. Willis
et al. [13, 39] used a Fourier slicing method to discover
many relative periodic orbits in pipe flow. Their work
was extended by Budanur et al. [40] to reveal that relative
periodic orbits in pipe flow are embedded in the chaotic
saddle and indeed guide turbulent dynamics. Budanur
et al. [40] state that additional searches for relative pe-
riodic orbits are needed to adequately represent a larger
portion of state space.

The transition to turbulence has been linked to the
presence of a chaotic saddle in the state space of the
NSE [41]. Kreilos and Eckhardt [42] show that routes
to turbulence may arise from bifurcations of different ex-
act coherent states: after a secondary bifurcation, upper
branch exact coherent states undergo a period-doubling
cascade that ends with a crisis bifurcation [42–44]. Lus-
tro et al. [44] provide theoretical evidence that as the
Reynolds number is increased after a crisis bifurcation,
the resultant chaotic states touch the lower branch ex-
act coherent states which lead to relaminsarisation. This
result supports the experiments of Kühnen et al. [45] in
which they demonstrate that increasing the level of tur-
bulence, with appropriate augmentation of the mean pro-
file, can result in complete relaminarisation.

There is mounting evidence that exact coherent states
are an important tool in understanding the transition to
and maintenance of turbulence, as well as the relami-
narisation process. This paper shows that projections of
turbulent states onto a low-dimensional state can be used
as seeds for the Newton-Krylov-hookstep (NKH) search
algorithm to find exact coherent states. We find that
periodic orbits with short periods are more frequently
found and are situated in the region separating the lami-
nar and turbulent regions in state space. In addition, it is
shown that equilibria in the turbulent region influence the
shape of longer periodic orbits. And turbulent trajecto-
ries spend the majority of their lifetime in the vicinity of
periodic orbits. We first validate the project-and-search
technique on previously known solutions (both equilibria
and periodic orbits) and subsequently apply it to quasi-
recurrent partial turbulent trajectories. We find that the
project-then-search process works to find new solutions
from both previously known solutions and curiously, from
turbulent flows. In this study, our intent is to facilitate
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the discovery of exact coherent states rather than elu-
cidate their dynamics and direct influence on turbulent
trajectories. To avoid confusion we define low-rank pro-
jections as projecting an instantaneous flow field onto the
left singular vectors of the resolvent operator and using
subsequent truncations to define our ‘projections’. These
projections are not the same as those described in Willis
et al. [39].

The structure of the paper is as follows. The project-
then-search methodology is described in §II. New solu-
tions found from projections of previously known solu-
tions are given in §III. New periodic orbits found from
chaotic trajectories and their discussion are given in §IV.
And, the conclusions are given in §V. Details on the clas-
sification of symmetries in plane Couette flow that sup-
port equilibria and periodic orbits are reviewed in Ap-
pendix A.

II. METHODOLOGY

A. Plane Couette flow

The flow geometry and all parameters are chosen to
be consistent with the work of Gibson et al. [22]. The
nondimensional NSE for an incompressible fluid are

∂u

∂t
= −u · ∇u−∇p+Re−1∇2u, (1a)

∇ · u = 0, (1b)

where u(x, y, z, t) = [u v w]T is the velocity vector in the
streamwise x, wall-normal y and spanwise z directions, t
is time, p(x, y, z, t) is the pressure, ∇ is the gradient op-
erator, ∇2 is the Laplace operator and Re is the Reynolds
number. The Reynolds number is defined as Re = Uh/ν,
where U is half the relative velocity of the plates, h is the
channel half-height and ν is the kinematic viscosity.

The domain has periodic boundary conditions in the
streamwise and spanwise directions. Spatial periodicity
is specified in terms of fundamental streamwise and span-
wise Fourier wavenumbers, α and β, respectively. The
relation between the spatial wavenumbers and the do-
main is given as Lx = 2πm/α and Lz = 2πn/β where
m,n ∈ Z+. We compute equilibria and periodic orbits
on different domains:

• equilibria are computed on the domain ΩEQ =
( 2π

1.14 , 2,
4π
5 ) which is discretised onto a (32, 35, 32)

grid,

• periodic orbits and turbulent trajectories are com-
puted on the domain ΩPO = ( 2π

1.14 , 2,
6π
5 ) which is

discretised onto a (32, 49, 32) grid.

In this study the pressure gradient is fixed at zero and
integration forward in time is performed with time step
∆t = 0.03125.

The unit vectors in the x, y, z directions are denoted
x̂, ŷ, ẑ and the plane Couette base flow is defined as yx̂.

Hence, the total velocity is defined as u = ũ+ yx̂, where
ũ is the velocity difference from laminar. In the present
study the L 2-inner product and norm are defined as

〈a, b〉 =
1

2LxLz

∫

Ω

a · b dx dy dz (2a)

‖a‖2 = 〈a,a〉. (2b)

The fluctuation energy is defined as ‖ũ‖2 = 〈ũ, ũ〉, the
total kinetic energy density as E = 1

2‖u‖2 and the dissi-

pation rate as D = ‖∇×u‖2. The role that certain solu-
tions play in turbulent dynamics can be inferred from the
dissipation rate, e.g. a lower dissipation rate means that
the invariant solution is far from turbulence and closer
to laminar flow.

B. Computational method for search

The open source library Channelflow was used to find,
continue and analyse all solutions in our investigation
[46]. All computational settings are the same as in the
work of Gibson et al. [22].

In the present work, the NKH search algorithm is used
to find invariant solutions of the NSE, for a detailed ex-
planation of the algorithm refer to the work of Viswanath
[38]. The algorithm finds approximate solutions to the
following equation,

G(ũ, σ, t) = σf t(ũ)− ũ = 0, (3)

where f t(ũ) is a time-mapped instance of the initial flow
field at time t, ũ is the initial flow field and σ is the
symmetry of the flow field (see Appendix A for more
details on symmetries).

The convergence criteria for the searches is ‖G‖ ≤
10−13. An equilibrium solution is defined as
ũ(x, y, z, t) = ũEQ(x, y, z), therefore when there is close
to no difference between the time-evolved state and the
initial flow field an equilibrium solution is deemed to
have been found. Similarly for a periodic orbit defined
as ũ(x, y, z, 0) = ũPO(x, y, z, T ) where T is the period,
the difference between the initial state and the state af-
ter a given period should be negligible for the discovery
of a new periodic solution. Note that for the searches
performed in the current work, the NKH algorithm is
unconstrained with respect to symmetries, only the final
solution is inspected for symmetries.

Following Gibson et al. [22] and Viswanath [38], to
determine the accuracy of an equilibrium solution it is
interpolated from a grid resolution of [32, 35, 32] onto a
[48, 49, 48] grid and then time integrated for T = 1 with
dt = 0.02. Then the accuracy is determined by calculat-
ing the residual, defined as

‖fT=1(ũ)− ũ‖
‖ũ‖ . (4)

All searches for new equilibria and their bifurcation
curves were also performed at a higher grid resolution of
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(48, 65, 48) to ensure that the searches were well-resolved;
all results were found to agree with those found at the
lower grid resolution of (32, 35, 32) down to the fifth sig-
nificant figure. In the present work, invariant solutions
have been found in the context of minimal flow units;
small periodic domains just large enough to sustain tur-
bulent flow or contain a single coherent structure [47].

C. Low-rank projections based on the resolvent
model

The practical difficulty with using the Newton method
to find exact solutions is that the search may fail or re-
turn the trivial laminar solution if the initial condition is
far from an exact solution. The aim here is to generate
initial guesses that are close enough to new solutions to
converge. As such, we generate such initial guesses by
projecting known solutions onto resolvent modes, and in
the case of chaotic trajectories we project quasi-recurrent
segments onto the resolvent modes. The resolvent model
is used to provide a physically relevant, ordered basis in
which the velocity field can be expanded. In principle,
projections onto other bases could be used.

It was previously shown in Sharma et al. [48] that these
projections are often close to the original solutions, even
when the projection is very low rank. We will see that
the projections are also often close to other, nearby, so-
lutions.

Consider a long-time solution to (1), u. This solution
may be expanded into its harmonic and transient parts,

u(t) =
1

2π

∫ ∞

−∞
eiωtû(ω)dω + T (t) (5)

where the dependence on x, y, z has been suppressed. For
the case where flow has already decayed onto the attrac-
tor, or for any recurrent flow, T = 0. Notice that the
temporal mean is associated with û(0).

Writing (1) as ∂u/∂t = f(u), an expansion about the
temporal mean ū := û(ω = 0) gives

u = ū+ ũ (6a)

∂ũ

∂t
=
∂f

∂u

∣∣∣∣
ū

ũ(t) + g̃(t) (6b)

= Lũ(t) + g̃(t) (6c)

where g̃ represents the second-order terms in the expan-
sion of f (the Reynolds stress gradients). Similarly ex-
panding g̃ in its Fourier coefficients and rearranging gives

û(ω) = (iωI − L)
−1
ĝ(ω), (7)

at any ω 6= 0. In this formulation, the second-order terms
act to excite the state rather than being truncated.

The operator H(ω) = (iωI − L)
−1

is the resolvent of
L and is a linear mapping from the Reynolds stress gra-
dients to the velocity field. The idea of the projection

step is to find the optimal projection Π(ω) of rank M
that approximates H(ω). Since the resolvent operator is
linear, the optimal projection is provided by the singular
value decomposition (SVD) of H.

Noting that the SVD of H induces a Fourier decom-
position in the spatially invariant directions (x and z,
see [49]), it is profitable to perform the SVD sepa-
rately at each Fourier frequency-wavenumber combina-
tion K = (α, β) for the Fourier representation of (7),

HK(iω)a = (ωI − LK)
−1
a (8a)

=

∞∑

m=1

ψmK (ω)σmK (ω) 〈φmK(ω),a〉y . (8b)

The SVD has the useful orthogonality properties

〈
φmK(ω),φm

′

K (ω)
〉

= δm,m′ (9a)
〈
ψmK (ω),ψm

′

K (ω)
〉

= δm,m′ (9b)

σ1 ≥ σ2 ≥ . . . ≥ σm ≥ . . . (9c)

In this case, the ū to be used in forming L is the α =
0, β = 0 component of the temporal mean. The velocity
field may then be expressed as an expansion in resolvent
modes,

u(x, y, z, t) =
1

2π

∑

α, β

∫ ∞

−∞
ei(ωt+αx+βz)

∞∑

m=1

ψmK (ω, y)cmKdω.

(10)
Applying the optimal rank-M projection ΠM gives

u = ΠMu+ u⊥ (11)

with the sum over m in (10) being split as

ΠMu =
1

2π

∑

α, β

∫ ∞

−∞
ei(ωt+αx+βz)

M∑

m=1

ψmK (ω, y)cmKdω,

(12)

u⊥ =
1

2π

∑

α, β

∫ ∞

−∞
ei(ωt+αx+βz)

∞∑

m=M+1

ψmK (ω, y)cmKdω.

(13)

(14)

The idea of the projection is that the flow resides
mostly (in an energy sense) in the subspace that ΠM

projects onto. The projection ΠM is calculated for each
known solution, or a quasi-recurrent segment of a chaotic
trajectory, and subsequently used as an initial guess for
the NKH search.

When generating projections of periodic orbits or
quasi-recurrent segments there is a non-zero temporal
frequency (ω > 0) since we have a set of velocity fields,
i.e. u(t) = {u(x, 0), ...,u(x, t = T )}, where T is the pe-
riod. As such, the projection process requires Fourier
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transforming the set of fields in time and calculating the
resolvent operator H at each wavenumber triplet com-
bination (k = (α, β, ω) 6= 0). This results in a set
of projected velocity fields, that is, a rank-M projec-
tion of a given periodic orbit is given as ΠM

(
u(t)

)
=

{ΠM

(
u(x, 0)

)
, ...,ΠM

(
u(x, t = T )

)
}.

Since the NKH algorithm only takes a instantaneous
velocity field as an initial condition, we cannot feed the
whole projected orbit to the algorithm, so we have to
take points along the projected orbit as initial conditions
for the search. Limits to available computation time con-
strained us to selecting only eight points along the pro-
jected orbits as initial conditions for the search, i.e. eq-
uispaced points at t = nT/8 where n ∈ [0, 7]. For quasi-
recurrent flow projections we only use four points along
the trajectory, i.e. equispaced points at t = nT/4 where
n ∈ [0, 3]. Hence we specify the time-unit along the peri-
odic orbit at which we generate the projection so that we
have a rank-M projection of PX at time t, Πt

M (PX). In
addition to this handicap, we only generate projections at
certain ranks, rather than a sweep of all available ranks
as with the equilibria; the searches for periodic orbits are
performed at ranks m = [1, 2, ..., 19, 20, 30, ..., 130, 140].

D. Geometry of plane Couette state space

Gibson et al. [29] developed a basis that defines a rep-
resentation independent state space which shows the re-
lationships between exact solutions and allows us to chart
turbulent trajectories. A brief summary of the state
space visualisation method developed by Gibson et al.
is given below.

The premise of the method is that velocity fields may
be projected onto an orthonormal basis,

an(t) =
〈
u(t), en

〉
, (15)

where en is a unit basis vector and an is the low-
dimensional projection of a given velocity field u(t).
Therefore, a state space trajectory is projected onto the
{en} coordinate frame.

Following the work of [29], an orthonormal transla-
tional basis is constructed based on streamwise and span-
wise half-domain shifts of Nagata [15]’s upper branch so-
lution (uEQ2), defined as

τx τz τxz
e1 = γ1(e+ τx + τz + τxz)uEQ2 S S S ,
e2 = γ2(e+ τx − τz − τxz)uEQ2 S A A ,
e3 = γ3(e− τx + τz − τxz)uEQ2 A S A ,
e4 = γ4(e− τx − τz + τxz)uEQ2 A A S ,

(16)

where γn is a normalisation constant such that ‖en‖ = 1.
Here, τi represents a half-domain shift in the direction
specified by the subscript i. For a full description of the
symmetries in plane Couette flow see Appendix A. On the
right hand side, the last three columns denote the sym-
metry of each basis function under the appropriate trans-
lation, e.g A in the τx column means that τxen = −en

(anti-symmetric) and S means τxen = en (symmetric).
The origin in this state space is the laminar solution uEQ0

since it is invariant under all symmetries and all solutions
presented here are expressed as differences from laminar.
As emphasised by [29], this orthonormal basis definition
is one of many.

It should be noted that a basis can be constructed from
any velocity field as there is no pre-determined method
of selecting a fluid state, being at the author’s discretion.
Following [29], we chose to select an orthonormal basis
formed from uEQ2; Gibson et al. chose this equilibrium
solution as it was the closest equilibrium to what they
thought was the turbulent attractor.

III. SOLUTIONS FROM PROJECTIONS OF
SOLUTIONS

In this section, we present the new equilibria and pe-
riodic orbits found by applying the project-then-search
method to previously known solutions. Equilibria found
from projections of known equilibria are explored first
in §III A and periodic orbits found using projections of
known orbits are given in §III B. The new equilibria found
here are derived from equilibria previously discovered by
Nagata [15], Gibson et al. [22, 29] and Halcrow et al. [50],
which can be found at channelflow.org. The new peri-
odic orbits are found from the projections of previously
known periodic orbits of Cvitanović and Gibson [21] and
Viswanath [38].

A. Equilibria from projections of equilibria

Here, we present the new equilibria as well as their
bifurcation curves when continued in Re. The energy
and symmetry properties of all previously known and new
equilibria are collated in table I, where the solutions are
organised by isotropy subgroup and sorted by descending
dissipation rate, D, within. The details and classification
of the symmetries in plane Couette flow that support
equilibria and periodic orbits are reviewed in Appendix
A. For comparison with the work of [22], projections were
only performed at three distinct Reynolds numbers of
270, 330 and 400, the results are labelled accordingly.

Note that we do not find any travelling wave solutions
using the project-then-search method since we specify
no temporal frequency, i.e. ω = 0, and do not initiate
searches with a prescribed wavespeed.

EQ1 and EQ2 are Nagata’s lower and upper branch
equilibria [15], respectively, and EQ3 – EQ11 are the
equilibria discovered by Gibson et al. [22] and Halcrow
et al. [50]. EQ12 – EQ20 are new and the numeric
labelling denotes the chronological order in which they
were found. In the following, a projection of integer rank
M is denoted ΠM (·), where 1 ≤M ≤ 99.

The solutions are parametrically continued with Re
as the bifurcation parameter and subsequently grouped

channelflow.org
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TABLE I: Properties of the new equilibria and the equilibria they are derived from; a dividing line separates parent
equilibria (previously known solutions) from their child equilibria from their grandchild equilibria (solutions found
from projections of the child equilibria). The ‘Root’ column denotes the initial velocity field that led to the new
discovery, e.g. a rank-5 projection of EQ9 led to the discovery of EQ12. The ‘Re’ column indicates the distinct

Reynolds number that the solution was discovered at. The ‘mean’ values are given for comparison, and are
calculated from a spatially and temporally averaged turbulent flow. The L 2-norm of the velocity field is ‖ũ‖, E is
the kinetic energy density, D is the dissipation rate, H is the isotropy subgroup, d(Wu) is the dimensionality of the
equilibrium’s unstable manifold, and d(Wu

H) is the dimensionality of the unstable manifold within the H-invariant
subspace. The accuracy of the solution (Acc.) is calculated using (4).

Root Re EQ ‖ũ‖ E D H d(Wu) d(Wu
H) Acc.

270 mean 0.2286 0.1089 1.4813 {e}
270 8 0.3466 0.0853 3.6719 Θ 21 2 10−3

Π11(EQ8) 270 1 0.2292 0.1294 1.5415 Σ 1 1 10−2

Π3(EQ8) 270 7 0.1546 0.1301 1.5530 Θ 5 1 10−2

Π38(EQ8) 270 20 0.3148 0.0904 3.1529 K 12 0 10−2

Π2(EQ1) 270 12 0.2297 0.1292 1.5444 Θ6 2 2 10−2

330 mean 0.2541 0.0959 1.6660 {e}
330 6 0.2751 0.0972 2.8185 Σ 19 5 10−3

Π6(EQ6) 330 1 0.2168 0.1337 1.4705 Σ 1 1 10−3

Π40(EQ6) 330 5 0.2375 0.1052 2.2785 Σ 15 6 10−2

Π2(EQ6) 330 7 0.1145 0.1410 1.3433 Θ 3 1 10−3

Π67(EQ6) 330 17 0.2348 0.1063 2.3047 Θ6 15 8 10−2

Π42(EQ6) 330 19 0.2674 0.0988 2.6947 Θ6 18 9 10−2

Π31(EQ19) 330 12 0.2331 0.1292 1.5650 Θ6 3 2 10−3

Π66(EQ19) 330 18 0.2707 0.0975 2.6274 Θ6 17 9 10−2

400 mean 0.2997 0.1016 2.6017 {e}
0 0.0000 0.1667 1.0000 Γ 0 0

Π3(EQ4) 400 3 0.1259 0.1382 1.3177 Σ 4 2 10−4

400 4 0.1681 0.1243 1.4537 Σ 6 3 10−6

Π1(EQ2) 400 1 0.2091 0.1363 1.4293 Σ 1 1 10−6

400 5 0.2186 0.1073 2.0201 Σ 11 4 10−3

Π5(EQ14) 400 2 0.3858 0.0780 3.0437 Σ 8 2 10−4

Π2(EQ5) 400 7 0.0936 0.1469 1.2523 Θ 3 1 10−4

Π7(EQ4) 400 9 0.1565 0.1290 1.4048 Θ6 5 3 10−4

400 10 0.3285 0.1080 2.3721 Θ6 10 7 10−4

400 11 0.4049 0.0803 3.4322 Θ6 13 10 10−3

Π5(EQ9) 400 12 0.2405 0.1289 1.6034 Θ6 3 2 10−5

Π3(EQ10) 400 13 0.2683 0.1242 1.7630 Θ6 4 3 10−6

Π7(EQ10) 400 15 0.3037 0.1160 2.0713 Θ6 8 6 10−5

Π7(EQ11) 400 14 0.4014 0.0759 3.2474 Θ6 10 4 10−5

Π10(EQ11) 400 16 0.4049 0.0813 3.3612 Θ6 15 9 10−5

into pairs by observing their bifurcation curves in order
to identify which branch they inhabit. By continuing
the equilibria in Re we determine if a new branch is dis-
covered or if we have rediscovered a previously known
branch, i.e. branch jumped. The bifurcation diagram
is given in figure 1. Note, symbols signifying different
Reynolds numbers on the same curve are indicative of a
branch-jump; we observe that we only jump to branches
with lower D. Moreover, the curves are independent of
each other and any apparent intersections between curves
are not bifurcations.

Each curve represents a family of solutions with an
upper and lower branch, originating from bifurcations
at certain Reynolds numbers. The naming convention
for branch pairs is EQX-Y, where X indicates the lower
branch solution (lower dissipation rate) and Y signi-
fies the upper branch solution (higher dissipation rate).
There is one case where three newly discovered equilibria
sit on one curve, in that case the naming convention is
in ascending order of dissipation rate for each solution.

The results in table I reveal that, in most cases, equi-
libria with less fluctuation energy and lower dissipation
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Re
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5.4
D

EQ1-2
EQ3-4
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EQ10-11
EQ20-21-23
EQ22-24
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EQ12
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EQ14
EQ15
EQ16-26
EQ25
EQ7-8
EQ17
EQ18
EQ19
EQ27

FIG. 1: Dissipation, D, of equilibria as a function of
Re. All equilibrium solutions continued upwards and

downwards in bifurcation parameter Re, starting from
the Re they were discovered at signified using the

following symbols: 4 for Re = 270, � for Re = 330 and
# for Re = 400. The marker colour matches the colour

of the curve it belongs to. The dashed lines signify
previously known branches and the solid lines signify

newly discovered branches.

(compared to their parent solutions) can be found us-
ing the project-then-search method. This is equivalent
to saying that we have jumped to a lower branch solu-
tion. We know that a projection onto the left-singular
vectors of the NSE yields a flow field with less energy
owing to the fact that we are truncating available modes
in the flow field. We speculate that the project-then-
search technique allows us to take known equilibria on
higher-dimensional unstable manifolds and use their pro-
jections (which are close to lower-dimensional manifolds)
to find equilibria that sit on (or near) lower-dimensional
unstable manifolds. This is evident when comparing the
dimensionality of the unstable manifolds (in both the
symmetry-invariant subspace and the full space) of child
equilibria against their parent solutions. Also, it is clear
from table I that there is a relationship between a so-
lution’s dissipation rate, energy and the dimensionality
of its unstable manifold in both the symmetry-invariant
subspace and the full space. In general, the higher
the dissipation rate and fluctuation magnitude are, the
higher the dimensionality of the solutions’ unstable man-
ifold. For more details on the unstable manifolds of these
equilibria see Ahmed [51].

The mechanics of the project-then-search method can
be shown in state space. For the purposes of demon-
stration, successful searches from EQ10’s low-rank pro-
jections are shown in figure 2. The search algorithm is
quick to locate the region where a potential solution ex-
ists. Once the search is very close to a solution, it takes

just a few Newton steps to converge onto the solution.
Figure 2 also highlights the sensitivity of the search al-
gorithm to initial states; small differences in the initial
state can lead to very different results, indicating that
the initial conditions are close to a basin boundary. For
example Π3(EQ10) and Π4(EQ10) are extremely close to
each other in state space, yet they lead to two different
equilibria.

For every solution, all available ranks were used to
generate projections. The ‘Root’ column in table I de-
notes the lowest ranked-projection that leads to the dis-
covery of a solution, but this does not mean that that
is the only projection that yields that solution. All
ranked-projections of the equilibria lead to the discov-
ery of other unstable solutions, although there are some
equilibria whose projections only converge to the lami-
nar state or return to the parent solution, examples of
such equilibria include EQ1, EQ3, EQ4, EQ7 and EQ12.
There are, however, some projections that fail to initialise
any successful search at all; there were a total of 107
failed searches, which translates to a 4% failure rate. For
these cases the search was repeated with eight times as
many Newton steps (160 rather than 20), yet the solu-
tions failed to converge; Viswanath [38] found that for
a system with 105 − 106 unknowns, the NKH algorithm
takes less than 100 steps to find an exact solution. In rela-
tion to (3), the required tolerance for successful searches
is ‖G‖ ∼ 10−15, in contrast we find that for unsuccessful
searches 10−6 . ‖G‖ . 10−3.

B. Periodic orbits from projections of periodic
orbits

The previously known periodic solutions (P1, P2 &
P3) and periodic orbits derived from them are given in
table II; the solutions in are organised by increasing time-
period. P1 and P2 were discovered by Cvitanović and
Gibson [21] and P3 is the only periodic orbit discovered
by Viswanath [38], it is denoted as P6 in his work (the
rest of his solutions were relative periodic orbits). Figure
3 is a state space portrait of the three periodic orbits and
new equilibria at Re = 400. Note that the streamwise
and spanwise shifted siblings of the periodic orbits have
not been plotted for the sake of clarity, though they do
exist since the periodic orbits belong to the Σ symmetry
group. The details and classification of the symmetries
in plane Couette flow that support periodic orbits are
reviewed in Appendix A. Relative periodic orbits are also
found from projections of known periodic orbits.

The state space portraits of all newly discovered pe-
riodic orbits are given in figure 3. All of the periodic
solutions are far from the laminar state. The streamwise
and spanwise shifted siblings of the orbits have not been
plotted, but it is expected that the chaotic trajectories
would be influenced by the shifted siblings of the peri-
odic orbits. EQ2, EQ11, EQ14 and EQ16 contain flow
structure that closely resembles the coherent structures
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FIG. 2: A state space representation of successful searches initiated from low-rank projections of EQ10. The stars
represent the low-rank projections and the small dots represent the Newton-steps. The plot on the right shows the

detail of the grey box in the left figure.

TABLE II: Properties of the new solutions and the periodic orbits they are derived from; a dividing line separates
parent periodic orbit (previously known solutions) from their child periodic orbits and child equilibria. The ‘Root’

column denotes the initial velocity field that led to the new discovery, e.g. a rank-9 projection of P1 at time unit 5.0
led to the discovery of P4. The L 2-norm ‖ũ‖, kinetic energy density E and dissipation rate D are all averaged over

the period of each orbit. H is the isotropy subgroup, d(Wu) is the dimensionality of the periodic orbit’s unstable
manifold, and d(Wu

H) is the dimensionality of the unstable manifold within the H-invariant subspace.

Root Soln. # T ‖ũ‖ E D H d(Wu) d(Wu
H)

P1 19.06 0.4194 0.0883 3.0581 Σ 8 3

Π5
9(PO1) P4 19.02 0.4211 0.0857 3.1556 Σ 6 4

Π18
1 (PO1) EQ28 · 0.3276 0.1119 2.1997 Θ6 16 10

P2 62.13 0.3918 0.0843 2.9346 Σ 6 3

Π0
7(PO2) P5 19.06 0.4197 0.0883 3.0628 Σ 8 3

Π0
20(PO2) P6 31.00 0.3918 0.0842 2.9382 Θ4 6 4

Π56
17(PO2) P7 61.19 0.4014 0.0846 3.0597 Σ 11 4

Π8
20(PO2) P8 63.39 0.3938 0.0846 2.9451 Σ 6 4

Π16
19(PO2) P9 64.55 0.3960 0.0845 2.9625 Σ 4 3

P3 87.89 0.4033 0.0857 2.9366 Σ 6 3

Π0
2(PO3) P10 41.36 0.3563 0.1233 2.0206 Θ4 1 1

Π11
20(PO3) P11 85.27 0.3971 0.0894 2.8571 Σ 5 2

Π0
20(PO3) P12 88.90 0.4027 0.0874 2.9100 Σ 4 3

Π22
20(PO3) P13 90.52 0.4034 0.0856 2.9577 Σ 3 3

observed in the P2 and P3 families. Equilibria are more
unstable than the periodic orbits in the turbulent region
of state space with respect to the dimensionality of their
unstable manifolds. Thus, we posit that a chaotic trajec-
tory is less likely to spend a substantial amount of time in
the locale of these equilibria and will visit the neighbour-
hoods of low-dimensional periodic orbits more often, this
is shown in §IV. For more details on the unstable mani-
folds of these periodic orbits refer to the work of Ahmed

[51].

The results in table II show that the project-then-
search method is effective in finding new periodic orbits
that reside in the neighbourhoods of their parent orbit.
This may be why the parents and children have similar
properties, such as period, and dissipation rate and fluc-
tuation magnitude averages over the period. In addition,
the overall change in coherent motions over the period
of the new orbits also resemble those of their respective
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TABLE III: Properties of the periodic orbits found from turbulent time-series data. The L 2-norm ‖ũ‖, kinetic
energy density E and dissipation rate D are all averaged over the period of each orbit. H is the isotropy subgroup,

d(Wu) is the dimensionality of the periodic orbit’s unstable manifold, and d(Wu
H) is the dimensionality of the

unstable manifold within the H-invariant subspace.

Soln. # T ‖ũ‖ E D H d(Wu) d(Wu
H)

P4 19.02 0.4211 0.0857 3.1556 Σ 6 4
P1 19.06 0.4217 0.0857 3.1607 Σ 8 3
P5 19.06 0.4197 0.0883 3.0628 Σ 8 3
P14 90.52 0.4034 0.0855 2.9570 Σ 4 3

-0.10 0.00 0.10
a3

-0.06

0.00

0.06

a
4

τzτx

τxz EQ0
EQ1
EQ2
EQ3
EQ4
EQ5
EQ7
EQ9
EQ10
EQ11
EQ12
EQ13
EQ14
EQ15
EQ16

P1
P4
P2
P5
P6
P7
P8
P9
P3
P10
P11
P12
P13
P14

a1
0.00

0.10

0.20

0.30

0.40

a
3

-0.07

0.00

0.07

a
4

-0.05

0.00

0.05

FIG. 3: The full state space portrait of all equilibria
and periodic orbits discovered from known solutions

and chaotic trajectories at Re = 400 using the
project-then-search method. The turbulent trajectories

are shown as grey lines.

parent orbits.

All regular periodic orbits adhere to the Σ isotropy
subgroup, which means that they are spatially static
when integrated forward in time. However, all solu-
tions in the Σ isotropy subgroup are highly constrained;
thus they contain organised symmetric streaks staggered
with vortices. Though there is strong spanwise inflection
within the flow fields, it is symmetric with respect to σx.

The relative periodic orbits belong to the Θ4-group, since
they propagate in the streamwise direction. It is thought
that turbulent trajectories visit relative periodic orbits
most frequently and derive their structure from these so-
lutions more so than any of the other types of solution,
as discussed in the work of Budanur et al. [40].

IV. SOLUTIONS FROM PROJECTIONS OF
TIME-SERIES DATA

We now focus our attention on chaotic trajectories in
state space and apply the project-then-search methodol-
ogy to quasi-recurrent segments of time-series data. The
results are given in table III and solutions are organised
by increasing time-period. We find one new orbit and re-
discover three previously known ones. Additionally, we
comment on the drawbacks of using only the recurrence
plot to search for initial conditions when looking for pe-
riodic orbits.

The full process of applying the project-then search
method on a chaotic trajectory involves an extra step
of using a recurrence plot. We generate the recurrence
plot before the state space portrait, i.e. not knowing that
there are periodic orbits nearby or if the selected seg-
ments are truly quasi-recurrent in state space. The or-
dering of visualisation is significant as our selection of the
quasi-recurrent segment would otherwise be influenced
by its location in state space. Thus, the altered project-
then-search method for a chaotic trajectory is as follows:

1. We construct a recurrence plot to look for quasi-
recurrent patterns, in an L2 sense, within time-
series data.

2. We generate projections at four equispaced loca-
tions along the segment, see §II C for more details.

3. The resultant projections onto the resolvent modes
are used as initial conditions in the search for peri-
odic orbits.

The recurrence plot method involves looking for the
minima of ‖u(t)−u(t+∆t)‖, where u(t+∆t) = f∆t(u(t))
[46]. By way of example, we select a section from tur-
bulent time-series data and generate a recurrence plot in
figure 4a. The range between t = 740 and t = 830 is
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highlighted as our quasi-recurrent section, which is also
emphasised as a segment along a trajectory in state space
in figure 4b. It becomes clear that the segment is not
as recurrent in state space as the recurrence plot sug-
gests. Viewing such quasi-recurrent segments in state
space shows that the recurrence plot method may not be
wholly suitable for finding initial condition candidates.
As such, we believe it is best to use both recurrence plots
and state space portraits in conjunction to identify quasi-
recurrent segments.

The complete plane Couette flow state space portrait
in figure 3 shows that the periodic orbits occupy the
turbulent region of state space. Following the work of
Budanur et al. [40], we speculate that these periodic or-
bits have a strong influence on the dynamics of turbulent
trajectories. From figure 3, we can posit that chaotic
trajectories (shown as grey lines) spend the majority of
their lifetimes in the neighbourhoods of the periodic or-
bits and upper branch equilibria. Chaotic trajectories are
concentrated in a central region that the periodic orbits
surround. P14 gives an indication that if the project-
then-search method were to be applied to other quasi-
recurrent segments, at more locations, we may be able
to find more orbits in the core of the turbulent region of
state space.

Budanur et al. [40] demonstrate that the recurrent
dynamics underlying a turbulent trajectory can be de-
scribed by relative periodic orbits. Sharma et al. [48]
show that projections of known solutions onto resolvent
modes generate simplified representations of exact coher-
ent states. Therefore, projections of turbulent time-series
data onto resolvent modes yields flow fields that are rep-
resentative of the low-dimensional dynamics in the par-
ticular region of state space that the segment occupies.
Using these ideas, we speculate that projections of turbu-
lent time-series data are approximations of nearby solu-
tions and hence make good initial conditions for a NKH
search to find exact coherent states in neighbourhood of
particular segments of trajectories.

V. CONCLUSIONS

We successfully used projections of known solutions
and segments of chaotic trajectories onto resolvent modes
to find more solutions that give structure to the turbulent
region of state space for plane Couette flow. New sets of
equilibria were added to the collection of known exact
coherent states found by [15, 22, 29, 50], and new sets
of periodic orbits were added to the inventory of orbits
found previously by [21, 37, 38] in plane Couette flow.

The key methodological advance reported here is the
computationally cheap method by which initial guesses
can be generated for the NKH search. The resolvent
model was used to generate low-rank projections of
known solutions and segments of chaotic flows which were
then used as seeds for the NKH algorithm. With the
project-then-search method we found periodic orbits and
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FIG. 4: The recurrence plot of turbulent-time-series
data is shown in (a) with ∆t = 100. The same segment
is highlighted in state space as a black line (b) to show

that it is not as recurrent as initially considered.

equilibria with a success rate of 91% and 96%, respec-
tively. If the search succeeded in finding new solutions,
then the project-then-search method was applied to the
new equilibria, and so on until we obtained a closed set
and no new equilibria were discovered. Note that it took
approximately two minutes of CPU time to generate a
projection of an equilibrium solution at a particular rank,
and it took approximately 20 minutes to generate a pro-
jection of a periodic orbit at a particular rank. The low
computational cost of the projection process made it ef-
fective in obtaining numerous initial states.

It is our belief that the project-then-search method’s
success in finding new solutions may be due to the com-
bination of the projections’ physical properties and their
location relative to other solutions in state space. The
energetically dominant physical characteristics of known
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solutions were maintained in the projections due to the
nature of the resolvent model. Searches initiated with the
low-rank projections produced new solutions in the state
space neighbourhoods of known solutions since the pro-
jections sit near the unstable manifolds of other solutions
and the DNS phase of the NKH algorithm allowed them
to follow the directions of nearby manifolds. Note that
all solutions look very similar, whether they are periodic
or steady state; this is attributed to the fact that we used
a minimal channel as our domain since it constrained the
coherent structures that could be observed.

As stated by Kawahara et al. [1] and Budanur et al.
[40], it is beneficial to our understanding of turbulence
in a given flow geometry to catalogue these solutions.
Based on this notion and armed with a basis that effi-
ciently captures the important features of flow structure,
the project-then search method can be used to find more
exact coherent states in other flow geometries as well.

One drawback of the project-then-search method for
finding solutions from segments of chaotic trajectories
is that it is used in conjunction with the recurrent plot
technique, which computes differences in velocity fields
based on an energy norm. The projections are generated
on segments that we believe to be recurrent in an energy
sense, though they may not be recurrent in state space as
we show in figure 4. Using the projections in conjunction
with a Poincaré map may be a better option for future
work.

We expect the project-then-search method to be suc-
cessful at finding more exact coherent states at other
Reynolds numbers, here we restricted ourselves to projec-
tions at three previously determined Reynolds numbers.
The same can be said of the periodic orbits; though we
restricted our searches at Re = 400 and started only from
three previously known periodic orbits. We expect that
there are many more periodic orbits in the turbulent re-
gion of state space that can be found from projections
of other previously known and our new found periodic
orbits, as well as other dynamically relevant segments of
turbulent trajectories. The exact reasoning behind the
success of the project-then-search method is the topic of
future work.

This work has been supported by the Air Force Of-
fice of Scientific Research (European Office of Aerospace
Research and Development) under the award FA9550-
14-1-0042. We would like to thank Prof. John Gibson
for providing his code, equilibrium solutions and help-
ful comments. We would also like to acknowledge Prof.
Edgar Knobloch for his guidance and Dr. Davide Lasagna
for his probing questions and useful recommendations.
This work was completed in part at the Kavli Institute
for Theoretical Physics, with the support of the National
Science Foundation under Grant No. NSF PHY11-25915.

Appendix A: Symmetries in plane Couette flow

A symmetry operation σ is a linear transformation of
the state of a dynamical system which commutes with
integration forward in time,

σu̇ = σf(u) = f(σu). (A1)

We define an isotropy group of u as a group that contains
all symmetries that satisfy σu = u.

The NSE retain their form under symmetry trans-
formations; on an infinite domain and in the absence
of boundary conditions, the NSE are equivariant un-
der translations in any direction, reflections in any given
plane, rotations about any given axis and inversion
through the origin (u→ −u) [52]. The continuous sym-
metry transformations of the full unrestricted NSE are
lost if they are limited to [−1, 1] in the wall-normal di-
rection with the y-Dirichlet, x,z-periodic boundary con-
ditions of plane Couette flow. Solutions in an equivariant
system (such as plane Couette flow, which is highly sym-
metric) can satisfy all of the system’s symmetries, a sub-
group of the symmetries or none of the symmetries. Typ-
ically, a turbulent trajectory has no symmetries, i.e. its
isotropy group consists of the identity operation {e} only.
The laminar solution in plane Couette flow obeys every
continuous symmetry that the geometry allows, this sym-
metry group is defined as Γ (see [53] for full derivation).

For plane Couette flow, the NSE are invariant under
reflection with respect to the yx-plane, rotation about the
z-axis by π, pointwise-inversion through the origin and
continuous translations in the x and z axes. Accordingly,
isotropy groups of the exact coherent states reported here
contain combinations of reflection, rotation, pointwise-
inversion and translation, defined as

σz : [u, v, w](x, y, z)→ [u, v,−w](x, y,−z),
(A2a)

σx : [u, v, w](x, y, z)→ [−u,−v, w](−x,−y, z),
(A2b)

σxz : [u, v, w](x, y, z)→ [−u,−v,−w](−x,−y,−z),
(A2c)

τ(δx, δz) : [u, v, w](x, y, z)→ [u, v, w](x+ δx, y, z + δz),
(A2d)

respectively.
The symmetries that a particular solution adheres to

dictate the type of solution it is. The reflection symme-
try reverses the spanwise velocity, w, therefore any solu-
tion that is invariant under σz cannot have a spanwise
wavespeed. Similarly, the rotation symmetry reverses the
streamwise velocity, u, therefore for any solution that is
invariant under σx does not permit a streamwise travel-
ling wave or relative periodic orbit. Consequently, if a so-
lution is invariant under σxz it must have zero wavespeed
in x and z. This implies that the solutions that obey σxz
must be either equilibria or periodic orbits since they are
spatially static. All of the equilibria in this study satisfy
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σxz, since the equilibria are derived from the solutions
found by [15, 22], who sought equilibria that obeyed σxz.
All of the periodic orbits also satisfy σxz.

The periodic boundary conditions impose discrete
translation symmetries on the equilibria and periodic or-
bits. If a field is fixed under a discrete shift τ(Lx/n, 0),
it is periodic on the smaller spatial domain x ∈
[0, Lx/n], n ∈ Z+, similarly for z. Using half-cell shifts in
the streamwise (∆x = Lx/2) and spanwise (∆z = Lz/2)
directions only, the following symmetry operations can
be defined

σx = θ1 = [−u, −v, w](−x, −y, z), (A3a)

τxσx = θ2 = [−u, −v, −w](−x+∆x, −y, −z),
(A3b)

τxzσx = θ3 = [−u, −v, w](−x+∆x, −y, z +∆z),
(A3c)

τxσz = θ4 = [u, v, −w](x+∆x, y, −z), (A3d)

τzσz = θ5 = [u, v, −w](x, y, −z +∆z), (A3e)

τzσxz = θ6 = [−u, −v, −w](−x, −y, −z +∆z), (A3f)

τxz = θ7 = [u, v, w](x+∆x, y, z +∆z), (A3g)

These operations are used to define the isotropy groups to
which all solutions in our work belong. For more details
on the other isotropy groups of plane Couette flow see
[53]. All exact solutions found in the present study belong
to one of the following isotropy subgroups,

Θ = {e, θ1, θ2, θ3, θ4, θ5, θ6, θ7}, (A4a)

K = {e, θ1, θ5, θ6}, (A4b)

Σ = {e, θ3, θ4, θ6}, (A4c)

Θn = {e, θn}. (A4d)

Here Θn ⊂ Σ,K ⊂ Θ ⊂ Γ. It should be noted that
the isotropy subgroup Σ is called S in the works of
[14, 15, 22], and Θ can also be expressed as Σ×{e, τxz}.
The groups defined above are only some of the symme-
try subgroups of Γ. Other subgroups might also play an
important role in the turbulent dynamics in plane Cou-
ette flow; there may be other exact solutions that obey
different symmetries, or none at all.
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