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The beneficial role of noise in promoting species coexistence and preventing extinction has been
recognized in theoretical ecology but previous studies concerned mostly about low-dimensional sys-
tems. We investigate the interplay between noise and nonlinear dynamics in real-world complex
mutualistic networks with a focus on species recovery in the aftermath of a tipping point. Par-
ticularly, as a critical parameter such as the mutualistic interaction strength passes through the
transition point, the system collapses and approaches an extinction state through a dramatic re-
duction in the species populations to near zero values. We demonstrate the striking effect of noise:
when the direction of the parameter change is reversed through the tipping point, noise enables
species recovery which otherwise would not be possible. We uncover an algebraic scaling law be-
tween the noise amplitude and the parameter distance from the tipping point to the recovery point,
and provide a physical understanding through analyzing the nonlinear dynamics based on an effec-
tive, reduced-dimension model. Noise, in the form of small population fluctuations, can thus play a
positive role in protecting high-dimensional, complex ecological networks.

I. INTRODUCTION

Ecological systems in the real world, in addition to be-
ing fundamentally nonlinear [1–3], are constantly subject
to various random forces, rendering relevant and impor-
tant studies of the effects of noise on ecological phenom-
ena predicted in the purely deterministic framework [4–
13]. For example, the benefits of noise to the health of
low-dimensional, patch type of ecological systems were
previously recognized [7, 8] where, in a spatial environ-
ment, inferior but rapidly moving species can coexist
with superior but relatively stationary species, provided
that there are spatiotemporal variations in the fitness. A
seminal theoretical work on a competition model of two
species, one inferior and another superior, in a two-patch
environment demonstrated that deterministic chaotic dy-
namics can provide the required random or stochastic
spatiotemporal variations in fitness [14]. With two pop-
ulations in two patches, the model is a four-dimensional
discrete-time nonlinear map. The dynamical mechanism
underlying the coexistence was later found to be desyn-
chronization and intermittency [15, 16]: when the popu-
lation evolution of the inferior species synchronizes with
that of the superior species, the abundance of the former
tends to decrease. In fact, long term synchronization can
make the inferior species extinct. However, due to asym-
metry and chaos, desynchronization bursts occur in an
intermittent fashion, effectively preventing the popula-
tion of the inferior species from collapsing. For this low-
dimensional system, the presence of noise was demon-
strated to be beneficial to coexistence and a stochastic-
resonance like phenomenon was uncovered in which an
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optimal level of noise can significantly enhance the coex-
istence and thereby promote species diversity [7, 8].

The concept of stochastic resonance was originally pro-
posed [17] to explain the Quaternary glacial problem.
Generally, it is a phenomenon in which the presence of
internal or external noise in a nonlinear system can en-
hance the response of the system output [17–28]. The
paradigmatic setting to demonstrate stochastic resonance
is a bistable system, which occurs when a periodic force
is applied with a large broadband random force (e.g.,
noise). The system response is driven by a combination
of two forces of competition/collaboration, switching the
system between two stable states. In mutualistic systems,
additive white Gaussian noise constantly stimulates the
system in the extinction state to drive it to a normal
state.

Real-world ecological systems typically involve a large
number of species and thus are high-dimensional, whose
description often requires, e.g., hundreds of coupled non-
linear differential equations. In view of the demonstrated
positive role of noise in low-dimensional systems, two per-
tinent questions arise: (1) can the benefits extend to
high-dimensional ecosystems? and (2) if the answer is
affirmative, in what quantitative way? Generally, this is
a difficult problem because of the scarcity of reasonably
detailed mathematical models and the difficulties of an-
alyzing and even simulating such models in the presence
of noise. However, we find one class of recently developed
ecological models: complex mutualistic networks [29–37]
for which a generic, detailed mathematical description is
available. To take the advantages of this model and to
investigate the effects of noise in a concrete way, we focus
on the problem of species recovery in the aftermath of a
tipping point transition.

Mutualism is a close relationship between organisms
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of two different species in which both species benefit
from the interactions [38, 39]. Mutualistic networks are
widely found in ecosystems. There are two typical re-
lationships of mutualistic interactions: service-resource
and service-service relationships. Typical species in the
service-resource relationship are pollinators and plants,
such as bees and plants, where plants provide the bees
with pollen, guaranteeing their survivability, and the
pollen stuck in the bees hairy body pollinates the next
plant. In a service-service relationship, species provide
service to each other, such as clown fish and anemone,
where anemones afford shelter to clown fish to protect
them from their predators and, because of the presence
of clown fish, anemones are protected from the butterfly
fish.

Nonlinear ecological systems can exhibit a tipping
point at which a transition from a normal to a catas-
trophic state occurs when a system parameter passes
through a critical point [32, 36, 40–53]. Complex mutual-
istic networks of pollinators and plants present a paradig-
matic class of such systems [32, 36]. Gradual deteriora-
tion of the environment as a result of human activities
can cause some system parameters to drift. Depending
on the specific parameter, there can be distinct scenarios
of system recovery in the aftermath of a tipping point
transition [54]. For example, a tipping point can occur
when the mutualistic interaction parameter is reduced
through a critical point, below which the species abun-
dances become near zero, driving the system effectively
into an extinction state. In this case, if the environment
is improved as characterized by an increase in the mutu-
alistic parameter back through the tipping point, without
external influences the system will not be able to recover
even when the parameter value has been restored into
the originally healthy regime of coexistence.

The main point of this paper is that, in the after-
math of a tipping point transition, if random noises in
the form of stochastic fluctuations in the species abun-
dances are present, then species recovery will be possi-
ble. In particular, let γ > 0 be the normalized mutu-
alistic interaction strength and γtp be its critical value
at the tipping point transition, as shown schematically
in Fig. 1. For γ < γtp, both the pollinator and plant
species are in the extinction state in that their abun-
dances are near zero. Intuitively, for species recovery to
occur, it is only necessary to increase the value of γ be-
yond γtp. However, since the network system is already in
the extinction state, recovery will not be possible simply
by strengthening the mutualistic interaction beyond the
tipping point value. We find that, when random noise
is present, species recovery is possible when the value
of γ exceeds γtp. Let σ be the noise amplitude and γc
be the recovery point that depends on σ: γc = γc(σ).
Furthermore, let ∆γ(σ) ≡ γc(σ) − γtp. Qualitatively, a
more significantly improved environment means a larger
value of the mutualistic interaction strength. Likewise, a
small value of ∆γc(σ) means that species recovery can be
achieved even without substantial and dramatic improve-
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FIG. 1. A schematic illustration of tipping point transition
and species recovery in a mutualistic network. Illustrated is
the behavior of the abundance of a typical species in the net-
work versus the normalized strength γ of mutualistic interac-
tion. A tipping point transition occurs as the value of γ is
decreased through a critical value γtp, at which the species
abundance decreases to a near zero value. Recovery in the af-
termath of the tipping point means increasing γ from a value
less than γtp to some value above it. In the absence of noise,
recovery is not possible, as stipulated by the fundamental
nonlinear dynamics responsible for the tipping point transi-
tion (see Fig. 10 and explanations). When noise of sufficient
amplitude σ is present, species recovery in a finite time can
occur at the point γc that depends on σ. The main result of
this paper is scaling law (1), which governs how the parameter
difference ∆γ ≡ γc − γtp scales with the noise amplitude.

ment in the environment, which is desired. The quantita-
tive result of this paper is the following algebraic scaling
law between ∆γ(σ) and σ:

∆γ(σ) ∼ σ−p, (1)

where p > 0 is the algebraic scaling exponent. (Numer-
ically, we find that, for real-world mutualistic networks,
the value of the exponent is about one.) The significance
of the scaling law (1) is that the value of ∆γc(σ) can be re-
duced by increasing the noise amplitude, making recovery
more effective. We uncover the scaling law (1) through
simulations of a detailed population model of pollina-
tor and plant species for a number of high-dimensional,
empirical mutualistic networks. We then obtain a physi-
cal understanding of the scaling law through a nonlinear
dynamics based argument and insights from a reduced,
two-dimensional model [36]. The analysis also predicts
the value of the algebraic scaling exponent p. Our results
establish the beneficial role of noise in high-dimensional
ecological systems in a quantitative way, with implica-
tions to ecosystem management, conservation, and bio-
logical control. More broadly, since tipping point is a
general phenomenon in nature [55], our work provides
useful insights into the significant problems of mitigat-
ing tipping point transitions and recovering from the af-
termath in a variety of natural and engineering systems
through exploiting random noise or controlled stochastic
perturbations.
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II. MODEL OF COMPLEX MUTUALISTIC
NETWORKS

Mathematically, a pollinator-plant mutualistic net-
work can be described [29–36] by the Holling type of dy-
namics [56, 57]. When the network is subject to indepen-
dent Gaussian white noises, the mathematical equations
governing the evolution of species abundances are

dXi

dt
= α

(X)
i Xi −

SX∑
j=1

β
(X)
ij XiXj + (2)

∑SY

k=1 γ
(X)
ik Yk

1 + h
∑SY

k=1 γ
(X)
ik Yk

Xi + µX + ηi(t),

dYi
dt

= α
(Y )
i Yi −

SY∑
j=1

β
(Y )
ij YiYj + (3)

∑SX

k=1 γ
(Y )
ik Xk

1 + h
∑SX

k=1 γ
(Y )
ik Xk

Yi + µY + ξi(t),

where Xi and Yi are the abundances of the ith pollina-
tor and ith plant, SX and SY are the numbers of pol-

linator and plant species, respectively, α
(X)
i and α

(Y )
i

are the intrinsic growth rate in the absence of intraspe-
cific competition and any mutualistic effect, βii and βij
(i 6= j) are parameters characterizing intraspecific and in-
terspecific competition, respectively, and the parameters
µX & 0 and µY & 0 characterize species migration. For
the pollinator-plant system, intraspecific competition is
typically stronger than interspecific competition [32, 33]:
βii � βij . The saturation effect is quantified by the half-
saturation constant h. Saturation describes the situation
where the beneficial effect of the mutualistic interactions
on the population growth saturates when the mutualistic
partners have a high abundance. It is characterized by
the half-saturation density of Holling type-II functional

response. The key parameters γ
(X)
ik and γ

(Y )
ik are the

strength of the mutualistic interaction, with γ
(X)
ik = 0 and

γ
(Y )
ik = 0 corresponding to the case of absence of mutual-

istic interactions. In general, the mutualistic interaction
strength depends on the degree of the node as [36]

γij = aij
γ

(Ki)ρ
, (4)

where γ is the normalized strength and aij ’s are the ele-
ments of the network adjacency matrix: aij = 1 if there is
an interaction between pollinator i and plant j; otherwise
aij = 0. The parameter Ki is the number of mutualis-
tic links associated with species i and ρ determines the
strength of the trade off between the interaction strength
and the number of interactions. If there is no trade off
(i.e., ρ = 0), the network topology will have no effect
on the strength of the mutualistic interactions. In con-
trast, a full trade off (ρ = 1) means that the interaction
strength is weighed by the nodal degree so the network
topology will affect the species gain from the interactions.

The terms that involve the mutualistic interactions for
each species can then be written as [36]

SY∑
j=1

γ
(X)
ij Yj =

SY∑
j=1

γ

(K
(X)
i )ρ

aijYj , (5)

SX∑
j=1

γ
(Y )
ij Xj =

SX∑
j=1

γ

(K
(Y )
i )ρ

aijXj . (6)

In Eqs. (2) and (3), ηi(t) and ξi(t) are independent
Gaussian white noise with the following statistical prop-
erties:

〈ηi(t)〉 = 0, (7)

〈ηi(t)ηi(t)′〉 = 2σ2δ(t− t′),
〈ξi(t)〉 = 0,

〈ξi(t)ξi(t)′〉 = 2σ2δ(t− t′),

where σ is the noise amplitude and δ(t) is the δ-function.
The phase space dimension SX + SY of the mutualis-
tic networked system as described by Eqs. (2) and (3) is
typically high, making a mathematical analysis difficult.
However, an effective, two-dimensional reduced model is
available [36], which captures the essential dynamics as-
sociated with a tipping point transition. The reduced
model subject to noise can be written as

dx

dt
= αx− βx2 +

〈γx〉y
1 + h〈γx〉y

x+ µ+ η(t), (8)

dy

dt
= αy − βy2 +

〈γy〉x
1 + h〈γy〉x

y + µ+ ξ(t), (9)

where x and y are the effective or average abundances
of the pollinator and plant species, respectively, α is the
effective growth rate for the reduced system, β accounts
for the combined effects of intraspecific and interspecific
competition, and µ characterizes the migration effect of
the species. The key parameters are the two effective mu-
tualistic interaction strength 〈γx〉 and 〈γy〉, which are ob-
tained through properly weighed averages of the strength

γ
(X)
ik and γ

(Y )
ik in the original empirical network [36].

For both the full and reduced models, we use the stan-
dard, second order algorithm for solving stochastic dif-
ferential equations [58] to investigate the effect of noise
on system recovery in the aftermath of a tipping point
transition.

It is worth clarifying the difference between the eco-
logical systems, the modeled networks and the models
used to describe the system’s dynamics. In this regard,
the purpose of this paper is to develop a mathematical
and computational framework to study real-world em-
pirical bipartite mutualistic networks of pollinators and
plants with a particular focus on the effect of noise on
the recovery from an extinction state to a normal abun-
dance state. In a bipartite network, the nodes are di-
vided into two disjoint sets in which every link connects
a node in one set to a node in the other. The bipartite
mutualistic networks that we study are an idealized but
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FIG. 2. Illustration of a representative real-world mutualistic
network. Upper panel: bipartite network structure of network
C (from North Carolina, USA as described in the text) with
SX = 44 pollinators (red dots), SY = 13 plants (blue dots),
and L = 143 mutualistic links (black lines). The size of a
red or a blue dot is proportional to the degree of this node.
The actual photo images of seven pollinator and three plant
species are presented. Lower panel: matrix representation of
the network, where the vertical and horizontal indices repre-
sent pollinator and plant species, respectively. A yellow cell
means the existence of a specific mutualistic link while a dark
green cell indicates lack of such a link. Species are ordered
according to their number of interactions.

effective model of the natural system and, of course, it
cannot represent completely a real empirical system. For
instance, mutualistic interactions differ among different
pollinator-plant combinations. This difference is mainly
manifested in the following aspects [59]: the pollinator
abundances, the differences in pollinators preference for
plants, and whether a pollinator can visit plants of a

given species as well as the distance of movement for the
visiting process [60, 61]. The first aspect is the most
important because it is indicative of the pollinator’s ef-
fectiveness to pollinate large abundance of plants. The
other two aspects involve the characteristics of the pol-
linators. One could get quantitative information about
the characteristics of every pollinator based on the mu-
tualistic links [62] in the empirical networks. However,
the pollination ability of a give pollinator is complicated.
Not only do the pollination abilities of different pollina-
tor species differ, but the ability of the same pollinator
species is time and state dependent. Consequently, mea-
suring the actual pollinator characteristics is difficult and
its inclusion in the model is not straightforward [63]. Our
Eqs. (2) and (3) are the proper model to investigate the
pollinator-plant bipartite mutualistic network including
stochastic effects. The pollinator-plant network is best
described by Holling type-II dynamics [29–36, 56, 57].

III. NOISE-ENABLED SPECIES RECOVERY
AND SCALING LAW

A. Numerical demonstration of noise-enabled
species recovery and scaling law

1. Empirical mutualistic networks

We study in detail four real-world mutualistic net-
works derived from empirical data collected from four
different geographic regions [available from the Web of
Life database (http://www.web-of-life.es)]: (1) network
A (SX = 61 and SY = 17 with the number of mutualistic
links L = 146) from Hicking, Norfolk, UK [64], (2) net-
work B (SX = 38, SY = 11, and L = 106) from Tenerife,
Canary Islands [65], (3) network C (SX = 44, SY = 13,
and L = 143) from North Carolina, USA [66], and (4)
network D (SX = 42, SY = 8, and L = 79) from Heste-
haven, Denmark [67]. A schematic illustration of one of
the networks is presented in Fig. 2.

We numerically demonstrate the phenomenon of noise-
enabled species recovery and the algebraic scaling law (1).
We choose the range of noise to be [10−4, 10−1]. In the
aftermath of a tipping point transition, i.e., γ < γtp, the
abundances of all species approach some near zero values.
In this case, when one attempts to recover the species by
strengthening the mutualistic interactions (e.g., through
significant improvement of the environment) so that the
value of γ becomes larger than γtp, without noise the
network remains in the extinction state with near zero
abundance values determined by the small migration ef-
fect quantified by the near-zero migration parameters µX
and µY . However, with noise the species recovery can
occur as the value of γ exceeds γtp, as shown in Fig. 3,
effectively a bifurcation diagram for both the full net-
work and the reduced model. Representative time series
of the species abundances associated with the recovery
process are shown in Fig. 4. For the particular value of
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FIG. 3. Noise-enabled species recovery for the four empirical
mutualistic networks. (A-D) The recovery curves of species
abundances for networks (A-D) described in the text, respec-
tively. The light red and light blue curves are the pollinator
and plant abundances versus the normalized mutualistic in-
teraction strength, respectively, as it is increased from a value
below the tipping point (in the aftermath of a tipping point
transition). The transition points for networks (A-D) are ap-
proximately 0.45, 0.54, 0.47, and 0.58, respectively. The pa-

rameter values of the full system are α
(X)
i = α

(Y )
i = −0.1,

β
(X)
ii = β

(Y )
ii = 1, h = 0.2, ρ = 0.5, µX = 10−4, and

µY = 10−4. The noise amplitude is σ = 0.1. The values
of the species abundances are collected after a long simula-
tion time (T = 400) that guarantees the convergence of the
networked system to a stable steady state. The dark red and
blue curves with error bars are the results from the corre-
sponding 2D reduced model. The generic parameter values of
the reduced model (same for all the networks) are α = −0.1,
β = 1, h = 0.2, µ = 0.0001, and σ = 0.1, and the initial
conditions are X(0) = 10−3 and Y (0) = 10−3. The effective
mutualistic parameters for the four empirical networks are:
(A) 〈γx〉 = 12.638 and 〈γy〉 = 5.118, (B) 〈γx〉 = 10.036 and
〈γy〉 = 5.672, (C) 〈γx〉 = 12.118 and 〈γy〉 = 6.092, and (D)
〈γx〉 = 12.638 and 〈γy〉 = 5.118.

the noise amplitude used (σ = 0.1), recovery occurs in
relatively short time (comparing with the total simula-
tion time T = 400).

The model contains a large number of parameters. We
choose to vary the most sensitive parameters that best
highlight the dynamical behavior of the empirical net-
work for the recovery process. The ones with fixed values
are rather insensitive, not changing the scaling law and
the results when varied. For instance, we have changed
the parameter h, but its value does not affect the final
result and the algebraic scaling law. The value of β has
no effect on the scaling law either. We choose five differ-
ent negative values of α to present the scaling law. The
abundances of all species do recover, as shown in Figs. 3
and 4, where the term “recovery” is used to describe the
situation where all the species must recover from an ex-
tinction state. The critical value of γ0 is one that leads

FIG. 4. Examples of noise-enabled species recovery. Panels
(A-D) correspond to networks (A-D), respectively. For a given
network, the time series of all pollinators (red curves) and
plants (blue curves) are shown, where the initial abundances
of the species are near zero values determined by the small
migration effect (corresponding to the low-abundance stable
state - see Fig. 10), which are randomly chosen from the small
interval [0, 10−3]. For all cases, the value of the normalized
mutualistic interaction strength is γ = 0.8. Without noise,
species recovery does not occur as all the abundances remain
at near zero values. Shown are the recovery behavior for σ =

0.1. The generic network parameters are α
(X)
i = α

(Y )
i = −0.1,

β
(X)
ii = β

(Y )
ii = 1, h = 0.2, ρ = 0.5, µX = 0.0001, and µY =

0.0001.

the abundances to recover to the values in a normal state.
Figure 3 shows that, with the increase of γ0, the abun-
dances of all the species will increase and exceed the val-
ues at the tipping point. The light red and light blue
curves represent all the species of pollinators and plants
in a full network, respectively. The dark red and dark
blue curves are the average abundances of all the polli-
nators and plants in the network, respectively. Figure 4
demonstrates that the abundances will recover by noise
perturbation. Moreover, when the unstable steady state
is overcome, the abundances will escape from the low-
abundance stable state (extinction state) to the high-
abundance stable state (normal state) and will not go
down again unless the noise amplitude becomes unrea-
sonably large. From the point of view of nonlinear dy-
namics, this is a multistable system since there are two
attractors for γ > γtp with their own basins of attraction:
one is the high-abundance stable state corresponding to
the normal state and another is the low-abundance stable
state corresponding to the extinction state. The reason
for species to remain in the high-abundance stable state
lies in the bistable nature of the dynamics away from
the tipping point. The relationship between the noise
strength and mutualistic interactions allows for hopping
between both stable asymptotic states. Unstable steady
state sits in between the two stable steady states serv-
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FIG. 5. Scaling law quantifying noise-enabled species recov-
ery in complex mutualistic networks. (A-D) Shown are the
scaling law (1) for networks (A-D), respectively, where the
relevant quantities ∆γ and σ are displayed on a logarithmic
scale. For each network, two sets of data are shown: those
from the full network model (black) data points and the cor-
responding linear fits and those from the reduced model (or-
ange) data points and the corresponding linear fits). For each
set, five different cases corresponding to five different values

of α: α
(X)
i = α

(Y )
i = −0.5,−0.4,−0.3,−0.2,−0.1 for the full

network model and α = −0.5,−0.4,−0.3,−0.2,−0.1 for the
reduced model, are shown. The generic network parameters

are β = 1, β
(X)
ii =β

(Y )
ii = 1.0, h = 0.2, and ρ = 0.5. For each

value of the noise amplitude σ, simulations are carried out
for a long time interval (T = 400), which guarantees that the
system has approached a stable steady state by then. The
reasonably good linear fits suggest the algebraic scaling law
(1), and the partial overlap between the black and orange re-
gions indicates the ability of the reduced model to capture
the essential dynamics of the full networked system.

ing as the boundary separating the two basins of attrac-
tion. The tipping point transition marks the collision
between the unstable state and the stable state species
abundances. When the system approaches asymptoti-
cally a stable state, if the external interference of the sys-
tem has not been increased, it will not cross the boundary
to approach another state. As a result, the species are
kept in the high-abundance stable state after transiting
through tipping point in the recovery process.

Examples of the algebraic scaling law (1) are shown in
Fig. 5, where five sets of data points and their linear fits
from both the full network and the reduced model are
shown for five respective values of the intrinsic growth
rate α. The reason to choose negative α values is that,
when the species are in an extinction state, all the abun-
dances are zero or nearly zero. In an adversarial environ-
ment with no mutualistic interactions, a negative growth
rate is more ecologically meaningful. For instance, in-
tensive agricultural activities, changes in land use, pes-
ticides, alien invasive species, diseases, pests and climate
change, all these impacts in a local ecological system will
cause a negative growth of pollinators.

The impacts of plants and pollinators in the natural
environment are different. To address this issue, we com-
pare two different conditions: (a) plants having smaller
σ values than pollinators, and (b) individual species in
the empirical networks having different σ values, e.g.,
chosen from the range [10−4, 10−1]. Figure 6 shows the
recovery process for plants and pollinators under differ-
ent noise strengths. In mutualistic networks, pollina-
tors are insects like bees, which are more environmen-
tally affected than most plants. We thus associate small
noise strength with plants and larger noise with pollina-
tors. For illustrative purposes, we consider three com-
binations of plant and pollinator noise: (10−2, 10−1),
(10−3, 10−1), and (10−4, 10−1). For these three cases,
while the recovery slopes are slightly different, the species
abundances and the essential results remain unaffected.
We also consider a more complex situation where, in
the natural state, species receive different noise inputs,
which is implemented by choosing the noise strength of
each species in the empirical network randomly from the
range [10−4, 10−1]. Calculating the recovery and collapse
curves for the four empirical networks, we obtain essen-
tially the same results, indicating that the characteristic
features of species recovery and collapse are not affected
by the amount of noise received, provided that the noise
strength is within a reasonable range.

2. Random mutualistic networks

We address the issue of nestedness in ecological net-
works by comparing the recovery dynamics between ran-
dom and empirical mutualistic networks. Nestedness is
biogeographic and it is another important characteris-
tic of empirical networks [38, 68, 69], which has been
associated with the mutualistic interactions from differ-
ent species. It was thought that nestedness can promote
biodiversity in mutualistic systems through increasing
the capability of the pollinator populations to withstand
harsh conditions. In Ref. [38], a spectral graph approach
was proposed based on the quality of bipartite networks
to study nestedness, with the result that nested mutu-
alistic networks have the minimal stability. Another re-
sult was that the binary nested quantitative preference
of complex ecological networks is non-nested, indicating
limited pollinator overlap of favored plants in mutualistic
networks. Ecological systems could avoid species compe-
tition by dividing the species preferences with the condi-
tion of binary constraint, which is beneficial to resource
allocation in the system.

We study the difference among random networks with
different numbers of species, as shown in Fig. 7. As the
level of nestedness [38] is increased (see Appendix B for a
method to systematically vary the network nestedness),
the value of γ0 in the recovery process decreases. For
networks with different species abundances, the recovery
process is similar: in the presence of noise, a tipping point
transition occurs when the value of γ0 decreases through
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FIG. 6. Recovery process when pollinator and plant species are subject to different levels of noise. (A-C) For empirical network
A, pollinator (light red) and plant (light blue) abundances versus the normalized mutualistic interaction strength under the
following three combinations of plant and pollinator noise: (10−2, 10−1), (10−3, 10−1), and (10−4, 10−1). Parameter values are

α
(X)
i = α

(Y )
i = −0.5, β

(X)
ii =β

(Y )
ii = 1.0, h = 0.2, ρ = 0.5, and µX = µY = 10−4. The dark red and blue curves are the average

abundance of plants and pollinators, respectively.

a critical value γc that depends on the noise amplitude
σ. For a random network with two groups of species,
the dynamical behavior is qualitatively the same as that
of the empirical network. However, as the network be-
comes more nested, the critical parameter value causing
the network collapse becomes smaller, and the value of
the network recovery point also becomes smaller.

(A) (B)

FIG. 7. Noise induced recovery in random networks with dif-
ferent numbers of plant and pollinator species. (A,B) Recov-
ery curves of species abundances for two different random
networks: one with 61 pollinators and 16 plants, and another
with 44 pollinator and 13 plants. The light red and light blue
curves are the pollinator and plant abundances versus the nor-
malized mutualistic interaction strength, respectively. The

parameter values are α
(X)
i = α

(Y )
i = −0.1, β

(X)
ii = β

(Y )
ii = 1.0,

h = 0.2, ρ = 0.5, and µX = µY = 10−4. The noise strength is
σ = 0.1. The values of nestedness from the top to the bottom
panel are 0.2, 0.5 and 0.7 respectively. The dark red and blue
curves are the average abundance of pollinators and plants,
respectively.

A comparison between random and empirical networks
is illustrated in Fig. 8. The system recovery does not
change as one considers different networks, and the scal-
ing law between ∆γ and the noise strength σ does not
change, as shown in Fig. 9, where the red line is for the
empirical network, and the light blue and dark blue lines
are for random networks with strong and weak nested-
ness, respectively. The scaling between ∆γ and σ for the
random networks is algebraic, as in the case of empirical
networks.

For different empirical networks, the conditions for net-
work recovery are different. However, the number of
links is not the reason for the differences. For instance,

for α
(X)
i = α

(Y )
i = −0.1 and σ = 0.1, the global re-

covery points for the four empirical networks are: (A)
γ0 ≈ 0.378, (B) γ0 ≈ 0.394, (C) γ0 ≈ 0.331, and (D)
γ0 = 0.354, where the respective numbers of mutualistic
links are 146, 106, 143 and 42. There is no direct con-
nection between the number of mutualistic links and the
recovery process.

B. Theoretical understanding of the scaling law

The key to developing a theoretical understanding of
the noise scaling law (1) is the fact that the generic dy-
namical mechanism for the emergence of a tipping point,
regardless of the system dimension, is a saddle-node bi-
furcation, as shown schematically in Fig. 10 where, for
illustrative purpose, the bifurcation parameter is taken
to be the normalized mutualistic interaction strength γ.
The bifurcation occurs in the direction of increasing the
value of γ, where the bifurcation point defines the tipping
point γtp. For γ < γtp, the system possesses only one
stable steady state, one corresponding to the extinction
state in which the species abundances assume near zero
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FIG. 8. Comparison between recovery process in random and
empirical network. (A,B) Recovery curves of an empirical
network and a random network with the same numbers of
species, respectively. The light red and light blue curves are
the pollinator and plant abundances versus the normalized
mutualistic interaction strength, respectively. The parameter

values are α
(X)
i = α

(Y )
i = −0.1, β

(X)
ii =β

(Y )
ii = 1.0, h = 0.2,

ρ = 0.5, and µX = µY = 10−4. The noise strength is σ = 0.1.
The dark red and blue curves are the average abundance of
plants and pollinators.

values that are determined by the small migration effect.
For γ > γtp, there are three steady states in the system:
two stable and one unstable, where the low-abundance
stable state is continuation of the extinction state from
γ < γtp, and the high-abundance stable state and the un-
stable states are created at the saddle-node bifurcation.
There is then multistability [70–78] in the system in that
there are two attractors in the system for γ > γtp, each
with its own basin of attraction. In general, the bound-
ary separating the two basins of attraction is the stable
manifold of the unstable steady state [79, 80].

The dynamical origin of a tipping point transition can
then be understood, as follows. Say the environmental
condition is such that γ is above the critical value γtp and
the system is in the high-abundance stable state. Deteri-
oration of the environment weakens the mutualistic inter-
action, causing a gradual decrease in the parameter γ. In-
sofar as the value of γ stays above γtp, the system remains

FIG. 9. Comparison between scaling laws with noise-enabled
species recovery in empirical and random mutualistic net-
works. The red line is for an empirical network, and the light
blue and dark blue lines are for random networks with a large
and a small value of nestedness, respectively. The parameter

values are α
(X)
i = α

(Y )
i = −0.1, β

(X)
ii =β

(Y )
ii = 1.0, h = 0.2,

ρ = 0.5, and µX = µY = 10−4. The noise strength is σ = 0.1.
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FIG. 10. A schematic illustration of the nonlinear dynami-
cal origin of a tipping point transition and the mechanism of
noise-enabled species recovery. The generic dynamical origin
of a tipping point transition in a complex mutualistic network,
in spite of its high dimension, is a saddle-node bifurcation at
the transition point that creates a high abundance state (a
high-abundance stable state) and an unstable steady state for
γ > γtp. The extinction state (a low-abundance stable state)
is a stable fixed point of the system that exists in the whole
range of the value of the mutualistic interaction strength. For
γ > γtp, there is bistability in the system in that there are
two coexisting stable steady states: one high and another low,
which are “separated” by the unstable steady state. (More
precisely, in the full phase space, the stable manifold of the un-
stable steady state is the boundary that separates the basins
of attraction of the low and high-abundance stable state.) As
illustrated, in order to enable species recovery, fluctuations
in its abundance must be larger than the value of the un-
stable steady state (“overcoming” the barrier), which can be
achieved with noise.

in the high-abundance stable state in spite of a small de-
crease in the overall abundance value. When γ decreases
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through the critical point γtp, the high-abundance stable
state disappears altogether with its basin of attraction,
leaving the low-abundance stable state as the only attrac-
tor in the system with almost the entire available phase
space as its basin of attraction. The system evolves into
the extinction state with the abundances of all its species
decreasing to near zero values in a relatively short time.

Now consider the recovery process. In the aftermath
of the tipping point transition, the system is already in
the low-abundance stable state. As the value of γ is in-
creased through γtp, without any external influence, the
system will remain in this extinction state in spite of the
coexistence of the high-abundance stable state created
at the saddle-node bifurcation. In order for the species
abundances to recover, some external perturbation, e.g.,
noise, is needed to drive the system out of the extinction
state into the basin of the high-abundance stable state.
To accomplish this, the noise amplitude must be suffi-
ciently large to overcome the “barrier,” effectively the
phase space “distance” between the extinction state and
the unstable steady state, as shown in Fig. 10. Since the
height of this barrier decreases with γ, for a larger value
of γ the required noise amplitude for recovery is smaller.
Likewise, noise of a larger amplitude will enable recovery
at a point of γ (denoted as γc in Fig. 10) closer to the tip-
ping point. Thus, qualitatively, we expect ∆γ = γc− γtp
to decrease as the noise amplitude is increased.

Based on the nonlinear dynamical processes depicted
in Fig. 10, we can derive the scaling law (1), as follows.
Let u be the height of the barrier that the system must
overcome with the aid of noise as seen in Fig.6. Under
the influence of Gaussian white noise, in principle this
will happen for arbitrarily small noise amplitude if an
infinite amount of time is allowed. For the system to
recover in a finite time, the probability that the noise
perturbation exceeds u must be appreciable. For white
noise, this probability is given by

ε =
1√
2πσ

∫ ∞
u

exp (− x2

2σ2
)dx =

1

2
erfc(cu), (10)

where erfc(·) is the complementary error function and

c ≡ 1/(
√

2σ). (11)

Using the following representation of the complementary
error function [81]:

erfc(x) ≥ 1

2

√
2e

π

√
χ− 1

χ
e−χx

2

,

where χ > 1 is a constant, we obtain

1

2

√
2e

π

√
χ− 1

χ
exp [−χ(cu)2] . ε.

This gives

(cu)2 & | ln δ|, (12)

where

δ ≡
√

2π

e

χ√
χ− 1

ε.

Utilizing the definition of the constant c in Eq. (11), we
get

u

σ
&

√
2| ln δ|. (13)

Since ε & 0, we have δ & 0. The right side of Eq. (13) is
thus a constant on the order of unity.

FIG. 11. Scaling of the pollinator abundance associated with
the unstable steady state with the strength of mutualistic in-
teraction beyond the tipping point. Panels (A-D) correspond
to networks A-D, respectively. In each panel, the dependence
of Ux on ∆γ for five values of α are displayed. Different lines
represent different values of α. In all cases, the dependence
can be fitted by an algebraic scaling law with the exponent q
that assumes values close to unity.

As postulated in Fig. 10, the barrier height u depends
on ∆γ. What is the scaling relation between the two
quantities? To address this question, we have carried
out a stability analysis of the reduced model (Appendix),
which gives implicit but algebraically sophisticated rela-
tions between the pollinator (Ux) and plant (Uy) abun-
dances and ∆γ. Numerical solutions of these relations
for five representative values of α (the same set of α val-
ues as in Fig. 5) are shown in Figs. 11 and 12 for the
dependence of Ux and Uy on ∆γ, respectively, from the
corresponding reduced models of the four real-world net-
works. In all cases, the dependence can be described by
an algebraic scaling law:

Ux or Uy ∼ (∆γ)−q, (14)

for ∆γ not close to zero, where q > 0 is the algebraic
scaling exponent. Substituting Eq. (14) into Eq. (13),
we obtain the algebraic scaling law (1), with the scaling
exponent p = 1/q. Extensive numerical evidence sup-
porting this inverse relationship between the algebraic
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FIG. 12. Scaling of the plant abundance associated with the
unstable steady state with the strength of mutualistic interac-
tion above the tipping point value. Legends are the same as
in Fig. 12.

FIG. 13. Comparison between the algebraic exponent p from
the scaling law (1) and the inverse of the algebraic exponent q
from (14) for the effective pollinator abundance. (A-D) Five
values of the exponent p for five different values of α in com-
parison with the corresponding values of 1/q from the effec-
tive unstable pollinator abundance in the reduced model for
networks (A-D), respectively.

exponents in the scaling laws (1) and (14) is presented in
Figs. 13 and 14, where the exponent q is obtained from
the unstable steady solution of the pollinator and plant
species of the reduced model, respectively.

IV. DEMOGRAPHIC NOISE

Demographic stochasticity is of particular importance
to ecological systems [82–84] due to the random nature of

FIG. 14. Comparison between the algebraic exponent p from
the scaling law (1) and the inverse of the algebraic exponent q
from (14) for the effective plant abundance. Same legends as
in Fig. 13 except that the inverse exponent 1/q is calculated
based on the effective unstable plant abundance.

the biological processes such as birth, death, and mutual
interactions. Here we study the effect of demographic
noise on species recovery in mutualistic networks.

A demographic stochastic process is a type of multi-
plicative noise with amplitude proportional to the square
root of the fluctuating field due to uncertainties such as
the timing of birth and death, and the interaction rela-
tions among the species. Demographic stochastic effects
depend on the intrinsic uncertainties associated with in-
dividuals’ reproduction, survival and dispersal, and are
most influential in small populations. Mathematically,
demographic noise depends on the dynamical variables
of the system, i.e., the abundances in our mutualistic
networked system. Under demographic noise, the gov-
erning equations of a mutualistic network can be written
as

dXi

dt
= α

(X)
i Xi −

SX∑
j=1

β
(X)
ij XiXj + µX (15)

+

∑SY

k=1 γ
(X)
ik Yk

1 + h
∑SY

k=1 γ
(X)
ik Yk

Xi +R−1
√
Xiζi(t),

dYi
dt

= α
(Y )
i Yi −

SY∑
j=1

β
(Y )
ij YiYj + µY (16)

+

∑SX

k=1 γ
(Y )
ik Xk

1 + h
∑SX

k=1 γ
(Y )
ik Xk

Yi +R−1
√
Yiνi(t),

where R is the order of magnitude of the population size
or the area of habitat in demographic randomness, which
affects the abundances of individual species, ζi(t) and
νi(t) are white noise processes of zero mean and unit
variance. The multiplicative terms R(−1)√Xiζi(t) and



11

FIG. 15. Noise-enabled species recovery for four empirical
mutualistic networks with additive white noise and demo-
graphic noise. The purple and black curves are average abun-
dances for all species with additive white noise (of amplitude
0.1) and demographic noise, respectively, versus the normal-
ized mutualistic interaction strength as it is increased from
a value below the tipping point (in the aftermath of a tip-
ping point transition). The transition points for networks (A-
D) under additive white noise are approximately 0.45, 0.54,
0.47, and 0.58, respectively. The transition points for net-
works (A-D) with demographic noise are approximately 1.4,
1.5, 1.5, and 1.4, respectively. The values of the transition
point under demographic noise are significantly larger than
those under white noise. The system parameter values are

α
(X)
i = α

(Y )
i = −0.1, β

(X)
ii = β

(Y )
ii = 1, h = 0.2, ρ = 0.5,

µX = 10−4, µY = 10−4, σ = 0.1, and R = 4. The values
of the species abundances are collected after a relatively long
transient time (T = 400) at which the system has well con-
verged to a stable steady state. The initial conditions are
X(0) = 10−3 and Y (0) = 10−3. All the simulations are based
on 100 statistical realizations.

R(−1)√Yiνi(t) represent demographic noises with state-
dependent correlations. We numerically solve Eqs. (15)
and (16) using the standard second-order method for in-
tegrating stochastic differential equations [84, 85].

The deterministic system underlying Eqs. (15) and
(16) possesses two stable steady states: one being the
low-abundance or extinction state that occurs for γ < γ0
and another being the high-abundance state for γ > γ0
(denoted as Xh and Yh). Under demographic noise, the
abundances of the pollinator and plant species fluctuate
about one of the steady states value with the standard de-
viations

√
Xh and

√
Xh, respectively. Figure 15 shows a

representative comparison between the effects of additive
white noise and demographic noise, where both types of
noise can drive the system to the high abundance state
after collapse. However, the critical point of recovery
with demographic noise is larger than that with additive
white noise. In the initial extinction state with abun-
dances X(0) = 10−3 and Y (0) = 10−3, the demographic
noises are weak. After recovery, there are large fluctu-

ations in the species abundances, making demographic
noise stronger. Comparing with the case of white noise,
under demographic noise it is significantly more difficult
to drive the system out of the extinction state into the
basin of the high-abundance state. The main reason is
that, when the system is in the extinction state, the abun-
dances are close to zero, rendering infinitesimally small
the amplitude of demographic noise. As a result, practi-
cally the noise has little effect on the dynamics and thus
is not beneficial to species recovery. In order to recover,
much stronger mutualistic interaction is necessary. Be-
cause of the dependence of the amplitude of demographic
noise on the state variables, a scaling law such as (1) for
the case of white noise cannot be defined.

V. DISCUSSION

The benefits of noise to nonlinear dynamical systems
from the viewpoints of understanding certain natural
phenomena and of engineering applications such as sig-
nal processing have been known and extensively studied
since the discovery of the phenomenon of stochastic reso-
nance [17–23] where, counter-intuitively, certain amount
of deliberately applied noise can enhance and maximize
the signal-to-noise ratio of the output of the system.
A related phenomenon is noise-induced frequency [24]
or coherence resonance [25–28] where noise can be ex-
ploited to improve, sometimes significantly, the temporal
regularity of the output signal of a nonlinear oscillator
by inducing or enhancing a dominant frequency compo-
nent in its Fourier power spectrum. Ecological systems
are fundamentally nonlinear [1–3] but the approach of
purely deterministic modeling may not be sufficient to de-
scribe, characterize, and understand ecological phenom-
ena in the real world due to the ubiquitous occurrence
of various random forces in nature [4, 6, 10, 11]. It is
thus imperative to study the interplay between deter-
ministic nonlinearity and stochasticity in ecological sys-
tems [5, 9, 12, 13]. In this regard, previous studies re-
vealed the beneficial role of noise in promoting coexis-
tence [7, 8] in a low-dimensional model of patch popula-
tion dynamics of dispersing species [14–16].

The main contributions of the present work are two:
(1) demonstration of the benefits of noise in high dimen-
sional, real-world ecological systems modeled as complex
mutualistic networks, and (2) discovery of a scaling law
characterizing the advantages of noise in enabling species
recovery in a quantitative manner. The fundamental dy-
namics of an ecological network with mutualistic interac-
tions between two groups of species, e.g., pollinators and
plants, are of the Holling type [29–36, 56, 57]. We have
focused on the situation where there is a tipping point
in the networked system. In terms of generic nonlin-
ear dynamics, a tipping point transition is essentially an
inverse saddle-node bifurcation in the parameter regime
where the system exhibits multistability (bistability) in
spite of its intrinsic high dimensionality. In particular,
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in a healthy state where all species coexist, the system
“lives” in a high-abundance stable state, even there is
a coexisting, low-abundance stable state corresponding
to extinction. The high-abundance stable state, together
with an unstable steady state that provides the bound-
ary safely separating the basin of the high-abundance
stable state from that of the low-abundance stable state,
is created by a saddle-node bifurcation. As the environ-
ment deteriorates continuously, the relevant parameter
changes in the opposite direction and the system moves
towards the original bifurcation point at which both the
high-abundance stable state and the unstable state are
destroyed simultaneously, leaving the extinction state as
the only stable state in the system. This signifies a tip-
ping point transition. In the aftermath of the transition,
the abundances of all the species in the system are near
zero. The situation where the system is locked in the
extinction state will not change without external influ-
ence or perturbations even when the environment is being
improved so that the bifurcation parameter now passes
through the tipping point and multistability is restored.
Noise provides the necessary external influences that can
drive the system out of the extinction state towards the
high-abundance stable state with a non-zero probability,
enabling species recovery. The larger the noise ampli-
tude, the less demanding on the extent of environmental
improvement is, thereby facilitating recovery even when
the system has returned to the bistability regime not far
from the tipping point. Quantitatively, the ease at which
noise helps species to recover is described by the scaling
law (1) uncovered in this work.

The results of this work have the following implication.
While the principle of noise enabled species recovery is
general, in practice it may not be feasible to “wait” for a
random burst in the species abundances to occur to push
the system above the critical level as determined by the
unstable steady state. This is the case where, in the af-
termath of a tipping point transition, the improvement
in the environment is not significant enough so that the
system is in the bistability regime not too much beyond
the tipping point where the probability for a large burst
of abundances is exponentially small so that the wait-
ing time can be exponentially long. However, one can
deliberately apply a “controlled burst” by introducing
additional abundances through a balanced combination
of certain species in the system. How to calculate an
optimal perturbation to carry out the control strategy is
an open question at the present, but the insights gained
from this work, especially the dynamical analysis through
the reduced model of mutualistic networks, indicate that
either pollinators or plants can be controlled. However,
biologically, pollinators are more accessible to control.

ACKNOWLEDGMENT

We would like to acknowledge support from the Van-
nevar Bush Faculty Fellowship program sponsored by the

Basic Research Office of the Assistant Secretary of De-
fense for Research and Engineering and funded by the
Office of Naval Research through Grant No. N00014-16-
1-2828.

Appendix A: Steady state solutions and stability
analysis based on the reduced model without

migration

The steady state solutions of the reduced model
Eqs. (8) and (9) are determined by

dx

dt
= αx− βx2 +

〈γx〉y
1 + h〈γx〉y

x = 0, (A1)

dy

dt
= αy − βy2 +

〈γy〉x
1 + h〈γy〉x

y = 0. (A2)

There are five steady state solutions. The first solution
is given by

xs1 = 0, ys1 =
α

β
. (A3)

The second steady state solution is

xs2 =
−s1 + s2 − [(s1 − s2)2 − 4s3s4]1/2

2s4
, (A4)

ys2 =
1

s5
[(〈γx〉 − 〈γ2〉α)− s6

2s4
−

〈γx〉〈γy〉[(s1 − s2)2 − 2s3s4]1/2

2s4
−

〈γx〉〈γy〉αh[(s1 − s2)2 − 2s3s4]1/2

2s4
−

〈γy〉β[(s1 − s2)2 − 2s3s4]1/2

2s4
]. (A5)

The third steady state solution is

xs3 =
−s1 + s2 + [(s1 − s2)2 − 4s3s4]1/2

2s4
, (A6)

ys3 =
1

s5
[(〈γx〉 − 〈γ2〉α)− s6

2s4
+

〈γx〉〈γy〉[(s1 − s2)2 − 2s3s4]1/2

2s4
+

〈γx〉〈γy〉αh[(s1 − s2)2 − 2s3s4]1/2

2s4
+

〈γy〉β[(s1 − s2)2 − 2s3s4]1/2

2s4
], (A7)
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where

s1 = 〈γx〉〈γy〉+ 〈γx〉〈γy〉αh− 〈γx〉〈γy〉αh2,
s2 = 〈γx〉αβh− 〈γy〉αβh+ β2,

s3 = 〈γx〉α+ 〈γx〉α2h+ αβ,

s4 = −〈γx〉〈γy〉β − 〈γx〉〈γy〉h2αβ − 〈γy〉hβ2,

s5 = 〈γx〉〈γy〉+ 〈γx〉〈γy〉hα+ 〈γx〉β,
s6 = 〈γx〉2〈γy〉2(1− 3hα+ 3h3α2 + s7),

s7 =
−〈γx〉2αh(1 + αh)

2h(〈γx〉+ 〈γx〉αh+ β)

+
〈γx〉(1 + αh)(〈γy〉+ 〈γy〉αh− β)

2h(〈γx〉+ 〈γx〉αh+ β)

+
β(〈γyαh− β〉)

2h(〈γx〉+ 〈γx〉αh+ β)
.

The fourth steady state solution is given by

xs4 = 0, ys4 = 0. (A8)

The fifth steady state solution is

xs5 =
α

β
, ys5 = 0. (A9)

The stability of the steady solutions is determined by
the Jacobian matrix:

J =

 〈γx〉y
1+〈γx〉hy

+ α− 2βx − 〈γx〉2hxy
(1+〈γx]〉hy)2 +

〈γx〉x
1+〈γx〉hy

− 〈γy〉2hxy
(1+〈γy〉hx)2

+
〈γy〉y

1+〈γy〉hx
〈γy〉x

1+〈γy〉hx
+ α− 2βy


(A10)

The third steady state solution gives the unstable steady
state. For simplicity, we assume 〈γx〉 ∼= γ and 〈γy〉 ∼= γ,
which give

xs3 =
−r1 + r2 + [(r1 − r2)2 − 4r3r4]1/2

2r4
, (A11)

where

r1 = γ2(ab+ abαh− abαh2),

r2 = γ(aαβh− bαβh) + β2,

r3 = γ(α+ α2h) + αβ,

r4 = −abγ2(hβ + h2αβ) + bγhβ2,

and a similar formula for ys3, from which Figs. 11 and 12
are obtained.

Appendix B: Method to systematically vary
nestedness

In order to vary the nestedness of a mutualistic network
systematically, we generate a random mutualistic net-
work and rearrange or rewire the interactions in the net-
work until a desired value of nestedness is achieved [32].
Specifically, we start the rewiring process by randomly
choosing an edge, say one between species i and j. We
then randomly select another species k. If i is a pol-
linator, then j and k must be plant species, and vice
versa. If species k has more links than species j, we con-
nect species i with k; Otherwise, we leave the interaction
between i and j unchanged. After each successful ran-
dom rewiring iteration, we calculate the nestedness of the
whole mutualistic network defines as [86]:

Nest =

∑SX

i<j D
X
ij +

∑SY

i<j D
Y
ij

SX(SX − 1)/2 + SY (SY − 1)/2
, (B1)

where DX
ij = dXij/min(dXi , d

X
j ), DY

ij = dYij/min(dYi , d
Y
j ),

dXij is the number of plant species that both pollinator

species i and j interact with (similarly for dYij - the cor-

responding quantity for plant species), dXi and dXj are
the total numbers of plant species that pollinator species
i and j interact with, respectively (similarly for dYi and
dYj ). The rewiring process stops when the nestedness of
the network has reached the desired value.
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