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Abstract
Kinetic Ising models on the square lattice with both nearest-neighbor interactions and self-interaction are

studied for the cases of random sequential updating and parallel updating. The equilibrium phase diagrams and

critical dynamics are studied using Monte Carlo simulations and analytic approximations. The Hamiltonians

appearing in the Gibbs distribution describing the equilibrium properties differ for sequential and parallel

updating but in both cases feature multispin and non-nearest-neighbor couplings. For parallel updating the

system is a probabilistic cellular automaton and the equilibrium distribution satisfies detailed balance with

respect to the dynamics [E. N. M. Cirillo, P. Y. Louis, W. M. Ruszel and C. Spitoni, Chaos, Solitons and

Fractals, 64:36(2014)]. In the limit of weak self-interaction for parallel dynamics, odd and even sublattices are

nearly decoupled and checkerboard patterns are present in the critical and low temperature regimes, leading to

singular behavior in the shape of the critical line. For sequential updating the equilibrium Gibbs distribution

satisfies global balance but not detailed balance and the Hamiltonian is obtained perturbatively in the limit of

weak nearest-neighbor dynamical interactions. In the limit of strong self-interaction the equilibrium properties

for both parallel and sequential updating are described by a nearest-neighbor Hamiltonian with twice the

interaction strength of the dynamical model.
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I. INTRODUCTION

Kinetic Ising models, broadly defined, are systems of Ising spins equipped with a dynamical rule for

updating the spin configuration. Kinetic Ising models have been investigated in many settings and

play a fundamental role in understanding non-equilibrium processes, in modelling the dynamics of

more complex systems and as computational tools for studying equilibrium systems through the use of

Markov chain Monte Carlo. The most commonly used kinetic Ising models update spins sequentially

and determine the new spin state probabilistically from the current state of the neighboring spins using

update rules such as heat bath dynamics or Metropolis dynamics. In this paper we study kinetic Ising

models with a self-interaction or memory term so that the new state of the spin also depends on the

current state of the spin itself. We consider this kinetic Ising model both with random sequential and

parallel updating. The parallel version of the model is an example of a probabilistic cellular automata

and many of its properties are understood [1, 2]. The sequential version of the model violates detailed

balance when the self-interaction term is finite but non-vanishing and has received less attention.

Dynamical Ising-like systems with self-interaction have also been proposed to model a variety of sys-

tems including neural networks [3], financial markets [4] and opinion dynamics [5]. The addition of a

memory term has also be proposed as a method to accelerate Monte Carlo simulations [6]. We were

motivated to study the kinetic Ising model with memory as a reduced description of synchronous eco-

logical populations described by coupled, noisy oscillators. When each oscillator is individually in a

two-cycle regime, the phase of the two-cycle can be represented by an Ising spin. As a function of noise

and coupling strength, these systems undergo a phase transition to synchronous oscillation, which can

be mapped to an ordering transition in the Ising universality class [7]. However, to model dynamic

and non-universal properties of the coupled oscillator system it is necessary to include memory in the

Ising representation since each oscillator remembers its own phase for an extended period, even in the

absence of coupling to its neighbors.

The paper is organized as follows. In Sec. II, we introduce the sequential and parallel kinetic Ising

models with self-interaction and describe our numerical methods. In Sec. III we present numerical

results for the equilibrium phase diagram of both models and the dynamic properties along the critical

lines. In Sec. IV we analyze the equilibrium states of the parallel and sequential models and derive

associated Hamiltonians. In the case of parallel dynamics we focus on the weak self-interaction regime

where the critical line displays singular behavior. For the sequential case, we derive the equilibrium

Hamiltonian from the global balance equations in a weak coupling expansion. We also study the

nontrivial case of parallel updating in standard Ising model with no memory. In Sec. V we develop a

mean field approximation to the kinetic Ising model with self-interaction. The paper concludes with a

discussion.
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II. MODEL AND NUMERICAL METHODS

We consider kinetic Ising models with both nearest-neighbor interactions and self-interaction or, equiva-

lently, memory. The system consists of N Ising spins, Si = ±1 and i = 1, 2, . . . , N , on a two-dimensional

square lattice of even size with periodic boundary conditions. The dynamics of the system is defined

by the transition probability, A(α → γ) between successive configurations of the system α and γ. We

consider two types of heat bath dynamics, parallel and sequential. In both cases the transition prob-

abilities are controlled by the single-spin marginal probability p(Sγi |α) for finding spin at site i in the

new configuration γ, Sγi , given the initial configuration α,

p(Sγi |α) =
exp[(Jhαi +KSαi )Sγi ]

2 cosh(Jhαi +KSαi )
. (1)

Here J is the dimensionless nearest-neighbor interaction and K is the dimensionless self-interaction.

The local field, hαi is the sum over spins Sαj where j is a neighboring site of i,

hαi =
∑
〈j;i〉1

Sαj . (2)

The notation 〈j; i〉1 indicates that the summation variable j is a nearest neighbor of i. In what follows

we omit the superscripts specifying the configuration where no confusion results.

Sequential dynamics For random sequential dynamics the transition probability As(α→ γ) for γ 6= α

is given by,

As(α→ γ) =
1

N

∑
i

χ1(α, γ, i)p(S
γ
i |α), (3)

where χ1(α, γ, i) is an indicator function that forces α and γ to differ only on Si, that is χ1(α, γ, i) = 1 if

Sγi = −Sαi and Sγj = Sαj for all j 6= i, while χ1(α, γ, i) = 0 otherwise. The probability for no transition,

As(α→ α) is obtained, as usual, from normalization. For K = 0, sequential dynamics is standard heat

bath dynamics.

In simulations, a single step of the sequential dynamics consists of choosing a site i at random and then

choosing the spin state Si according to the probability p(Si|α). The result is the new state γ.

Parallel dynamics For parallel dynamics all spins are updated at the same time and the transition

probability Ap(α→ γ) is given by

Ap(α→ γ) =
∏
i

p(Sγi |α). (4)

For K = 0, parallel dynamics on a bipartite graph permits period-two oscillatory states. For example, if

J is sufficiently large, the system may oscillate between the two “checkerboard” states (i.e. ground states

of the Ising antiferromagnet). The Ising model with parallel dynamics is an example of a probabilistic

cellular automaton [2, 8, 9].
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We carried out extensive simulations of both parallel and sequential dynamics with the primary goal of

understanding the static and dynamic critical properties of the models. To identify the critical points

of the models for various values of K we used the Binder cumulant method. The fourth-order Binder

cumulant for the magnetization is given by [10],

U = 1− 〈M4〉
3〈M2〉2

, (5)

where M = 1
N

∑
i Si is the magnetization per spin. At low temperatures, in the ferromagnetic phase,

the Binder cumulant takes the value 2/3 whereas it goes to zero in paramagnetic phase. At the phase

transition, the critical Binder cumulant for the standard Ising model on the 2D square lattice with

periodic boundary conditions is U∗ ≈ 0.61069 [11]. The value of the critical coupling is obtained from

crossing of the Binder cumulant curves for different system sizes. For parallel dynamics and small values

of K we also make use of a sublattice Binder cumulant to find critical points for reasons discussed in

Sec. IVA1.

The dynamics of the sequential model are studied using the magnetization integrated autocorrelation

time defined from the magnetization autocorrelation function,

ΓM(t) =
〈M(t)M(0)〉 − 〈M〉2

〈M2〉 − 〈M〉2
.

Here time is measured in Monte Carlo sweeps and the integrated autocorrelation time, τ is defined as,

τ =
1

2
+
∞∑
t=1

ΓM(t). (6)

Care must be taken in estimating τ from numerical data for ΓM(t) since an upper cut-off is required on

the sum. If the cut-off is too small the estimate will have large systematic errors and if it is too large it

will have large statistical errors. We follow the procedure described in Ref. [12] for choosing the cut-off.

We have carried out simulations of both the parallel and sequential models for multiple values of K > 0

for lattice sizes varying from L = 10 to 120. The critical dynamic couplings, J (p)
c (K) and J

(s)
c (K),

for the parallel and sequential cases, respectively, are estimated from the crossing points of the Binder

cumulant curves for two lattice sizes. The crossing point were found for sizes L = 30 and 60, except for

the data presented in Sec. IVA1, where two sizes were L = 100 and 120. Each Binder cumulant data

point is averaged over 40 independent runs for the sequential results and 20 independent runs for parallel

results. Each run consists of S Monte Carlo sweeps including an initial Sb sweeps for equilibration.

Observables are averaged over the remaining S−Sb sweeps. For the sequential model, S = 7× 107 and

Sb = 5× 107 while, for the parallel model, S = 4× 107 and Sb = 2× 107 except for the data presented

in Sec. IVA1 where S = 8× 107 and Sb = 5× 107.
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III. STATIC AND DYNAMIC CRITICAL BEHAVIOR

A. Phase diagrams

The phase diagrams for sequential and parallel dynamics are plotted in Fig. 1. Critical values of

the dynamic couplings, J (s)
c (K) and J

(p)
c (K), for sequential and parallel dynamics, respectively, and

for various values of K are obtained from crossings of the Binder cumulant as discussed above. The

ferromagnetic phase lies above the points and the paramagnetic phase below the points. As expected,

as K → 0, the critical lines both approach Jc(0) ≈ 0.4407, the critical value of the standard nearest-

neighbor square-lattice Ising model. Furthermore, as discussed in Sec. IV, for K large, both lines

approach Jc(0)/2. The numerical result J (p)
c (K = 0.31) ≈ 0.31 agrees well with the value J (p)

c (K =

0.31) ≈ 0.32 obtained from Monte Carlo simulations in Ref. [9].

The solid curves in Fig. 1 are approximations to the critical lines for the two dynamics. For parallel

dynamics, the approximation is a fit with two hyperbolic tangent functions that represent crossovers

from power-law behavior expected for small K and the asymptotic values Jc(0)/2 for large K. The fit

takes the form,

J (p)
c (K) = Jc(0)

[
1− 1

2
tanh(aK)

]
− dKc

[
1− tanh(bK)

]
, (7)

with the best fit parameters a = 1.17, b = 1.46, c = 0.45, and d = 0.15. A more detailed analysis of the

power-law behavior in K is presented in Sec. IVA1.

The solid curve in Fig. 1 for sequential dynamics is obtained from an approximation to the Hamiltonian

for sequential dynamics that is obtained in Sec. IVB1 and is defined in Eq. (64).

We have not investigated the static critical properties along the critical lines however we find that the

Binder cumulant takes the universal Ising value (except near K = 0 for the parallel case, as discussed

in Sec. IVA1), supporting general arguments [1] that kinetic models with self-interaction are in the

Ising universality class.

B. Autocorrelation time for sequential dynamics

Along the critical line, τ is expected to behave asymptotically in lattice size, L as a power law,

τ(K,L) ∼ A(K)Lz(K) (8)

where the amplitude A and dynamic exponent z could, in principle, both be functions of K.

We obtained values of τ for lattice sizes from L = 10 to 100 and for different values of K. The results

for τ as a function of L for K = 1.23 are shown in Fig. 2. The solid line is a fit to τ = ALz with fitted

values z = 2.15 and A = 0.16 (χ2/ d.o.f = 1.38).
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Figure 1. The phase diagram in the J-K plane shows the critical dynamical couplings, J (s)
c (K) and J (p)

c (K),

for sequential (blue points, upper) and parallel (red points, lower) dynamics, respectively. The red solid line

represents a fit for the critical line for parallel dynamics (see Eq. (7)). The blue solid line represents an

approximation to the sequential critical line that is described in Sec. IVB1.
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Figure 2. The magnetization integrated autocorrelation time for sequential dynamics, τ as a function of lattice

size L for K = 1.23. The solid line is a fit to τ = ALz with fitted values A = 0.16 and z = 2.15.

Figure 3 shows z(K) as a function of K obtained from fits of the form τ = ALz. The values of z(K)

are all reasonably close to the accepted dynamic exponent of the 2D Ising model with non-conserved

order parameter, z = 2.16 [13–15], with no discernable trends in K. We believe that the kinetic

Ising model with self-interaction is in the dynamic Ising universality class with a non-conserved order

parameter (Model A of [16]) and that the deviations in the measurements from z(K) = z(0) result from

a combination of finite-size corrections and statistical errors. This conclusion is in agreement with the

result that systems with local dynamics and a non-conserved order parameter are in universality class

of Ising models [1, 17].

We now assume z takes the universal value, 2.16 and investigate the prefactor, A(K). The autocorre-
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Figure 3. Dynamic exponent z for the autocorrelation time (see Eq. (8)) is obtained as a function of self-

interaction K for sequential dynamics. The dashed horizontal line denotes the non-conserved order parameter

Ising universal dynamic exponent, z = 2.16.

lation time τ is fitted to the form,

τ(K,L) = A(K)L2.16 +B(K), (9)

where the constant B(K) is included to improve the quality of the fit. The numerical results for the

amplitude function A(K) are obtained for various values of K and are shown for sequential updating

in Fig. 4. The data can be fit to the form,

A(K) = a[1 + b exp(2K)], (10)

with the best fit parameters, a = 0.09 and b = 0.64 (χ2/d.o.f = 0.99). The fit is shown as a solid

line in the figure. The factor exp(2K) is the time scale between spin flips for an isolated spin with

self-interaction and this time scale apparently controls the asymptotic behavior of A(K). Although the

above results are for sequential dynamics, in the limit of large K, when the time scale for spin flips is

much larger than the number of spins, parallel and sequential dynamics are expected to have the same

dynamical properties.

IV. EQUILIBRIUM STATES

The kinetic Ising models with self-interaction ultimately reach an equilibrium state, which can be

written in the form of a Gibbs distribution with a dimensionless Hamiltonian, H so that the probability

of a configuration α is given by P (α) = exp[−H(α)]/Z with Z the partition function. This probability

and its associated Hamiltonian must satisfy global balance with respect to the transition probabilities,∑
γ

[P (γ)A(γ → α)− P (α)A(α→ γ)] = 0, (11)
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Figure 4. The amplitude A(K) of the autocorrelation time divergence at criticality (see Eq. (9)) is plotted as

a function of K for sequential updating. The solid line is the fit A(K) = 0.09[1 + 0.64 exp(2K)].

for all α. For the case of parallel dynamics, the Hamiltonian satisfies detailed balance and was obtained

in Ref. [2]. The derivation and resulting Hamiltonian is presented in Sec. IVA. The Hamiltonian for the

sequential case is discussed in Sec. IVB. It does not satisfy detailed balance and we have only been able

to obtain it as an expansion in powers of J . For both parallel and sequential cases, the Hamiltonians

contain more than nearest-neighbor, two-spin interactions.

A. Parallel dynamics

From Eqs. (1) and (4), the transition probability for parallel dynamics can be written as,

A(α→ γ) =
∏
i

exp(Jhαi S
γ
i +KSαi S

γ
i )

2 cosh(Jhαi +KSαi )
, (12)

so that to satisfy detailed balance we required that,

P (γ)

P (α)
=
∏
i

cosh(Jhγi +KSγi )

cosh(Jhαi +KSαi )
, (13)

and the Hamiltonian H can be written as [8],

−H =
∑
i

log[cosh(Jhi +KSi)]. (14)

From Eq. (13), we should note that in the limit of K →∞,

P (γ)

P (α)
=
∏
i

cosh(Jhγi S
γ
i +K)

cosh(Jhαi S
α
i +K)

→
∏
i

exp(Jhγi S
γ
i )

exp(Jhαi S
α
i )
,

which implies that,

−H → J
∑
i

hiSi = 2J
∑
〈i,j〉1

SiSj, (15)
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where the notation
∑
〈〉1 indicates a sum over all nearest-neighbor pairs. Thus, in this limit the Hamil-

tonian reduces to the standard Ising model with interaction strength twice that of the original kinetic

model. This fact has been proved in Ref. [18]. In case of K → −∞ we have that,

−H → −J
∑
i

hiSi = −2J
∑
〈i,j〉1

SiSj, (16)

showing that the system behaves as an antiferromagnetic Ising model, again with twice the strength of

the interaction in the original dynamical model.

The expression for the Hamiltonian, Eq. (14), can be expanded as a sum of all products of each spin

and its four nearest neighbors with various couplings,

−H = J1

∑
〈i,j〉1

SiSj + J2

∑
〈i,j〉2

SiSj + J3

∑
〈i,j〉3

SiSj + T4

∑
〈i,j,k,l〉⊥

SiSjSkSl + F4

∑
〈i,j,k,l〉�

SiSjSkSl + C (17)

The definitions of the three two-spin couplings and two four-spin coupling allowed by symmetry are

illustrated in the Fig. 5. The sum
∑
〈〉1 is over all pairs of nearest-neighbor spins, whereas

∑
〈〉2

and
∑
〈〉3 are sums over second- and third- nearest-neighbor spins with coupling constants J2 and J3,

respectively.
∑
〈〉⊥ and

∑
〈〉� are sums over four spins as shown in Fig. 5. The expressions for the

dimensionless couplings {J1, J2, J3, T4, F4} can be obtained as functions of the dynamical interactions

J and K by comparing Eqs. (14) and (17) and are given below [2]:

J1 =
1

4
log

cosh(2J +K)

cosh(2J −K)
+

1

8
log

cosh(4J +K)

cosh(4J −K)
, (18)

T4 =
1

16
log

cosh(4J +K)

cosh(4J −K)
− 1

8
log

cosh(2J +K)

cosh(2J −K)
, (19)

J2 =
1

8
log[cosh(4J +K) cosh(4J −K)]− 1

4
log cosh(K), (20)

J3 =
1

16
log[cosh(4J +K) cosh(4J −K)]− 1

8
log cosh(K), (21)

F4 =
3

8
log cosh(K)− 1

4
log[cosh(2J +K) cosh(2J −K)] +

1

16
log[cosh(4J +K) cosh(4J −K)]. (22)

The couplings are plotted for J = 1 as a function of K in Fig. 6. The couplings {J2, J3, F4} given

in Eqs. (20)-(22) are even in K whereas the couplings {J1, T4} given in Eqs. (18) and (19) are odd

revealing antiferromagnetic behavior for negative values of K.

The couplings are non-trivial even when the self-interaction is zero and are discussed in the Sec. IVA1.

As K increases, the first nearest neighbor coupling J1 increases to twice the value of J whereas the

other couplings decrease to zero.

1. Weak self-interaction regime

When the self-interaction is zero (K = 0), the couplings J1 and T4 given in Eqs. (18) and (19) are zero.

The non-zero couplings J2, J3 and F4 given in Eqs. (20)-(22) produce interactions only within a single
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J1 J2 J3

T4 F4

Figure 5. The two-spin couplings, J1, J2 and J3 couple nearest-neighbor, second-nearest-neighbor and third-

nearest-neighbor spins, respectively. The four-spin coupling, T4 couples a spin with three of its four neighboring

spins. The four-spin coupling, F4 couples the four neighbors of a central spin. All interactions include all

rotations and translations of the pictured couplings.
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Figure 6. The couplings for parallel dynamics are plotted for J = 1 as a function of self-interaction, K as

given in Eqs. (18)–(22). For large K, J1 → 2J while the other couplings vanish. Note that J1 and T4 are odd

functions of K while the other couplings are even.

sublattice. Hence, for K = 0 the entire system can be viewed as two independent systems, each on one

of the sublattices and with two-spin and four-spin couplings [2, 9].

It is interesting to note that the values of these two- and four-spin couplings given in Eqs. (20)-(22) at

K = 0 are identical to the expressions for the couplings generated when the real space renormalization

group decimation scheme [19, 20] is applied once to the nearest-neighbor Ising model with nearest-

neighbor interaction strength J . This observation explains why the parallel update Ising model with

K = 0 has a critical point at J (p)
c (0) = Jc(0), the critical point of the standard Ising model. A rigorous

proof of this fact is given in [9].
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Figure 7. Snapshot of a 100×100 lattice in equilibrium with parallel updating for K = 4×10−4 at the critical

coupling J (p)
c (K) = 0.4360. The presence of large antiferromagnetic clusters result from weak nearest-neighbor

interactions (set by J1) and strong next-nearest-neighbor interactions (set by J2).

The behavior of the parallel update model forK = 0 differs from the standard Ising model because of the

presence of two “checkerboard” ground states and, at finite but low temperature, both ferromagnetic and

checkerboard ordered phases. The two checkerboard phases each display period-two oscillations between

the two antiferromagnetically ordered states and differ in the phase of this oscillation. Furthermore,

the four ordered phases each have fluctuations of all four kinds. For example, the ferromagnetic phases

will contain checkerboard domains.

As the value of K increases, the couplings that are responsible for interactions between sublattices,

J1 and T4, increase. Hence, the sublattices are positively correlated and only the two ferromagnetic

ground states survive [2, 8]. However, at finite temperature and K small, checkerboard domains remain

common. Figure 7 shows a snapshot of the equilibrium state for K = 4× 10−4 at the critical coupling,

which displays large checkerboard domains. Similarly, for K small and negative, and J near its critical

value one finds large ferromagnetic domains.

As can be seen in Fig. 1 and the associated fit, Eq. (7), the critical curve, J (p)
c (K) appears to approach

the K = 0 critical point, (Jc(0), 0) with infinite slope. The phase diagram is even in K so there

is a corresponding critical curve approaching (Jc(0), 0) from negative K. We now give a heuristic

argument based on finite-size scaling considerations for the singular behavior of these critical curves

near (Jc(0), 0). Near the critical point (Jc(0), 0) there are large fluctuations in both the ordinary

(ferromagnetic) magnetization and the staggered (antiferromagnetic) magnetization. These fluctuations

are quantified, respectively, by the ordinary susceptibility, χ, and the staggered susceptibility, χs, both

of which diverge at (Jc(0), 0). Along the critical curve, J (p)
c (K) for K > 0, the ordinary susceptibility

diverges while along the corresponding critical curve for negativeK the staggered susceptibility diverges.

Consider a geometric mean susceptibility, χm defined as χm =
√
χχs. This mean susceptibility for

systems of size L with periodic boundary conditions and with L even is expected to diverge as Lγ/ν
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at (Jc(0), 0). For K 6= 0 along the two critical curves, χm is expected to have a weaker finite-size

divergence, Lγ/2ν . We now hypothesize that the finite-size scaling behavior of χm as a function of L, J

and K takes the form,

χm(J,K) ≈ Lγ/νf((J − Jc(0))La, KLb). (23)

The qualitative behavior of the finite-size scaling function f(x, y) is that it has a maximum along the

line y = K = 0 near x = 0. Furthermore, f will decrease in all directions away from the maximum

but with two ridge lines near the two critical curves. These ridge lines are expected to take the form

x ∼ −(±y)c near maximum for the ±K > 0 critical curves, respectively. Given this picture, we must

have,

(J (p)
c (K)− Jc(0))La ∼ −(|K|Lb))c, (24)

so that c = a/b.

What are the scaling exponents a and b? Since near Jc(0), J controls the strength of the relevant

interactions linearly along the K = 0 line, it is reasonable to assume the usual finite-size scaling

exponent, a = 1/ν, so, in the present case, a = 1.

The exponent b determines the rate of decrease of f for a fixed K as L increases. We hypothesize

that this decrease is dominated by the suppression of the “wrong” kinds of fluctuations. For K > 0

these are staggered magnetization fluctuations and for K < 0 ordinary magnetization fluctuations.

For small K the coupling J1 between sublattices increases linearly in K, specifically (see Eq. (18)),

J1 = 2JK + O(K3). Thus the energetic cost of the wrong kind of fluctuation of length scale ` is

given by 2JK`2 and the wrong kind of fluctuation is suppressed when this energy exceeds kBTc. The

maximum size of these fluctuations is, therefore,
√
kBTc/2K and the associated finite-size scaling

exponent for K is b = 2. This estimate ignores the presence of ferromagnetic fluctuations embedded in

larger checkerboard regions so that b is expected to be somewhat less than two.

The conclusion of these arguments is that the critical lines approach the K = 0 critical point with a

singularity,

J (p)
c (K)− Jc(0) ∼ −|K|c, (25)

and that c ' 1/2.

We obtain numerical results for the critical line for small K using the Binder cumulant method. Care

must be taken in using Binder cumulants for small K because the sublattices are nearly uncoupled.

Indeed, for K = 0 we now show that the Binder cumulant is half its usual value. Let M1,M2 be the

magnetization of the even and odd sublattices, respectively. The sublattice Binder cumulant is defined

by,

Us = 1− 〈M4
1 〉

3〈M2
1 〉2

. (26)

At the (Jc(0), 0) critical point each sublattice behaves as an independent critical Ising model so Us will

take the Ising critical value for a square lattice with periodic boundary conditions, U∗ ≈ 0.61 [11]. The
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full lattice magnetization, M is given by the sum of the two sublattice magnetizations, M = M1 +M2.

Expanding the moments of the full magnetization in terms of the sublattice magnetizations yields,

〈M2〉 = 〈M2
1 〉+ 〈M2

2 〉+ 〈2M1M2〉 (27)

〈M4〉 = 〈M4
1 〉+ 〈M4

2 〉+ 〈4M3
1M2〉+ 〈4M3

2M1〉+ 〈6M2
1M

2
2 〉. (28)

Since M1,M2 are identically distributed, independent random variables we have,

〈M2〉 = 2〈M2
1 〉 (29)

〈M4〉 = 2〈M4
1 〉+ 6〈M2

1 〉2. (30)

Hence, using the definition of the full lattice Binder cumulant, Eq. (5), we have,

U =
1

2
− 〈M4

1 〉
6〈M2

1 〉2
=

1

2
Us. (31)

We see that the Binder cumulant of the full lattice for the parallel dynamics, U is half the sublattice

Binder cumulant Us and thus, at criticality it is (1/2)U∗. On the other hand, for any K > 0 and

for sufficiently large L we expect the full lattice Binder cumulant to take the usual Ising value, U∗.

Thus, large finite-size corrections are expected for both the full lattice Binder cumulant and also the

sublattice Binder cumulants when K is small. The reason for these corrections is the weak coupling

between sublattices and the associated presence of large checkerboard domains. We previously estimated

that the maximum domain size scales as
√
Jc(0)/2K. For example, if K = 4× 10−4 this size is about

20, which is comparable to our system sizes.

We have investigated the singular behavior of the critical curve through numerical simulation of five

values of K less than 0.1. Here we determine the critical couplings from both the sublattice Binder

cumulant and the full lattice Binder cumulant. We use a pair of large system sizes, L = 100 and 120,

(L = 30 and 60 are used elsewhere) to obtain the crossing of the Binder cumulant curves. The reported

values of J (p)
c (K) are obtained by averaging the full lattice and sublattice results in the hope that

this procedure will reduce finite-size corrections. Figure 8 shows the numerical results for the critical

dynamic coupling (Jc(0)−J (p)
c (K)) as a function of K. The error bars shown in the figure are either the

difference of the sublattice and full lattice values or the maximum of the statistical errors, whichever is

larger. The larger error bars for the three smallest K data points are the result of the large difference

between results from the two Binder cumulants and reflect an estimate of the size of systematic errors.

A fit of the data to the form,

Jc(0)− J (p)
c (K) = dKc, (32)

yields c = 0.555 ± 0.001 and d = 0.26 and (χ2/ d.o.f = 0.83). This fit is shown as the solid line in

Fig. 8. The numerical result for c is consistent with the theoretical arguments presented above. We

note that the small error bar on c may be misleading because it is set by the data points with small
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Figure 8. Numerical results for the deviation of the critical dynamic coupling from the Ising critical value,

Jc(0) − J (p)
c (K) as a function of K for parallel updating. The solid line is a fit to a power law, by Eq. (32),

with exponent c = 0.555.

error bars but relatively large values of K, which may hide corrections to scaling in the simple fit, Eq.

(32). Independent fits of the sublattice and full lattice results using their respective statistical errors

also yield c ≈ 0.55 but the quality of these fits is poor. It would be interesting to carry out a thorough

study of the exponent c and, more generally, the finite-size scaling behavior near the K = 0 critical

point.

B. Sequential dynamics

From Eqs. (1) and (3), the transition probability when α and γ differ by a single spin flip at site i

(χ1(α, γ, i) = 1) is given by,

A(α→ γ) =
exp(Jhαi S

γ
i +KSαi S

γ
i )

2N cosh(Jhαi +KSαi )
. (33)

First consider the three limiting cases, K = 0 and K → ±∞ (holding J fixed), for which detailed

balance holds. Note that for sequential dynamics, the neighborhood of Si is the same for states α and

γ so hαi = hγi ≡ hi. The detailed balance condition is,

P (γ)

P (α)
=

exp(JhiS
γ
i )

cosh(Jhi +KSαi )

cosh(Jhi +KSγi )

exp(JhiSαi )
. (34)

For K = 0 we have standard heat-bath dynamics,

P (γ)

P (α)
= exp[Jhi(S

γ
i − Sαi )], (35)

and the equilibrium distribution is that of the standard nearest-neighbor Ising model, P (α) ∝

exp[(J/2)
∑

i hiSi]. In the limit K → +∞, the ratio of probabilities becomes,

P (γ)

P (α)
→ exp[2Jhi(S

γ
i − Sαi )] (36)
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showing that the equilibrium distribution is that of the standard Ising model with twice the nearest-

neighbor coupling (J → 2J). Note, however, that when K → +∞ the time scale for a spin flips

diverges so that if the limit is taken with the number of sweeps (and system size) held fixed then the

spin configuration is fixed. Finally, when K → −∞, we have that P (γ)/P (α) → 1 showing that the

model behaves as a non-interacting (infinite temperature) system.

For 0 < K < ∞ the equilibrium distribution does not satisfy detailed balance with respect to the

dynamics and one must solve the global balance equations,∑
γ

[P (γ)A(γ → α)− P (α)A(α→ γ)] = 0,

which can be rewritten as, ∑
γ

[
P (γ)

P (α)
A(γ → α)− A(α→ γ)

]
= 0. (37)

Let α be an arbitrary initial state, α = {Sαj } and let α(i) ≡ γ refer to the state obtained from α by

flipping spin Si. From Eq. (33), global balance takes the form,∑
i

[
P (α(i))

P (α)

exp(Jhαi S
α
i −K)

2 cosh(Jhαi −KSαi )
− exp(−Jhαi Sαi −K)

2 cosh(Jhαi +KSαi )

]
= 0,

which can be simplified to,∑
i

[
P (α(i))

P (α)

exp(JhiSi)

cosh(Jhi −KSi)
− exp(−JhiSi)

cosh(Jhi +KSi)

]
= 0. (38)

Superscripts are dropped in the above equation and what follows since all spins belong to configuration

α.

The transition probability factors in Eq. (38) can be expanded in terms of spin couplings involving the

flipped spin, Si, and its four nearest neighbors,

exp(±JhiSi)
cosh(Jhi ∓KSi)

= exp
(
± J1Si

∑
〈j;i〉A

Sj − J2
∑
〈j,k;i〉E

SjSk − J3
∑
〈j,k;i〉F

SjSk ± T4Si
∑
〈j,k,l;i〉B

SjSkSl

− F4

∑
〈j,k,l,m;i〉G

SjSkSlSm + C
)

(39)

where
∑
〈...;i〉X is summation among the neighbors of spin i of type X as shown in Fig. 9. To simplify

the notation, spin couplings are denoted with bracketed, boldface letters as shown in Fig. 9 and written

explicitly here:

[A] = Si
∑
〈j;i〉A

Sj [B] = Si
∑
〈j,k,l;i〉B

SjSkSl [C] = Si
∑
〈j,k,l;i〉C

SjSkSl [D] = Si
∑

〈j,k,l;i〉D

SjSkSl

[E] =
∑
〈j,k;i〉E

SjSk [F] =
∑
〈j,k;i〉F

SjSk [G] =
∑

〈j,k,l,m;i〉G

SjSkSlSm [H] = Si
∑
〈j;i〉H

Sj

[I] = Si
∑
〈j;i〉I

Sj. (40)
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Note that these couplings are implicitly functions of i.

In terms of this compact notation,

exp(±JhiSi)
cosh(Jhi ∓KSi)

= exp
(
± J1[A]− J2[E]− J3[F]± T4[B]− F4[G] + C

)
, (41)

where C is a constant.

Expanding both sides of the above equation and comparing like terms yields expressions for the coupling

coefficients in terms of J and K,

J1 = J +
1

8
log

cosh(2J +K)

cosh(2J −K)
+

1

16
log

cosh(4J +K)

cosh(4J −K)
, (42)

T4 =
1

16
log

cosh(4J +K)

cosh(4J −K)
− 1

8
log

cosh(2J +K)

cosh(2J −K)
, (43)

J2 =
1

8
log[cosh(4J +K) cosh(4J −K)]− 1

4
log cosh(K), (44)

J3 =
1

16
log[cosh(4J +K) cosh(4J −K)]− 1

8
log cosh(K), (45)

F4 =
3

8
log cosh(K)− 1

4
log[cosh(2J +K) cosh(2J −K)] +

1

16
log[cosh(4J +K) cosh(4J −K)]. (46)

Except for J1 these couplings are identical to the couplings appearing in the Hamiltonian for the

equilibrium state of parallel dynamics, Eqs. (18)-(22). However, it is important to note that these

dynamical coupling coefficients for sequential dynamics are not the same as the coupling coefficients

appearing in the sequential Hamiltonian, which we now derive perturbatively in J . We begin by

expanding the dynamical coupling coefficients to fourth order in J ,

J1 =
[

tanh(K) + 1
]
J +

10

3

[
tanh3(K)− tanh(K)

]
J3 +O[J5], (47)

T4 =
[
2 tanh3(K)− 2 tanh(K)

]
J3 +O[J5], (48)

J2 =
[
2− 2 tanh2(K)

]
J2 +

[
− 16 tanh4(K) +

64 tanh2(K)

3
− 16

3

]
J4 +O[J6], (49)

J3 =
J2
2

=
[
1− tanh2(K)

]
J2 +

[
− 8 tanh4(K) +

32 tanh2(K)

3
− 8

3

]
J4 +O[J6], (50)

F4 =
[
− 6 tanh4(K) + 8 tanh2(K)− 2

]
J4 +O[J6]. (51)

Inserting the expansion of the transition probability, Eq. (41), in the global balance equation, Eq. (38),

yields,∑
i

[P (α(i))

P (α)
exp

(
J1[A]− J2[E]− J3[F] + T4[B]− F4[G]

)
− exp

(
− J1[A]− J2[E]− J3[F]− T4[B]− F4[G]

)]
= 0. (52)

We now make the ansatz that P (α) can be written in Gibbsian form with a Hamiltonian potentially

containing all even order spin couplings,

−H = J̃1
∑
〈i,j〉1

SiSj + J̃2
∑
〈i,j〉2

SjSk + J̃3
∑
〈i,j〉3

SjSk + T̃4
∑
〈i,j,k,l〉⊥

SiSjSkSl + . . . (53)
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Figure 9. The dynamical interactions in the expansion of the transition probabilities are shown on the left while

additional interactions appearing in the Hamiltonian are shown on the right. All interaction types are labelled

with boldface letters. The grey lattice site represents the flipped spin i. All the interactions include all distinct

rotations around the grey site and, in the case of [C], reflection around the vertical axis. There are 4 equivalent

interactions for type [A], 4 for [B], 8 for [C], 4 for [D], 4 for [E], 2 for [F], 1 for [G], 4 for [H] and 4 for [I].

The summations in the terms that are explicitly written are defined above in Sec. IVA (see Eq. (17)

and Fig. 5) and couplings in the sequential Hamiltonian are written with tildes. Given this ansatz, the

ratio of probabilities is,

P (α(i))

P (α)
= exp

[
− 2
(
J̃1[A] + T̃4[B] + T̃4[C] + T̃4[D] + J̃2[H] + J̃3[I]

)]
. (54)

Inserting this expression in the global balance equation, (52), yields,∑
i

[
exp[(−2J̃1 + J1)[A] + (−2T̃4 + T4)[B]− 2T̃4[C]− 2T̃4[D]− 2J̃2[H]− 2J̃3[I]− J2[E]− J3[F]− F4[G]]

− exp(−J1[A]− T4[B]− J2[E]− J3[F]− F4[G])
]

= 0 (55)

We now explicitly expand all the couplings as series in the dynamic coupling, J . The coefficients of each

series are represented by lower case letters and subscripts corresponding to the name of the coupling

while the power in J is indicated with a superscript. Thus, for example, the nearest-neighbor coupling

in the dynamical rule is,

J1(J) = j11J + j21J
2 + j31J

3 + · · · (56)

where, from Eq. (47), j11 = [tanh(K)+1], j21 = 0, and j31 = 10
3

[tanh3(K)− tanh(K)]. The corresponding

coefficients of the couplings in the Hamiltonian, j̃n1 , j̃n2 , j̃n3 , t̃n4 are the quantities we wish to solve for.

Expanding Eq. (55) to first order in J yields,∑
i

[
(2j̃11 − 2j11)[A] + 2t̃14([B] + [C] + [D]) + 2j̃12 [H] + 2j̃13 [I]

]
= 0 (57)

The sums over the four distinct interaction terms, [A], ([B] + [C] + [D]), [H], and [I] must vanish

independently, thus to first order in J ,

j̃11 = j11 =
[

tanh(K) + 1
]
, (58)
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while the coefficients j̃12 , j̃13 and t̃14 are all zero. Using the solutions of order J and expanding Eq. (55)

to second order in J yields,∑
i

[
2j̃21 [A] + 2t̃24([B] + [C] + [D]) + 2j̃22 [H] + 2j̃23 [I]

]
= 0, (59)

so that j̃21 , j̃22 , j̃23 and t̃24 all vanish.

Note that 2
∑

i[B] =
∑

i[C] = 2
∑

i[D] because of the extra reflection symmetry of [C], which allows

us to eliminate [C] and [D] from the equations in favor of [B]. The relations between these terms holds

due to the summation over i and marks the first appearance where global balance, rather than detailed

balance, must be invoked. Using the solutions at order J and J2, the global balance condition at order

J3 is,

∑
i

[
(2j̃31 − 2j31)[A] + (8t̃34 − 2t34)[B] + 2j̃32 [H] + 2j̃33 [I]

]
= 0. (60)

Thus, we find j̃32 = 0, j̃33 = 0, and j̃31 = j31 , and t̃34 = t34/4. At this order products of interactions also

appear. For example, one finds terms of the form [A] · [A] · [A] = 10[A] + 6[B], however, all such terms

have coefficients that vanish at this order.

Thus, to order J3 there are only two terms in the sequential Hamiltonian,

−H = J̃1
∑
〈i,j〉1

SiSj + T̃4
∑
〈i,j,k,l〉⊥

SiSjSkSl +O[J4], (61)

where

J̃1 = j11J + j31J
3 +O[J4] (62)

=
[

tanh(K) + 1
]
J +

10

3

[
tanh3(K)− tanh(K)

]
J3 +O[J4]

and

T̃4 =
t34
4
J3 +O[J4] (63)

=
1

2

[
tanh3(K)− tanh(K)

]
J3 +O[J4].

We now consider additional couplings beyond those explicitly written in the Hamiltonian, Eq. (53).

It is straightforward though tedious to show that no additional terms appear up to third order in J .

Consider an additional distinct coupling term in the Hamiltonian with coupling J̃x. The ratio of the

stationary probabilities before and after flipping spin Si, Eq. (54), will include a new set of terms,

distinct from the previous terms, all rooted at site i, and all having coupling coefficients J̃x. As before,

we expand J̃x in a power series in J , J̃x = j̃1xJ + j̃2xJ
2 + j̃3xJ

3 + . . ., and then supplement the global

balance equation (55) with the new terms. Finally, one must carry out the expansion in powers of J

and see that the coefficients j̃1x j̃2x and j̃3x all vanish. The intuitive reason why this is the case is that

there are no dynamical couplings at order J3 to balance an added term in the Hamiltonian.
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Figure 10. The difference, ∆Jc(K) between the numerical data for the critical curve for sequential dynamics

and the approximation, Eq. (64), as a function of K.

On the other hand, at fourth and higher order in J , new types of interactions that are not present in the

set shown in Fig. 9 appear as a result of products of couplings such as [A] · [C] and these interactions

can couple spins not included in the five spin “cross”. Both long range and multi-spin couplings are

expected to appear at higher order in J but as the range or number of spins increases, the leading

order in J of the associated coupling constant will increase. The higher order terms in the sequential

Hamiltonian are left for future research.

1. Approximation to the sequential critical curve

Here we present an approximation to the critical dynamical coupling J (s)
c (K) for sequential dynamics.

Assume that the T̃4 term and all higher order couplings can be neglected and that the nearest-neighbor

coupling, J̃1 is best approximated by the full expression J1(J,K) in Eq. (42) rather than the third order

truncation, Eq. (62). Then our approximation for the critical curve, J (s)
c (K) is given by the implicit

equation,

J1(J
(s)
c (K), K) = Jc(0), (64)

where Jc(0) ≈ 0.4407 is the critial coupling of the ordinary Ising model. The critical curve was obtained

from this equation numerically and is shown in blue (upper curve) in Fig. 1.

This approximation is surprisingly good. It is exact for both K → 0 and K →∞. Figure 10 shows the

difference, ∆Jc(K) between the numerical result for the critical coupling J (s)
c (K) and the approximation,

J1(J
(s)
c (K), K) = Jc(0). Finite-size effects are not taken into account in the numerical results and may

be responsible for some of this difference, which never exceeds 4 parts in 104.
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V. MEAN FIELD THEORY

In this section, the phase diagram for the kinetic Ising model with self-interaction is obtained within a

mean field approximation. Mean field theory (MFT) for the equilibrium, nearest-neighbor Ising model

with no self-interaction or magnetic field yields a self-consistent equation for the magnetization per spin

m,

m = tanh(Jzm) (65)

where z is the coordination number. The critical coupling Jc marking the onset of spontaneous mag-

netization (|m| > 0) occurs when Jcz = 1.

One can interpret the mean field equation, (65), as a dynamical equation with the magnetization on

the left hand side being one time step later than the magnetization on the right hand side. Equilibrium

states are obtained by setting the magnetization on the two sides of the equation equal. We can

generalize the mean field dynamical equation to include self-interaction by replacing hi in Eq. (1) by

zm. The mean field dynamical equation for spin, Si is,

〈S ′i〉 = tanh(Jzm+KSi), (66)

where 〈S ′i〉 is the expected value of spin Si at the subsequent time step. We now average over sites i to

obtain the equilibrium equation for m,

m =
(1 +m

2

)
tanh(Jzm+K) +

(1−m
2

)
tanh(Jzm−K), (67)

where the first and second terms on the right hand side correspond to the contributions from plus and

minus spins, respectively.

Close to the critical point, an expansion in m yields an equation for the critical curve, Jc(K),

Jc(K)z[1 + tanh(K)]− 1 = 0. (68)

The phase diagram obtained from Eq. (68) is plotted as the solid magenta line in Fig. 11. The value

of z is adjusted so that Jc(K = 0) is the exact value for the two-dimensional Ising model. We see that

MFT agrees qualitatively with the numerical results. Mean field theory does not distinguish between

sequential and parallel dynamics so it is perhaps not surprising that the critical curve lies between

the parallel and sequential critical curves. Our mean field theory captures the exact result for both

dynamics that Jc(K) → Jc(0)/2 as K → ∞. Finally, the mean field equation (68) is the same as

the mean field equation for the standard Ising model except for the factor of [1 + tanh(K)], which is

precisely the first order in J correction to the nearest-neighbor coupling in the sequential Hamiltonian

(see Eq. (58)).

An alternative mean field theory was obtained in [2] and is also shown in Fig. 11 as the solid green curve.

These results were calculated from a mean field approximation applied to the Hamiltonian obtained
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Figure 11. The phase diagram in the J-K plane showing the critical dynamical coupling obtained from

mean field theories. Critical lines for parallel (red, lower) and sequential dynamics (blue, upper) are shown for

comparison (see Fig. 1 for details). The magenta curve that lies between the data for sequential and parallel

dynamics is the mean field theory, MFT1, obtained here (see Eq. (68)) and the green solid line that falls below

the data points is mean field theory, MFT2, of Ref. [2].

for parallel dynamics (see Eq. (14)). The MFT phase plot for the parallel dynamics is adjusted so that

Jc(K = 0) is the exact value for the two-dimensional Ising model. The qualitative behavior agrees with

the other phase plots but it does not capture Jc(K)→ Jc(0)/2 as K →∞.

VI. DISCUSSIONS

We have studied kinetic Ising models with nearest-neighbor dynamical interaction J and self-interaction,

K, and for both random sequential updating and parallel updating. These models were studied with

Monte Carlo simulation and analytic methods. The equilibrium phase diagram and critical lines of both

models were obtained numerically and approximated by several methods. One of these approximations

is a simple mean field theory that predicts a critical line that falls between the parallel and sequential

critical lines. In addition, the critical dynamics of the sequential model was studied and the prefactor of

the critical divergence of the magnetization autocorrelation time was found to increase as e2K . It would

be interesting to investigate the addition of a self-interaction term in the dynamics of other spin models,

for example the Potts and Blume-Capel models, to see how it effects the equilibrium distribution and

autocorrelation times.

We have studied the Gibbs distributions describing the equilibrium states of the two models. For

the parallel model, this distribution satisfies detailed balance with respect to the dynamics. The

associated Hamiltonian was previously obtained [2], and involves three two-spin couplings and two

four-spin couplings. The equilibrium distribution for the random sequential model does not satisfy
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detailed balance with respect to the dynamics and must be obtained from the global balance equation.

We developed a perturbative expansion of the sequential Hamiltonian in the dynamical coupling, J

and carried it out to order J3. At this order the Hamiltonian features a nearest-neighbor coupling and

a four-spin coupling. It is clear that at higher order, other smaller couplings, perhaps infinitely many

other couplings, will appear. The nearest-neighbor coupling obtained from the perturbative expansion

yields a very accurate approximation to the critical line. It would be interesting to understand the

equilibrium Gibbs distribution for sequential updating more completely. Does the Hamiltonian in fact

have infinitely many couplings and, if so, how do they fall off as a function of the range of interaction

and the number of coupled spins?

For the parallel case we focused attention on the region near the K = 0 critical point, which is described

by two uncoupled critical Ising models on the two sublattices of the square lattice. When the full lattice

is viewed, large checkerboard regions are apparent at and near this critical point. For small, but non-

vanishing K two critical lines emerge from the K = 0 critical point for positive and negative K,

respectively. Numerical results show that these critical lines approach the K = 0 critical point as a

power law with an exponent slightly larger than 1/2. We proposed a finite-size scaling theory for the

region near the K = 0 critical point that includes a new critical exponent that controls the scaling

behavior in the K direction and the power-law behavior of the critical lines. We presented a heuristic

argument based on the length scale for checkerboard regions as a function of K, which predicts that

the exponent describing the shape of the critical lines is 1/2. It would be interesting to understand the

scaling behavior near the K = 0 critical point more fully. Is the finite-size scaling theory correct? If

so, what is the actual scaling exponent and can it be related to known Ising critical exponents?

When self-interaction is large and positive, the equilibrium states of the sequential and parallel models

both reduce to a nearest-neighbor Ising model with twice the dynamical coupling strength [18]. The

equivalence of the two updating schemes can be understood intuitively from the fact that spin-flips

occur exponentially rarely so that a parallel update becomes equivalent to a single sweep of sequential

updates–in both cases almost no spin flips occur.
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