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We study properties of Markov chain Monte Carlo simulations of classical spin models with local
updates. We derive analytic expressions for the mean value of the acceptance rate of single-spin-flip
algorithms for the one-dimensional Ising model. We find that for the Metropolis algorithm the
average acceptance rate is a linear function of energy. We further provide numerical results for
the energy dependence of the average acceptance rate for the 3- and 4-state Potts model, and the
XY model in one and two spatial dimensions. In all cases, the acceptance rate is an almost linear
function of the energy in the critical region. The variance of the acceptance rate is studied as a
function of the specific heat. While the specific heat develops a singularity in the vicinity of a phase
transition, the variance of the acceptance rate stays finite.

I. INTRODUCTION

One of the most challenging problems in high-
performance computing (HPC) is using the full strength
of supercomputers. It is very demanding, however, to
efficiently use all the power of a supercomputer in a sin-
gle run. The main barrier is that most of the currently
available algorithms do not scale well on the complex
multi-node, multi-core, and multi-accelerator hybrid ar-
chitectures which are the dominant today and will be
dominant for the nearest future. Hence the computation
must be divided into millions of tasks to be scheduled on
individual cores. It is thus of crucial importance to de-
velop new, fully scalable algorithms, new programming
techniques, and new methods to build programs which
can efficiently use the power of supercomputers.

Markov chain Monte Carlo methods [1, 2] are among
the prime approaches of supercomputer simulations in
physics, chemistry, and materials sciences. A Monte
Carlo (MC) simulation is a sequence of local updates of
microscopic degrees of freedom, and the overall perfor-
mance of a simulation strongly depends on these local
elementary updates [2]. Two features of the family of
local MC algorithms are worth noting: first, simulations
based on these algorithms are naturally embarrassingly
parallel, which makes them even more attractive for mas-
sively parallel computations; second, they are applicable
in the presence of external fields and/or competing ferro-
and antiferromagnetic interactions, where more sophisti-
cated schemes (e.g., cluster updates) break down.

A program of the US DOE, Office of Science, enti-
tled the Innovative and Novel Computational Impact on
Theory and Experiment (INCITE) [3] awarded on aver-
age 60 projects per year, from which 30 percent are in
physics, 28 percent in engineering, 15 percent in materi-
als sciences, 9 percent in earth sciences, and 7 per cent
in chemistry, etc. The average number of projects which
used MC methods is 5 per year in the last ten years.
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In the core of MC methods is the Metropolis algo-
rithm [4] known for more than 60 years. What we find
surprising is that a careful analysis of an “old” method
could bring completely new knowledge on the computa-
tions. Namely, we note that the acceptance rate of an MC
simulation is a thermodynamic function which displays
a well-defined temperature dependence. These findings
provide a deeper understanding of the algorithm, and we
believe that our observation may influence further im-
provements of MC algorithms in general, and their par-
allel scalable versions.

A Markov process is defined by its set of transition
probabilities between microscopic states, which must
obey a balance condition [1, 2]. Efficiency of an MC
process is governed by several factors: the typical ac-
ceptance rate (i.e., the fraction of states in the Markov
chain which differ from the previous state), the compu-
tational complexity of an elementary update, and the
autocorrelation time of the process. Different choices for
both trial moves and their transition probabilities are
possible [2, 5]. A rigorous theorem claims that a spe-
cific choice of elementary updates — which is in fact a
global update, attempting to update all degrees of free-
dom at once by drawing random increments from a Gaus-
sian distribution — maximizes the efficiency if the mean
value of the acceptance rate is tuned to the special value
0.234 [6, 7]. However, such processes have unfavorable
correlation properties [8], and are not suitable for MC
simulations of physical systems with a large number of
degrees of freedom.

We now make the following observation: the mean
value of the acceptance rate of an MC simulation using
a given set of transition probabilities has a well-defined
temperature dependence. Therefore, it can be viewed as
a thermodynamic function of the model under the MC
dynamics, on par with other thermodynamic functions,
e.g., the energy. A natural question is then: what is
the relation between the mean acceptance rate and other
thermodynamic quantities? We find that for the one-
dimensional (1D) Ising model, the acceptance rate of the
Metropolis algorithm [4] is a linear function of energy.
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An immediate question is then whether this linear rela-
tion is a one-off artifact of the Metropolis MC dynamics
for the 1D Ising model, or whether it generalizes for other
related models and MC algorithms.

The rest of the paper is organized as follows. In Sec. II
we briefly describe the models for which we calculate an-
alytically or compute numerically the acceptance rate.
In Sec. III we present analytical results on the accep-
tance rate of the Metropolis and heat-bath algorithms
for the 1D Ising model. Section IV contains computa-
tional results for the acceptance rate and its variance for
the one-dimensional models described in Sec. II. Next
Sec. V presents computational results for the acceptance
rate and its variance for the two-dimensional models. In
Sec. VI we summarize our findings. Two Appendixes
contain more details on the analytical calculation of the
acceptance rate when applying the Metropolis and heat-
bath algorithms to the 1D Ising model.

II. MODELS AND UPDATE ALGORITHMS

We consider several well-known classical lattice mod-
els. The Ising model is defined by the Hamiltonian func-
tion

H = −J
∑
〈ij〉

SiSj , (1)

where the coupling constant J > 0, 〈ij〉 denotes nearest-
neighbor pairs, and Si = ±1 are Ising spins, located at
the sites of a d-dimensional lattice of linear size L (and
volume V = Ld) with periodic boundary conditions.

In the q-state Potts model, spins can take q possible
values, Si ∈ 1, . . . , q [9]:

H = −J
∑
〈ij〉

δ(Si, Sj) , (2)

where the coupling constant J > 0 and δ(Si, Sj) is the
Kronecker delta symbol, which equals one whenever Si =
Sj , and zero otherwise.

Finally, we consider the XY model, defined by [10]:

H = −J
∑
〈ij〉

cos (Si − Sj) , (3)

where the coupling constant J > 0 and Si are continuous
variables, Si ∈ [0, 2π).

MC simulations provide a way of studying models (1)-
(3) in thermodynamic equilibrium. An MC simulation
constructs an ergodic random walk in the configuration
space of a model,

· · · → µ→ ν → · · · ,

which generates the equilibrium Gibbs distribution of a
model as its stationary distribution [2]. For local updat-
ing schemes, successive configurations µ and ν only differ
by the value of a single spin.

An elementary update of the local Metropolis algo-
rithm [4] for the Ising model proceeds in two steps: (i)
select a random site and (ii) flip its spin, Si → −Si, with
the probability

p(µ→ ν) = min(1, e−β∆E) , (4)

where β is the inverse temperature and ∆E = Eν − Eµ
the energy difference between the updated and original
states [5]. The generalization to models with more than
two states per spin is straightforward: (ii) is simply re-

placed by Si → S̃i, where S̃i is any admissible spin value.
The heat-bath algorithm for the Ising model differs

from the Metropolis algorithm only in that a spin-flip
update is accepted with the probability [5]

p(µ→ ν) =
e−βEν

e−βEν + e−βEµ
. (5)

This can be recast into the form

p(µ→ ν) =
e−β∆E/2

e−β∆E/2 + eβ∆E/2

=
1

2
[1− tanh(β∆E/2)] , (6)

which is the general Glauber update rule [11] that can
also be applied to models with more than two states per

spin and a generalized update proposal Si → S̃i. Note
that only for the Ising model with two states per spin, the
heat-bath process coincides with the Glauber dynamics
[11]. In the general case, the heat-bath process in a strict
sense (there is some confusion with the notation in the
literature) involves all possible spin values and is hence
more complicated.

III. ACCEPTANCE RATES OF MC
SIMULATIONS OF THE 1D ISING MODEL

To calculate the expected value of the acceptance prob-
ability of an MC simulation of the 1D Ising model we first
convert Eq. (1) to bond variables [12, 13].

A. Bond representation

In one dimension Eq. (1) takes the form

H = −J
L∑
i=1

SiSi+1 , (7)

where the indices in (7) are taken modulo L, i.e., the
term SLSL+1 is understood as SLS1.

To calculate the expected values of the acceptance
probability of a MC simulation of the 1D Ising model
(7) for the Metropolis and heat-bath updates, we first
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convert the model (7) to a bond representation. We de-
fine for a bond connecting sites i and i + 1 the ’charge’
[12, 13],

Qi =
1

2
(SiSi+1 + 1) , (8)

which takes values of 0 (for Si 6= Si+1) and 1 (for Si =
Si+1 ). In this representation, Eq. (7) takes the form

H = −2J

L∑
i=1

Qi + JL , (9)

where the sum is taken over the bonds of the lattice.
With periodic boundary conditions, the number of bonds
equals the number of sites of the lattice. This way, the
state space of the model (7) is spanned by a collection
of L integers Qi = {0, 1}, subject to the constraint: the

parity of
∑L
i=1Qi is the same as the parity of the number

of bonds. We take L to be even throughout, so that

L∑
i=1

Qi is even.

The partition function corresponding to Eq. (9) then
reads

Z = 2x−L/2
L/2∑
l=0

C2l
L x

2l , (10)

where x ≡ e2βJ and β is the inverse temperature. The
summation runs over the values of

∑
iQi = 2l, and the

binomial coefficient, C2l
L , counts the number of ways of

distributing 2l values of Q = 1 over L bonds. The factor
of 2 accounts for a double-counting of the representation
(8): each value of Qi can be realized by two possible
combinations of Si and Si+1 (e.g., Qi = 0 means that
either Si = −1 and Si+1 = 1 or vice versa).

Performing the summation in (10) we obtain

Z = x−L/2
[
(x+ 1)L + (x− 1)L

]
, (11)

which agrees with the standard result [14].

B. Acceptance rate of the Metropolis algorithm

We use the bond representation (9) to calculate the
acceptance rates for the Metropolis and the heat-bath
algorithms. In this section, we only state the main results
and relegate the details of calculations to the Appendix.

We start with the Metropolis update (4). Denoting the
expected value of the acceptance probability by R, the
expected value of the rejection probability is

1−R =
x2 − 1

Z

[
(x+ 1)L−2 + (x− 1)L−2

]
x−L/2 . (12)

In the thermodynamic limit, L→∞, the second term in
brackets is negligible, and Eq. (12) simplifies to

R =
2

x+ 1
. (13)

We now compare Eq. (13) to the thermodynamic mean
value of the internal energy of the system, E. Using the
partition function (11), we obtain in the thermodynamic
limit the standard result [14]

ε = −x− 1

x+ 1
, (14)

where the reduced energy density ε = E/JL.
Comparing Eqs. (13) and (14), we find

R = 1 + ε , (15)

i.e., the expected value of the acceptance probability is a
linear function of the energy. In fact, relation (15) holds
for all values of L, see Appendix A.

C. Acceptance rate of the heat-bath algorithm

For the expected value of the acceptance probability R
of the heat-bath update (5) we find in the thermodynamic
limit L→∞

R =
x

1 + x2
. (16)

Comparing to (14), we have

R =
1

2

1− ε2

1 + ε2
, (17)

which approaches the linear behavior (1+ε)/2 for 1+ε�
1 (cf. Fig. 1). Details can be found in Appendix B.

IV. SIMULATION RESULTS IN 1D

In this section we first verify the analytical results for
the Metropolis and heat-bath acceptance rates of the
Ising model in one dimension and then test the observed
qualitative features for the other models defined in Sec.
II. Results for the generalization to two dimensions will
be presented in the next section.

A. First moments of the energy and acceptance
rate

We performed MC simulations of the 1D Ising model
(7) using Metropolis updates (4) and heat-bath updates
(5) for temperatures ranging from T/J = 0.2 to 10. We
used NT = 106 MC steps (MCS) for thermalization and
collected statistics over NA = 107 MCS. Here an MCS
is defined as L elementary update attempts for a chain
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FIG. 1. Average acceptance rates of the Metropolis updates
(4) and the heat-bath updates (5) for the 1D Ising model (7).
Simulation were done for L = 512 spins with periodic bound-
ary conditions. Symbols are simulation results, with error
bars shown at all points. Solid lines are predicted relations
(15) and (17). See text for discussion.

with L spins. We first focus on the collected statistics
for the total energy of the system, E, and the acceptance
rate, R, which we specifically define as the ratio of the
numbers of accepted and attempted elementary updates.

Figure 1 shows the relation between the mean values
of the acceptance rates of the MC process and the re-
duced energy density, ε, for a chain of L = 512 spins and
periodic boundary conditions. The results of the MC
simulations agree with Eqs. (15) and (17) in the whole
range of energies (hence, temperatures). We note that
for the heat-bath algorithm the dependence of R on the
reduced energy density is approximately linear in a wide
range of temperatures: the relative difference between R
and its linear approximation is below 10% for T/J < 1.1.

It is instructive to compare the behavior of local MC al-
gorithms for related classical spin models. We performed
MC simulations of the 3- and 4-state Potts models (2),
and the classical XY model (3) in one dimension using
the Metropolis and Glauber algorithms. There are sev-
eral ways of organizing the local updates. We take the
simplest possible prescription: we select a spin Si at ran-

dom, and then draw a proposed value S̃i for the update

Si → S̃i from a uniform discrete distribution of q values
for the Potts model, and from a uniform distribution on
[0, 2π) for the XY model. In these simulations we use
NT = 104 MCS for thermalization and NA = 105 MCS
for the averaging.

The energy dependence of the acceptance rate for the
Metropolis algorithm is summarized in Fig. 2(a). In gen-
eral, the dependence turns out to be a non-linear fea-
tureless curve. The maximum difference is observed to
be between the 3-state Potts and Ising models. The 4-

state Potts model is closer to the Ising result, and for the
XY model, the acceptance rate approaches that for the
Ising model at very large temperatures, T � J . Results
for the Glauber updates turn out to be qualitatively sim-
ilar, and we present them for one spatial dimension in
Fig. 3(a).

B. Second moments of energy and acceptance rate

Mean values of energy and acceptance rate are com-
puted as first moments of samples generated by the MC
process. Given a one-to-one, monotonic relation between
the mean values, it is instructive to compare the second
moments. In general, the second moment of the reduced
energy density ε = E/JV = 〈H〉/JV is related to the
specific-heat capacity,

C = J
dε

dT
=
〈H2〉 − 〈H〉2

V T 2
, (18)

where 〈· · ·〉 stands for the average over the states gener-
ated by the MC process.

The variance of the acceptance rate is readily com-
puted as the variance of a Bernoulli process of binary
decisions (1 if an elementary update is accepted, and 0
otherwise). For a Bernoulli process, the variance, varR,
is related to the mean value, R, via varR = R(1 − R).
In the case of the 1D Ising model, given the exact results
for R derived above, hence also varR is known exactly.

Figure 2(b) displays the relation between the heat ca-
pacity and the variance of the acceptance rate for the
Metropolis algorithm. We scale the variance of R by T 2

in accordance with Eq. (18). At lowest temperatures,
T � J , the heat capacity as a function of temperature
has a maximum due to the well-known Schottky anomaly
[16]. Because of this, the curves in Fig. 2 form arcs for
C ∼ 1. Outside of this range, for T > J , the relation be-
tween second moments divided by T 2 is close to linear on
the log-log scale for all one-dimensional models. Results
of simulations using the heat-bath respectively Glauber
updates, shown in Fig. 3(b), look qualitatively similar.

V. SIMULATION RESULTS IN 2D

It is instructive to compare the behavior of 1D mod-
els to higher dimensions, if only to see whether our ob-
servations are specific to 1D or have broader applica-
bility. Specifically, 2D models with Hamiltonians (1)–
(3) undergo a phase transition at a certain tempera-
ture Tc, between a high-temperature paramagnetic be-
havior and a low-temperature phase. For the Potts
models, critical parameters are known analytically [9],
Tc/J = 1/ ln

(
1 +
√
q
)
, and for the Kosterlitz-Thouless

transition of the XY model, MC simulations of Ref. [15]
quote Tc/J = 0.887(2). Here the specific-heat capac-
ity stays finite everywhere, with a smooth peak located
about 20% above Tc/J . The behavior of the MC process
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FIG. 2. (a) Average acceptance rates of the Metropolis updates (4) versus energy for 1D models. (b) Variance of the acceptance
rate versus heat capacity on a log-log scale. Simulations were done for the Ising model (circles), the Potts model with q = 3
(triangles) and q = 4 (diamonds), and the XY model (squares), using chains of L = 512 spins with periodic boundary conditions.
Symbols are simulation results with error bars, lines are to guide the eye.

FIG. 3. (a) Average acceptance rates of the heat-bath respectively Glauber updates (5), (6) versus energy for 1D models. (b)
Variance of the acceptance rate versus heat capacity on a log-log scale. Simulations were done for the Ising model (circles),
the Potts model with q = 3 (triangles) and q = 4 (diamonds), and the XY model (squares), using chains of L = 512 spins with
periodic boundary conditions. Symbols are simulation results with error bars, lines are to guide the eye.

with local updates varies significantly between the para-
magnetic phase (T > Tc), the low-temperature phase
(T < Tc), and the critical region (T ≈ Tc) [2].

Figure 4 shows results of simulations with the
Metropolis algorithm of the two-dimensional models with
642 spins for temperatures between T/J = 0.5 to 10.
Here we use NT = 105 MCS for thermalization and
NA = 106 MCS for averaging.

The first moments of the acceptance rate and energy
shown in Fig. 4(a) are both smooth across the phase tran-
sition, with a relation which is close to linear in the criti-
cal region T ∼ Tc. The second moments in Fig. 4(b) show

two clearly separate branches, for T > Tc and T < Tc,
which join at the critical point. Note that while the heat
capacity develops a singularity as T → Tc, the variance of
the acceptance rate remains smooth and does not show
any signs of divergence. This can be explained by re-
calling that the heat capacity (18) is by definition pro-
portional to the variance of the nonlocal total energy,
while the acceptance rate and its variance refer to local
measurements. It is also worth noting that the relative
position of the low- and high-temperature branches for
the Ising model differs from both Potts models and the
XY model.



6

FIG. 4. (a) Average acceptance rates of the Metropolis updates (4) for 2D models. (b) Second moments of energy and the
acceptance rate on a log-log scale. Simulations were done on a 642 square lattice with periodic boundary conditions for the Ising
model (circles), the Potts model with q = 3 (triangles) and q = 4 (diamonds), and the XY model (squares), using NT = 105

MC steps (MCS) for thermalization and NA = 106 MCS for averaging. Symbols are simulation results with error bars, lines
are to guide the eye. Semi-transparent disks show the critical regions.

FIG. 5. (a) Average acceptance rates of the heat-bath respectively Glauber updates (5), (6) versus energy for 2D models. (b)
Variance of the acceptance rate versus heat capacity on a log-log scale. Simulations were done on a square lattice with 642 spins
and periodic boundary conditions for the Ising model (circles), the Potts model with q = 3 (triangles) and q = 4 (diamonds),
and the XY model (squares), using NT = 105 MC steps (MCS) for thermalization and NA = 106 MCS for averaging. Symbols
are simulation results with error bars, lines are to guide the eye. Semi-transparent disks indicate the critical region of the
corresponding model.

For heat-bath respectively Glauber updates, the re-
sults are qualitatively similar to those using Metropolis
updates, see Fig. 5.

We have also verified that simulations of the three-
and four-dimensional models behave qualitatively simi-
lar to the two-dimensional models. These results will be
detailed elsewhere.

VI. CONCLUSION

Concluding, we start with the observation that the ac-
ceptance rate of an update proposal of a Monte Carlo
simulation can be regarded on par with thermodynamic
functions of a model, and thus can itself be considered a
thermodynamic function of a model under a given Monte
Carlo dynamics.

For the one-dimensional Ising model we derive analyti-
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cally that the mean value of the acceptance rate for local
Metropolis updates is a linear function of energy. This
linear dependence turns out to be specific for this com-
bination of the updating scheme and the model: chang-
ing the updating algorithm to heat-bath updates changes
the functional form of the relation between the mean val-
ues of the acceptance rate and energy, so that the rela-
tion is only linear away from the high-temperature region
T � J .

We simulate several classical models in one and two
spatial dimensions, the Ising model, the 3- and 4-state
Potts models, and the XY model, and compute the de-
pendence of the first and second moments of the accep-
tance rate on the mean value and the second moment of
energy. We find that in general the relation is not linear
in a wide range of temperatures, but is close to linear in
the critical region around the transition temperature Tc.

Our result for the acceptance rate of the heat-bath
algorithm for the one-dimensional Ising model can be
viewed as an addition to the Glauber paper [11] on the
dynamics of the one-dimensional Ising model – since in
that case, the heat-bath algorithm exactly reproduces the
Glauber dynamics. The acceptance rate in the Glauber
dynamics [11] is the frequency of the spin flips, and it is
given by Eqs. (16) and (17).

The acceptance rate can also be calculated analytically
for any exactly solvable model (e.g., one-dimensional q-
state Potts models and the two-dimensional Ising model),
although this is not straightforward in all cases. One can
compute the acceptance rate for any local Monte Carlo
algorithm. In fact, we checked that for all models and
for all dimensions for which we have code on hand, the
acceptance rate is linear in the energy close to a second-
order phase transition, as demonstrated for some two-
dimensional models in Section V. Moreover, additional
simulations show that in the vicinity of a first-order phase
transition, the acceptance rate is a linear function of en-
ergy as well.

The source codes for our Monte Carlo simulations and
data analysis are available from Ref. [17].
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APPENDIX: ACCEPTANCE RATES OF LOCAL
MONTE CARLO UPDATES FOR THE
ONE-DIMENSIONAL ISING MODEL

In this appendix we turn our attention to the mathe-
matical details of calculating the expectations of the ac-
ceptance rates of local MC updates.

A. Acceptance rate of the Metropolis algorithm

Using the bond representation (9), we note that flip-
ping a spin Si flips the values of two bond charges, Qi
and Qi−1. The acceptance probabilities depend on the
sum Q ≡ Qi + Qi−1: for Q = 0 or 1, the Metropolis
update is always accepted, since ∆E 6 0. For Q = 2,
the update is accepted with probability e−4βJ = x−2.

Denoting the expected value of the acceptance proba-
bility by R, the expected value of the rejection probabil-
ity is then

1−R =

L/2∑
l=0

(
1− x−2

) 2l

L

2l − 1

L− 1

C2l
L x

2l2x−L/2

Z
. (19)

Here the factor 2l(2l−1)/L(L−1) counts the probability
that, in a configuration with

∑
iQi = 2l, for a randomly

chosen site i we have Q = 2, i.e., Qi = Qi−1 = 1.
The sum entering Eq. (19) is readily computed by dif-

ferentiating twice the binomial formula

(x+ 1)L =

L∑
k=0

CkLx
k .

The result is

1−R =
x2 − 1

Z

[
(x+ 1)L−2 + (x− 1)L−2

]
x−L/2 ,

which is Eq. (12).
We now compare Eq. (12) to the internal energy of

the system. The energy is given in general by E =
−d lnZ/dβ = (1/Z)dZ/dβ. Using (11) and dx/dβ = 2Jx
(since x = e2βJ), we obtain from the product rule
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−E/J = {−(L/2)x−L/2−12x[(x+ 1)L + (x− 1)L] + 2xx−L/2[L(x+ 1)L−1 + L(x− 1)L−1]}/Z
= {−Lx−L/2[(x+ 1)L + (x− 1)L] + 2Lxx−L/2[(x+ 1)L−1 + (x− 1)L−1]}/Z
= Lx−L/2{2x[(x+ 1)L−1 + (x− 1)L−1]− [(x+ 1)L + (x− 1)L]}/Z
= Lx−L/2{[2x− (x+ 1)](x+ 1)L−1 + [2x− (x− 1)](x− 1)L−1}/Z (20)

= Lx−L/2{(x− 1)(x+ 1)L−1 + (x+ 1)(x− 1)L−1}/Z
= Lx−L/2{(x− 1)(x+ 1)(x+ 1)L−2 + (x+ 1)(x− 1)(x− 1)L−2}/Z
= L(x2 − 1)x−L/2{(x+ 1)L−2 + (x− 1)L−2}/Z ,

which simplifies in the thermodynamic limit L → ∞ to
Eq. (14).

Comparing (20) with (12), one readily sees that

−ε = 1−R (21)

or

R = 1 + ε (22)

is true for all lattice sizes L, i.e., the relation between
the acceptance rate R for the Metropolis update and the
reduced energy density ε of the 1D Ising model does not
depend on the length L of the one-dimensional chain with
periodic boundary conditions.

B. Acceptance rate of the heat-bath algorithm

The expected value of the acceptance probability R of
the heat-bath update can be calculated similarly to Eqs.
(19) and (12). Here we directly compute the acceptance

probability: acceptance probability of an elementary up-
date of the spin Si is again defined by Q ≡ Qi + Qi−1,
and the analog of Eq. (19) is

R =

L/2∑
l=0

( 1

1 + x2

2l

L

2l − 1

L− 1

+
x2

1 + x2

L− 2l

L

L− 2l − 1

L− 1

+
L− 2l

L

2l

L− 1

)C2l
L x

2l2x−L/2

Z
, (23)

where the terms in brackets correspond to Q = 2, Q = 0
and Q = 1, respectively. Differentiating the binomial
formula, we obtain

R =
x

1 + x2

1− κL

1 + κL
, (24)

where κ = (x − 1)/(x + 1) = e−1/ξ < 1 with ξ denot-
ing the correlation length. In the thermodynamic limit

L → ∞, the second factor 1−κL
1+κL

= 1−e−L/ξ
1+e−L/ξ

in (24) ap-

proaches unity exponentially fast, and comparing to (14),
we obtain Eq. (17).
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