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Abstract

The rotation of bacterial flagella driven by rotary motors enables the cell to swim through

fluid. Bacteria run and reorient by changing the rotational direction of the motor for survival.

Fluid environmental conditions also change the course of swimming; for example, cells near a solid

boundary draw circular trajectories rather than straight runs. We present a bacterium model with

a single flagellum that is attached to the cell body and investigate the effect of the solid wall

on bacterial locomotion. The cell body of the bacterium is considered to be a rigid body and is

linked via a rotary motor to the elastic flagellum which is modeled by the Kirchhoff rod theory.

The hydrodynamic interaction of the cell near a solid boundary is described using the regularized

Stokes formulation combined with the image system. We show that the trajectories of the bacteria

near a solid boundary are influenced by the rotation rate of the motor, the shape of the cell body,

helical geometry, and elastic properties of the flagellum.
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I. INTRODUCTION

Flagellated microorganisms are propelled by rotating their flagellar motors that are em-

bedded in the cell membrane. The rotation of each motor is transmitted to the flagellar

filament via a flexible hook, resulting in the rotation of the flagellum so that the cells can

swim [1–9]. Flagellated bacteria run forward or backward by a unidirectional rotation of the

motors; however, they can reorient by changing the rotational direction of the motor or by

transforming the flagellar forms to survive in a fluid-filled environment.

In the absence of any environmental obstacles such as rigid walls, multi-flagellated bac-

teria such as E. coli run approximately straight when all flagella form a left-handed helical

bundle while keeping all motors spinning counter-clockwise (CCW). However, E. coli cells

take clockwise circular trajectories when they swim near rigid surfaces [10–12]. It has been

observed that bacteria swim toward the rigid surface to be entrapped nearby, which is crucial

for the initiation of biofilm formation [13–15]. The trajectory drawn by the cell entrapped

near the surface was found to be circular, as is commonly observed under the microscope

[11, 12, 16]. It is also reported that a single-flagellated bacterium Vibrio alginolyticus swims

in circles near a surface [17, 18].

Bacterial swimming near a no-slip planar wall was analyzed in as early as 1965 by

Reynolds [19] who considered the swimmer as an infinite waving sheet. Ramia et al. [7]

employed the boundary element method (BEM) to describe the hydrodynamics of bacteria

near a planar wall, showing that when it swims close to a solid boundary, the swimmer

exhibits a circular motion. Lauga et al. [20] investigated experimentally and numerically

the motion of an E. coli near a solid wall by employing resistive force theory. They also

found a circular clockwise rotation of bacteria with a good agreement in experimental and

computational results. Both computational models in [7, 20] take the form of a spherical

shape of the cell body, whereas a most common shape of the cell body is a prolate spheroid.

Giacché et al. [16] further investigated the hydrodynamic trapping mechanism focusing on

the correlation between the radii of circular trajectories and the separation gap from the

surface as the aspect ratio of the cell body and the flagellar geometry are varied. Shum et

al. [21] investigated the near-wall bacterial locomotion under various geometrical conditions

of the cell body and the flagellum and found an optimal condition for power efficiency. How-

ever, their flagellum is modeled as a rigidly rotating body although actual flagella exhibit
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elastic properties such as polymorphic transformations [5, 22–24].

In this paper, we use a comprehensive model for a freely swimming monotrichous bac-

terium including a cell body and a flexible helical flagellum equipped with a motor to inves-

tigate the swimming motion of a single-flagellated bacterium near a solid planar wall and

to explore the dependence of its swimming pattern on various physical parameters such as

the shape of the cell body, the helical geometry, and the elastic properties of the flagellum,

and the rotational frequency of the motor. Here a single flagellum can also be interpreted

as a flagellar bundle in E. coli cells when they take a forward run.

The mathematical model of a single-flagellated bacterium for the present study consists

of a cell body and a helical flagellum that share a motor at a junction. We describe the

elastic flagellar filament as a space curve associated with orthonormal triads that measure

the amount of bending and twisting along the rod, which is based on the Kirchhoff rod

theory [25–27]. The penalty idea [28] is used to model the cell body as a rigid body that

can translate and rotate as a whole. Unlike the general mathematical models used in the

previous studies [7, 20, 21], we do not impose the time-evolution (velocity or position) of

the rigidly rotating flagellum; instead, we rotate the motor only of which the torque is

propagated along the flagellum, eventually resulting in the rotation of the whole flagellum.

The cell body naturally counterrotates to balance the torque generated at the motor.

In order to investigate the hydrodynamic interaction of the cell near a solid boundary,

we employ the method of image system of the regularized Stokes formulation which was

introduced by Cortez et al. [29, 30]. Whereas the method proposed in [29, 30] computes

the linear velocity of fluid with no-slip boundary given external force and torque, our model

further requires to compute the angular velocity to rotate the triads of the flagella. We

provide the explicit form of the angular velocity which is obtained by taking the curl of the

linear velocity and its detailed computational recipe.

II. MATHEMATICAL MODEL

A mathematical model of a single-flagellated bacterium consists of a spheroidal cell body

and a helical flagellum, whose one end is attached to the cell membrane. See Figure 1 for

the schematic diagram of a cell in the presence of the solid planar wall. The flagellum is a

long-thin filament and thus can be described by Kirchhoff rod theory [25]. The cell body
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FIG. 1. A schematic view of a single-flagellated bacterium near a rigid planar wall located at

z = 0. The flagellum of the cell is represented by a space curve X and its associated orthonormal

triad
{

D1,D2,D3
}

. The surface of the spheroidal cell body is represented by two Lagrangian

descriptions; Xb as a massless boundary and Yb as a massive boundary. The distance between the

center of mass of the cell body and the wall is denoted by h(t), and the inclination angle between

the major axis of the cell body (−E3) from the z = 0 plane is denoted by θ(t) at time t.

can be described as a rigid body using the penalty method [28, 31], and the hydrodynamic

interaction of the bacterium can be described by the regularized Stokes formulation [26, 29,

30].

The Kirchhoff rod representation for the flagellum is a space curveX(s, t) together with its

associated orthonormal triad {D1(s, t),D2(s, t),D3(s, t)} along the curve, in which the curve

describes the centerline of the flagellum and the triad measures the amount of bending and

twisting of the flagellum. Here, t is time and s is a Lagrangian coordinate with 0 ≤ s ≤ L,

where L is the length of the helical flagellum. The initial shape of the helical centerline

X(s, 0) is described as follows [32]:

X(s, 0) = (r(s) cos(αs), r(s) sin(αs), s) , (1)

where α is the wave number and the helical radius r(s) is a variable function defined as

r(s) = r0

(

1− e−ks
2

)

for 0 ≤ s ≤ L, (2)

where k is a constant that determines how rapidly the helix reaches its maximal radius. The
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helical radius increases gradually to be r0 for the helical flagellum. For the orthonormal

triad, the vector D3(s, 0) is initially defined as a unit tangent vector to the curve X(s, 0),

and the other two vectors, D1(s, 0) and D2(s, 0), are normal and binormal vectors. Note

that the initial configuration of the helical flagellum is at rest, and its deformation causes

elastic restoring force to the reference configuration.

The cell body is built as a hollow spheroid which is represented by two Lagrangian

descriptions: one is a massless surface denoted by Xb(q, r, t) which interacts directly with

the surrounding fluid, and the other is a massive one denoted by Yb(q, r, t) which carries

all of the mass, where (q, r) designates points on a rectangle Γ. These two descriptions

are supposed to be the same body and thus linked by a system of stiff springs with 0

rest length. The massive surface Yb(q, r, t) has no direct interaction with the fluid and

moves as a rigid body in a vacuum, with the only forces and torques applied on the body

being the forces generated from the springs that connect the massless description to the

massive description of the rigid body. Mathematical formulation for the dynamics of the

two descriptions Xb(q, r, t) and Yb(q, r, t) for the rigid cell body will be described in detail

below.

We now state a coupled system of fluid-structure interaction equations for a swimming

bacterium in a viscous incompressible fluid as follows:

0 = −∇p+ µ∆u+ g, 0 = ∇ · u, (3)

0 = f +
∂F

∂s
, 0 = n+

∂N

∂s
+

(

∂X

∂s
× F

)

, (4)

Fb(q, r, t) = Kb(Yb(q, r, t)−Xb(q, r, t)), (5)

g(x, t) =

∫ L

0

(−f(s, t))ψǫ(x−X(s, t))ds+
1

2
∇×

∫ L

0

(−n(s, t))ψǫ(x−X(s, t))ds

+

∫

Fb(q, r, t)ψǫ(x−Xb(q, r, t)) dq dr, (6)

∂X(s, t)

∂t
= u(X(s, t), t),

∂Xb(q, r, t)

∂t
= u(Xb(q, r, t), t), (7)

∂Di(s, t)

∂t
= w(X(s, t), t)×Di(s, t), i = 1, 2, 3. (8)

Eq. (3) is the incompressible Stokes equations where µ is the fluid viscosity. The unknown

variables as functions of the fixed Cartesian coordinates x and the time t are the fluid velocity

u, fluid pressure p, and the external fluid force density g. Eq. (4) expresses the equations for
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force and torque balances where F(s, t) and N(s, t) are the force and moment, respectively,

transmitted across a section of the rod at the Lagrangian coordinate s at time t, and f(s, t)

and n(s, t) are the applied force and torque densities, respectively. The force and moment

generated from the elastic flagellum can be expanded in the basis of the orthonormal triad

and written as

F =

3
∑

i=1

FiD
i, N =

3
∑

i=1

NiD
i, (9)

with the following constitutive relations

Fi = bi

(

Di ·
∂X

∂s
− δ3i

)

, Ni = ai

(

∂Dj

∂s
·Dk − Ωi

)

, i = 1, 2, 3, (10)

where δ3i is the Kronecker delta and (i, j, k) is any cyclic permutation of (1,2,3). The con-

stitutive relations can be derived from a variational argument of the elastic energy potential

for the unconstrained version of the Kirchhoff rod [25]:

E =
1

2

∫ L

0

[

3
∑

i=1

ai

(

∂Dj

∂s
·Dk − Ωi

)2

+

3
∑

i=1

bi

(

Di ·
∂X

∂s
− δ3i

)2
]

ds. (11)

Here the coefficients a1 and a2 are the bending moduli, a3 is the twist modulus of the rod,

b1 and b2 are the shear moduli, and b3 is the stretching modulus. The strain twist vector

(Ω1,Ω2,Ω3) indicates the intrinsic property of the elastic rod in which κ ≡
√

Ω2
1 + Ω2

2 is

the intrinsic curvature and Ω3 is the intrinsic twist of the rod of which the negative values

determine a left-handed helix and positive values determine a right-handed helix. The

flagellum in this work is assumed to be left-handed.

In Eq. (5), Fb is the restoring force acting on the massless boundary Xb. Since the

massless and massive descriptions are supposed to represent the same body, when a pair

of corresponding boundary points moves apart, a restoring force Fb comes into play to

constrain them to stay close for a sufficiently large penalty constant Kb. According to the

Newton’s third law, the negative force density −Fb acts upon the massive rigid body Yb,

see Eqs. (15)-(16) below.

Eq. (6) is the interaction equation between the force densities of the bacterium and fluid,

in which the fluid force density g, exerted by the bacterium boundary, consists of three

terms; the first two terms represent the force and torque from the elastic flagellum, and the

last term represents the force from the surface of the cell body. The blob (cutoff) function

ψδ is defined as

ψδ(r) =
15δ4

8π(|r|2 + δ2)7/2
, (12)
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where δ is the regularization parameter and r = x − X (or r = x − Xb) for a point x in

the fluid and a point X (or Xb) on the cell [26, 33]. The blob function ψδ is a radially

symmetric bell-shaped curve with infinite support, spreading most of the force and moment

within a ball with the radius δ and the center at the boundary point X (orXb) and satisfying
∫∫∫

R3 ψδ(r) dr = 1. Eqs. (7)-(8) are the no-slip conditions for the linear and angular velocities

of the cell, respectively, where w = 1
2
∇× u(x, t) is the fluid angular velocity.

In order to describe the translation and rotation of the rigid cell body Yb(q, r, t), we let

Ycm(t) be the center of mass of the cell body, and {E1(t),E2(t),E3(t)} be the orthonormal

basis for the coordinate system fixed to the body with its origin at the center of mass. Note

that E3(t) is in the direction of a major axis of the spheroidal cell body and points toward

the motor point at the pole. Then the massive boundary can be written as

Yb(q, r, t) = Ycm(t) + E(t)C(q, r), (13)

where E(t) is a 3×3 matrix of which the i-th column is the 3×1 vector Ei(t), and C(q, r)

is a 3×1 vector which represents the coordinates fixed to the cell body in this system and

thus is independent of time. Equations of motion for the rigid cell body Yb(q, r, t) are now

given by
dYcm

dt
= Vcm(t), (14)

M
dVcm

dt
= −

∫∫

Γ

Fb(q, r, t) dq dr, (15)

dL

dt
=

∫∫

Γ

(Yb(q, r, t)−Ycm(t))× (−Fb(q, r, t)) dq dr, (16)

Ω(t) = E(t) I−1
0 E(t)TL(t), (17)

dEi

dt
= Ω(t)× Ei(t), i = 1, 2, 3. (18)

Eqs. (14)-(15) describe the translational motion of the center of mass, where Vcm(t) is

the velocity of the center of mass, and M is the total mass of the hollow cell body which

can be computed by M =
∫∫

Γ
m(q, r)dq dr, where m(q, r) is the mass density of the cell

body. Eqs. (16)-(18) describe the rotational motion of the cell body about the center of

mass, where L(t) and Ω(t) are the angular momentum and the angular velocity of the

cell body, respectively. The initial moment of inertial tensor, I0, can be computed by

I0 =
∫∫

Γ
m(q, r)(CTCI3 − CCT ) dq dr, where the I3 is 3×3 identity matrix. In summary,
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the cell body translates and rotates at the cost of the resultant forces and moments from

the deviation of two Lagrangian descriptions for the cell body.

Finally, we complete this section by showing how we embed the filament into the cell

body and how we rotate the motor. To do that, we first adopt two constraints; one is to

attach the bottom end of the flagellum (representing the motor point) to the north pole of

the cell body, and the other is to align the two directions of the flagellum at the motor point

and the cell body. To achieve this, we define the feedback force and moment densities as

follows:

fm(t) = K1(Y
m
b (t)−X(0, t)), (19)

nm(t) = K2(E3(t)×D3(0, t)), (20)

where K1 and K2 are large constants, and X(0, t) and Ym
b (t) represent the motor point of

the flagellum and the north pole of the cell body, respectively. The force density fm(t) acts

on the motor point X(0, t), and the negative force density −fm(t) acts on Ym
b (t) and affects

the total force and torque on the cell body. Similarly, the moment density nm(t) and its

negative value are applied to X(0, t) and Ym
b (t), respectively. By the feedback mechanism

with sufficiently large values of K1 and K2, X(0, t) stays close to Ym
b (t), and the tangent

vector D3(0, t)) at the motor point is aligned closely with the direction E3(t) of the cell

body.

The motor of the flagellum, represented by X(0, t), rotates at any given frequency ω

about the tangent vector D3(0, t). This can be done by defining the orthonormal triad at

the motor point X(0, t) as follows:

Di(0, t) = R(D3(0, t))Di
mot(0, t), i = 1, 2, (21)

where R(D3(0, t)) represents a rotational matrix to transform the unit vector (0, 0, 1) to

the unit vector D3(0, t). The two orthonormal vectors Di
mot(t), i = 1, 2, represent the

vectors which are rotated at frequency ω from the two standard basis (1, 0, 0) and (0, 1, 0),

respectively:

D1
mot(t) = (cos(2πωt), sin(2πωt), 0),

D2
mot(t) = (− sin(2πωt), cos(2πωt), 0).

The twist generated by the rotary motor is transmitted along the flagellum to its free

end, leading to the rotation of the helical filament, and the resultant counter-torque at the
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rotating motor automatically appears to balance the torque so that the cell body counter-

rotates. See [31] for a more detailed description of mathematical formulation.

III. THE METHOD OF REGULARIZED IMAGE SYSTEM

In this section, we present the regularized Stokes formulation combined with the image

system to compute the linear and angular velocities of fluid with a rigid wall. We consider

an infinite plane wall (z = 0) at which the fluid velocity vanishes. In the presence of

the external fluid force g resulting from the forces and toques of the immersed boundary

(flagellum and cell body), the solution (the linear velocity) of Eq. (3) may not be zero on

the wall. The idea of the method of image system is to define various fundamental solutions

(kernels) such as Stokeslet, potential dipole, rotlet, doublet, and quadrupole, and rotlet

doublet and to apply them to appropriate forces and torques at the image points of the

immersed boundary so that the flow at the wall is at rest. The image system method was

introduced by Cortez et al [29, 30] in order to apply the no-slip wall conditions for the linear

velocity. Here we summarize both the linear and angular velocities in the image system and

provide numerical schemes. The detailed derivation of the mathematical formulation will be

described in Appendix.

Given a point force f0 and a point torque n0 applied at a boundary point X0, we rewrite

the Stokes equation in terms of the regularized force and torque as follows:

0 = −∇p + µ∆u+ f0ψδ(x−X0) +
1

2
∇× n0ψδ(x−X0). (22)

We then utilize the fundamental solutions (kernels) of the image system for the regularized

Stokes equations with a point force and torque applied to the fluid, and obtain the linear

fluid velocity at an arbitrary point x, vanishing at the wall, as follows:

u(x) = uim
s (x) + uim

r (x), (23)

where

µuim
s (x) = S[f0]− S im[f0] + h2P[b] + 2hD[e3,b]− 2h(Rψ[m]−Rφ[m]), (24)

µuim
r (x) =

1

2
Rψ[n0]−

1

2
Rim
ψ [n0]−

(

D[p, e3] +D[e3,p] + hP[p]
)

+
(

Rψ[q]−Rφ[q]
)

+ h
(

Jψ[n0, e3]− Jφ[n0, e3]
)

−
h2

2
Q[n0], (25)
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FIG. 2. Schematic geometry with the wall at z = 0. Velocity is evaluated at x with the point force

and torque centered at Xk. The image point Xim
k is introduced by the relation Xk = Xim

k +2hke3.

where h is the distance from the wall to the point X0, e3 = (0, 0, 1), b = 2(f0 · e3)e3 − f0,

m = f0× e3, p = n0 × e3, and q = n0− (n0 · e3)e3. Here S is the regularized Stokeslet, P is

the regularized potential dipole, D is the regularized Stokeslet doublet, R is the regularized

rotlet, J is the regularized rotlet doublet, and Q is the regularized quadrupole. The rotlet

Rφ is regularized using the blob function

φδ(r) =
3δ2

4π(|r|2 + δ2)5/2
, (26)

and the other kernels are regularized using ψδ in Eq. (12). In what follows, the angular fluid

velocity at the point x can be obtained by

w(x) =
1

2
∇× uim

s +
1

2
∇× uim

r ≡ wim
s +wim

r . (27)

We leave out here and describe in Appendix the explicit forms of fundamental solutions

and the detailed derivations of the linear and angular velocities in the image system; in-

stead, we here introduce the computational recipe to compute the solutions. For numerical

computations, we discretize the immersed boundary (flagellum and cell body) by letting Xk,

k = 1,...,Nb, be the discretized material points, where Nb is the number of points, and letting

fk and nk be corresponding point forces and torques applied at the boundary point Xk. For

the notational simplicity, we substitute fk and nk for the point forces and torques, −fk∆s
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and −nk∆s, respectively, where ∆s is the meshwidth of the flagellum. Then the external

fluid force g in the regularized Stokes equations (3) can be written as

g =

Nb
∑

k=1

fkψδ(x−Xk) +
1

2
∇×

Nb
∑

k=1

nkψδ(x−Xk). (28)

In the image system, we introduce an image point Xim
k = (x, y,−hk) of Xk = (x, y, hk),

where hk is the distance from the wall (hk > 0), and define r∗k = x − Xk, rk = x − Xim
k ,

r∗k = |x − Xk|, and rk = |x − Xim
k |, where x is any point in space. See Figure 2 for the

geometric diagram. Note that Xk = Xim
k + 2hke3 and that r∗k = rk when x is on the wall.

Then the linear fluid velocity at any point x in the image system can be computed by

µu(x) = µuim
s (x) + µuim

r (x), (29)

where uim
s (x) is the velocity of the image system of the regularized Stokeslet:

µuim
s (x) =

Nb
∑

k=1

[

{fkH1(r
∗
k) + (fk · r

∗
k)r

∗
kH2(r

∗
k)} − {fkH1(rk) + (fk · rk)rkH2(rk)}

+ h2k

{

−bkD
φ
1 (rk)− (bk · rk)rkD

φ
2 (rk)

}

+ 2hk

[

(bk · e3)rkH2(rk) + (rk · e3)bkH2(rk) + (bk · rk)e3(H3(rk)−H2(rk))

+ (rk · e3)(bk · rk)rk
Dφ

2 (rk)

2

]

+ 2hkH3(rk)(mk × rk)

]

,

and uim
r (x) is the velocity of the image system of the regularized rotlet:

µuim
r (x) =

Nb
∑

k=1

[

1

2
Q(r∗k)(nk × r∗k)−

1

2
Q(rk)(nk × rk) + hk

{

pkD
φ
1 (rk) + (pk · rk)rkD

φ
2 (rk)

}

−
{

((pk · rk)e3 + (e3 · rk)pk)H3(rk) + (e3 · rk)(pk · rk)rkD
φ
2

}

− hk

{

pkH3(rk) + (rk · e3)(nk × rk)H4(rk)
}

−H3(rk)(qk × rk) + h2kH4(rk)(nk × rk)

]

,

where the constant vectors are defined as bk = 2 (fk · e3) e3− fk, mk = fk×e3, pk = nk×e3,

and qk = nk − (nk · e3) e3. The functions used here shall be summarized below.

The previous models [29, 30] utilize only the linear velocity for the no-slip boundary wall

given in Eq. (29). However, our model additionally requires the angular velocity to rotate

the orthonormal triad {D1
k,D

2
k,D

3
k} along the flagellum through Eq. (8). (For the derivation
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of the angular velocity in a free space, see [25, 34]). The angular velocity obtained by taking

curl on the linear velocity u(x) has the following formula:

µw(x) = µwim
s (x) + µwim

r (x), (30)

where the angular velocity wim
s (x) of the regularized image system for Stokelet is

µwim
s (x) =

1

2
∇× µuim

s (x)

=

Nb
∑

k=1

[

1

2
Q(r∗k)(fk × r∗k)−

1

2
Q(rk)(fk × rk) + h2kH4(rk)(bk × rk)

+ hk(D
φ
2 (rk)−H4(rk))(bk · rk)(e3 × r3) + hkQ(rk)mk

+ hk
[

(r2kH4(rk) + 2H3(rk))mk −H4(rk)(mk · rk)rk
]

]

,

and the angular velocity wim
r (x) of the regularized image system for rotlet is

µwim
r (x) =

1

2
∇× µuim

r (x)

=

Nb
∑

k=1

[

−
1

4
Dψ

1 (r
∗
k)nk −

1

4
Dψ

2 (r
∗
k)(nk · r

∗
k)r

∗
k +

1

4
Dψ

1 (rk)nk +
1

4
Dψ

2 (rk)(nk · rk)rk

+
1

2

[

H4(rk)−Dφ
2 (rk)

]

((rk · e3)(pk × rk) + (rk · pk)(e3 × rk))

− hkH4(rk)(pk × rk)−
1

2

(

r2kH4(rk) + 2H3(rk)
)

qk +
1

2
H4(rk)(rk · qk)rk

−
hk
2

[

(r2kH5(rk) + 3H4(rk))(rk · e3)nk −H4(rk) {(nk · e3)rk + pk × rk}

−H5(rk)(rk · e3)(rk · nk)rk

]

+
h2k
2

[

(2H4(rk) + r2kH5(rk))nk −H5(rk)(rk · nk)rk
]

]

.

We now provide the definition of functions used in the above formula. Let Gψ and

Bψ be the regularized Green’s function and biharmonic function, respectively, satisfying

∆Gψ(r) = ψδ(r) and ∆Bψ(r) = Gψ(r). Then the functions H1, H2, Q, D
ψ
1 , and Dψ

2 are

defined as

H1(r) =
B′
ψ

r
−Gψ =

2δ2 + r2

8π(δ2 + r2)3/2
, (31)

H2(r) =
rB′′

ψ − B′
ψ

r3
=

1

8π(δ2 + r2)3/2
, (32)
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Q(r) =
G′
ψ

r
=

5δ2 + 2r2

8π(δ2 + r2)5/2
, (33)

Dψ
1 (r) =

G′
ψ

r
− ψδ =

−10δ4 + 7r2δ2 + 2r4

8π(δ2 + r2)7/2
, (34)

Dψ
2 (r) =

rG′′
ψ −G′

ψ

r3
=

−21δ2 − 6r2

8π(δ2 + r2)7/2
. (35)

For a more slowly decaying blob function φδ in Eq. (26), we can find the regularized

Green’s function Gδ satisfying ∆Gφ(r) = φδ(r) and the regularized biharmonic function Bφ

satisfying ∆Bφ(r) = Gφ(r). Then the dipole functions Dφ
1 and Dφ

2 , and H3, H4, and H5 are

defined as

Dφ
1 (r) =

G′
φ

r
− φδ =

−2δ2 + r2

4π(δ2 + r2)5/2
, (36)

Dφ
2 (r) =

rG′′
φ −G′

φ

r3
=

−3

4π(δ2 + r2)5/2
, (37)

H3(r) =
G′
φ

r
−
G′
ψ

r
=
H ′

1

r
+ H2 =

−3δ2

8π(δ2 + r2)5/2
, (38)

H4(r) =
(Dφ

1 )
′

2r
−
Dφ

2

2
=

(Dφ
1 )

′

2r
−
H ′

2

r
=

15δ2

8π(δ2 + r2)7/2
, (39)

H5(r) =
H ′

4

r
=

−105δ2

8π(r2 + δ2)9/2
. (40)

IV. RESULTS AND DISCUSSION

In this section, we investigate the hydrodynamics of a single-flagellated bacterium when it

is placed near a planar wall z = 0. See Figure 1 for a schematic diagram of our computational

model in which h(t) is the distance of the center of mass of the cell body from the wall,

and θ(t) is the inclination angle of the major axis of the cell body from z = 0 at time

t. Our model swimmer initially lies in parallel to the wall with θ(0) = 0. However, the

initial distance h(0) varies with different simulations. Table I shows the computational and

physical parameters used in this work.

A. Comparison of the image system method with target point method

We first verify the efficiency of the image system method by comparing it with the target

point method. In the target point method, we impose the no-slip condition on the plane
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TABLE I. Computational and physical parameters

Parameters Symbol Value

Fluid viscosity µ 10−6 g/(µm·s)

Regularization parameter δ 3∆s

Time step ∆t 1.0× 10−8 s

Mesh width for flagellum ∆s 0.04µm

Helical radius of filament r0 0.1989µm

Helical pitch of filament p0 1.25µm

Linear length of filament L 3.75µm

Intrinsic curvature of filament κ 2.5133µm−1

Intrinsic twist of filament Ω3 2.5133µm−1

Bending modulus of filament a1, a2 0.04 gµm3/s2

Twist modulus of filament a3 0.04 gµm3/s2

Shear modulus b1, b2 2.0 gµm/s2

Stretch modulus b3 2.0 gµm/s2

Rotation rate of motor ω 500 Hz

Spherical cell body diameter 2A 1.0µm

Cell body density m 10−12 g/µm2

z = 0 by laying out an array of target points. Let W(r, s) be the target points tethered

on the plane z = 0 and Xw(r, s, t) be the corresponding moving boundary points. No-

slip condition on the wall is imposed by applying to the moving boundary Xw(r, s, t) the

following force:

Fw(r, s, t) = c0(W(r, s)−Xw(r, s, t)), (41)

where c0 is a large constant and Xw(r, s, t) moves at the local fluid velocity. This provides

a feedback mechanism for computing the boundary force needed to enforce the moving

boundary points to stay close to the target points. For comparisons, we choose a square

with a side length of 7.2µm on z = 0, and distribute (N + 1)2 target points uniformly

on the square. The mesh size of the square domain in each direction is chosen as N =

24, 30, 40, and 60, and thus the corresponding mesh widths are dw = 2.5 δ µm, 2.0 δ µm,
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1.5 δ µm, and 1.0 δ µm, respectively, where δ is the regularization parameter used in Eq. (12).

The model bacterium, which has a spherical cell body with the radius 0.3µm and a helical

flagellum with the radius r0 = 0.1194µm, the pitch p0 = 0.75µm, and the linear length

L = 2.25µm, is placed in parallel to the wall with the initial distance h(0) = 0.45µm. The

motor rotates CCW at the rate of 500 Hz. The time step used for this test is ∆t = 1.25×10−8

s, and the other parameters are the same as in Table I.

Figure 3 compares the simulation results obtained by the regularized image system

method (solid lines with circles) and by the target point method with four different mesh

widths dw = 1.0 δ (solid lines), 1.5 δ (dashed lines), 2.0 δ (dash-dotted lines), and 2.5 δ (dot-

ted lines). We compare the forward swimming speed Vf(t) (a), the distance from the wall

h(t) (b), the inclination angle θ(t) (c), and the distance between the cell centers of Ytg
cm in

the target point method and Yim
cm in the image system method (d). The forward-directional

swimming speed is defined as Vf(t) = −Vcm(t) · E3(t). Figure 3 shows that, as we increase

the number of target points and thus refine the mesh of the square, the difference between

the results of the image system method and the target point method gets smaller.

The main reason for the discrepancy between the image system and target point methods

is the following. While the no-slip boundary condition is exactly prescribed on the whole

plane z = 0 in the former method, it is only approximately true on the part (square) of the

plane z = 0 in the latter one. Note that the size of the target domain on the wall here is

large enough to resolve the motion of the model bacterium and hence a larger target domain

does not significantly improve the discrepancy. However, the error of the approximated no-

slip condition would be decreased by increasing the constant c0 in Eq. (41) or by decreasing

the mesh width dw as shown in Figure 3. All these cases require us either to decrease

the time step ∆t due to the stability condition or to increase the number of the target

points, which would make the computation for a realistic bacterial model impossible. Since,

instead of adding more target points, the method of image system adds some additional

regularized solutions at the given immersed boundary points as explained in the previous

section, it is computationally much more efficient to make a no-slip planar wall. Table II

shows the computation times from the two methods. In both methods, we used OpenMP

parallelization with 16 nodes, and the wall time is measured for 20000 iterations. For the

comparable case of dw = δ, the computational time of the target point method takes 19

times more than that of the image system method for the same number of iterations.
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FIG. 3. Comparisons between the image system method (solid lines with circles) and the target

point method when dw = 1.0 δ (solid), 1.5 δ (dashed), 2.0 δ (dash-dotted), and 2.5 δ (dotted) in

terms of the forward swimming speed Vf (t) (a), the distance from the wall h(t) (b), the inclination

angle θ(t) (c), and the distance from the center of mass of the cell body in the image system method

to those of the target point method (d).

TABLE II. Computational times

Method Mesh width (dw) Grid size (N) Wall time

Target point method 2.5 δ 252 26.6255s

2.0 δ 312 44.3190s

1.5 δ 412 87.9813s

1.0 δ 612 356.0195s

Image system method - - 18.5712s

B. Stable circular motion of a model organism with a spherical cell body

It has been experimentally and numerically observed that flagellated bacteria change

their trajectories from straight to circular near a solid surface [11, 12, 16–18, 20, 21]. A
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hydrodynamic attraction toward the wall occurs due to the image singularities located on

the other side of the surface [35]; however, when the bacteria are too close to the wall,

the wall repels the bacteria to give a stable height h∗. This proximity may enhance the

chance of the cell’s adhesion to the surface which may facilitate biofilm formation [13–15].

In the absence of solid surfaces, the CCW rotation of the left-handed flagellum driven by

the CCW rotation of the motor generates the thrust that is opposed by the viscous drag on

the cell and leads to a straight forward run. At the same time, the motor rotation exerts a

counter-torque on the cell body to balance the torque which induces CW rotation of the cell

body. Near a solid surface, the balance between the opposite torques on the cell body and

on the rotating flagellum and its hydrodynamic interaction with the solid surface deviates

the swimming path from a straight line to a CW circle when viewed from above the surface

[20].

In order to explore the characteristic swimming patterns of bacteria near the surface

z = 0, We first consider a bacterium which is composed of a spherical cell body with the

diameter 2A = 1.0 µm and a left-handed helical flagellum with the helical radius r0 = 0.1989

µm, the helical pitch p0 = 1.25 µm, and the number of wavelength Nλ = 3. This model

organism is initially positioned in parallel to the wall with various initial heights h(0) from

0.55 µm to 1.0 µm. The flagellar motor turns CCW at the rate of ω = 500 Hz at all times.

Figure 4 shows time evolution of a bacterial movement when the initial height is set as

h(0) = 1.0 µm, see Movie 1 in the Supplemental Material [36]. Two aspects of the motion

are displayed, one viewed from the side (a) and the other viewed toward the wall from above

(b). It is shown that the model organism swims toward the wall to eventually stay at almost

a constant height and to draw a CW circular trajectory with an approximately constant

radius. Note that the cell body is observed to rotate CW at the rate of approximately

41 Hz, and that a cell with a right-handed flagellum turning its motor CW swims in a CCW

circle (data not shown).

Figure 5 shows that there is a limiting stable circular motion of the bacterium near a

surface independent of the initial height h(0) as long as it is within a certain range. As

the initial height h(0) varies from 0.55 µm to 1.0 µm, the bacterium goes to a stable state

of the swimming pattern in which the height h(t) (a), the inclination angle θ(t) (b), the

forward swimming speed Vf (t) (c), and the radius R(t) of the circular trajectory (d) converge

approximately to h∗ = 0.5529 µm, 2.99◦, 50.32 µm/s, and 7.46 µm, respectively. The radius
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FIG. 4. Motion of a bacterium viewed from side (a) and viewed toward the wall (b). The cell,

initially positioned in parallel to the wall (z = 0) with the height h(0) = 1.0 µm, swims toward the

wall and follows a circular trajectory.

of curvature R(t) of the circular trajectory is defined as the reciprocal of the local curvature

of a circular trajectory at time t. Note that the positive inclination angle θ in (b) indicates

that the cell body points away from the wall, which is needed to balance the attractive effect

of near-wall swimming bacteria and the lift force on the cell body [21]. Note also that, if

bacteria are placed far enough away from the wall, they stay away from the trapping zone

which we define by the region near the wall in which bacteria swim without escaping.

We now investigate the dependence of the swimming patterns of bacteria near wall on

various physical and geometrical parameters of our bacterium model. We first vary the motor
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FIG. 5. Time evolution of the height h(t) (a), the inclination angle θ(t) (b), the forward swimming

speed Vf (t) (c), and the radius R(t) of a circular trajectory (d) for various initial heights h(0).

frequency, ω, from 300 Hz to 700 Hz to compare the height h(t) (a), the inclination angle

θ(t) (b), the forward swimming speed Vf (t) (c), and the radius R(t) of the circular trajectory

(d), see Figure 6. We fix the initial height at h(0) = 0.6 µm; however, we have found that

the limiting values in the stable state are independent of the initial height h(0) (not shown

here). Figure 6 demonstrates that the cell reaches a stable motion with a circular trajectory;

however, the limiting values of some swimming properties change depending on the rotation

rate of the motor. As the motor frequency ω increases, the limiting values of h(t), θ(t), and

Vf(t) increase as well. In particular, the limiting height and the forward swimming speed

increase almost proportionally to the rotation rate. The radii R(t) of circular trajectories

increase during the transient time as the motor frequency increases; however, they converge

to approximately the same constant radius.

Unlike the previous models of the flagellum used in [7, 20, 21] which is a helical rigid

body rotated by imposing its dynamics (velocity or position), our flagellum model is an

elastic body which rotates through the torque propagated from the rotating motor. In order

to demonstrate the difference of the swimming patterns of bacteria near wall depending on
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FIG. 6. Time evolution of the height h(t) (a), the inclination angle θ(t) (b), the forward swimming

speed Vf (t) (c), and the radius R(t) of the circular trajectory (d) for various motor frequencies ω

from 300 Hz to 700 Hz. There is a limiting stable swimming pattern in each case. As we increase

the motor frequency, the limiting values of h(t), θ(t), and Vf (t) all increase. The limiting value of

radius R(t) is independent of the frequency ω.

the elastic property of the flagellum, we draw Figure 7 which shows the limiting values of

steady circular trajectories resulted from the changes in the bending modulus a1 = a2 (left

panels) and the twist modulus a3 (right panels). As the bending modulus increases from

0.005 gµm3/s2 to 0.16 gµm3/s2, the limiting values of height h∗ and the forward swimming

speed V ∗
f decrease, while the radius R∗ of the circular trajectories increases, see Figure 7

(a,b,c). When the twist modulus increases from 0.005 gµm3/s2 to 0.16 gµm3/s2, the limiting

value V ∗
f increases; however, h∗ and R∗ decrease slightly, see Figure 7 (f,g,h).

The different elastic stiffness of the flagellum does not only affect the three limiting values,

but it also induces the change of the geometrical properties of the flexible flagellum. The

lower two rows of Figure 7 depict the measured values of the helical pitch (d,i) and the

helical radius (e,j) of the rotating flagellum together with those of the initial flagellum in

the equilibrium state (dashed lines). As the bending modulus increases, the helical pitch
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FIG. 7. Limiting values of steady circular swimming motions resulted from changes in the bending

modulus a1 = a2 (left panels) and the twist modulus a3 (right panels). For each change of the

modulus, five types of limiting values are measured; the height h∗ (a,f), the forward swimming

speed V ∗
f (b,g), the radius R∗ of the circular trajectory (c,h), the helical pitch (d,i), and the helical

radius (e,j) of the rotating flagellum together with those of the initial flagellum in the equilibrium

state (dashed lines). Filled circles represent the case with the default values of the elastic moduli.

increases to the equilibrium value, while the helical radius is almost fixed. The increment of

the twist modulus, however, increases the helical radius up to the equilibrium value with the

helical pitch being almost fixed. The bending energy comes into play when the curvature

of the moving helix deviates from its intrinsic curvature, which results mostly in the change

of helical pitch, whereas the twist energy is related to the intrinsic twist of flagellum and

thus the helical radius. We have found that, when the two moduli increase to 0.16 gµm3/s2,
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the helical pitch and radius of the rotating flagellum deviate from its intrinsic values by as

much as 0.5 %.

Lastly, we investigate how the geometrical parameters of the bacterium model affect its

swimming course near a solid surface. We vary one geometrical parameter among the cell

body diameter 2A, the helical radius r0, the helical pitch p0, and the number of helical

turns Nλ = L/p0 along the flagellum, while the other geometrical parameters are fixed at

default values; 2A = 1.0 µm, r0 = 0.1989 µm, p0 = 1.25 µm, and Nλ = 3. The other

physical parameter values are the same as in Table I, and the motor frequency is fixed at

ω = 500 Hz. Figure 8 shows the limiting values of steady circular swimming resulted from

the changes in each of four geometrical parameters; 2A (a), r0 (b), p0 (c), and Nλ (d). For

each case of parameter change, we display the limiting values of the separation gap h∗ −A,

the forward swimming speed V ∗
f , and the radius R∗ of the circular trajectory.

Figure 8(a) demonstrates that, as the diameter 2A of the cell body increases, the sepa-

ration gap h∗ −A, which is the minimum distance between the surface of the cell body and

the bottom wall, decreases, i.e., a bacterium which has a larger cell body swims closer to

the wall. Moreover, it shows that, the larger the diameter of the cell body is, the slower the

bacteria swim. This is because the viscous drag increases with the size of the cell body [20],

which consequently decreases the swimming speed. Although the swimming speed and the

separation gap change depending on the cell body size, the radii of the circular trajectories

are almost the same independent of the cell body size.

Figure 8(b) shows that as the helical radius r0 increases, the limiting value of the separa-

tion gap h∗ − A increases slightly and the swimming velocity V ∗
f increases largely, whereas

the limiting radius R∗ of the circular trajectory decreases. It has been reported that a

bacterium with a flagellum with a larger helical radius swims faster but follows a smaller

circular trajectory [20].

As we increase the helical pitch p0 or the number of helical turns Nλ, the flagellar contour

length also increases in either case, and the limiting values of the swimming speed V ∗
f and

the radius R∗ of circular trajectories also increase, see Figure 7(c)(d). However, the limiting

values of the separation gap h∗ − A are approximately the same regardless of increasing p0

and Nλ. The simulation results in this section are qualitatively well matched with the results

in [20]. Note, however, that, if the contour length of the flagellum is too short, the cell may

leave the trapping zone and stay away from the wall, as discussed in the next section.
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FIG. 8. Limiting values of steady circular swimming motions resulted from changes in four geo-

metrical parameters; the diameter of the cell body 2A (a), the helical radius r0 (b), the helical

pitch p0 (c), and the number of helical turns Nλ (d). For each change of the parameter, three types

of limiting values are measured; the height h∗ and/or the separation gap h∗−A (upper panel), the

forward swimming speed V ∗
f (middle panel), and the radius R∗ of the circular trajectory (lower

panel). Simulation results with the default values are marked with filled circles or triangles.
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FIG. 9. Trajectories of bacteria with five different body ratios A/B. The minor axis B of the

spheroidal cell body is fixed as B = 0.5 µm and the major axis A is varied from 0.5 to 0.9 µm.

The motor frequency is set at ω = 500 Hz, and all bacteria are initially placed at the same location

indicated by the black dot (‘Start’). The final position of cells is captured when t = 1.0 s. The

wall is located at z = 0 and the trajectories are viewed toward the wall from above.

C. Circular motions of a bacterium with an ellipsoidal cell body

In this section, we replace the spherical cell body by a prolate spheroid with various aspect

ratios A/B, where 2A and 2B are the lengths of the major and minor axes, respectively, to

investigate how the shape of the cell body alters the swimming motion of the bacterium near

a solid wall. It is known that, as single-flagellated cells grow, their cell bodies elongate the

major axis without extending the minor axis and thus the aspect ratio A/B increases [21].

Figure 9 shows trajectories of bacteria with five different aspect ratios A/B = 1, 1.3, 1.4,

1.6, and 1.8, while keeping 2B = 1.0 µm, see Movie 2 in the Supplemental Material [36].

The other parameter values are the same as in Table I. As the aspect ratio A/B of the cell

body increases, the limiting radius R∗ of the circular trajectory increases, illustrating that a
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FIG. 10. Limiting values of the forward swimming speed V ∗
f (a), the height h∗ (b), the inclination

angle θ∗ (c), the radius R∗ of the circular trajectory (d) as functions of the cell body ratio A/B,

while keeping B = 0.5 µm.

longer cell body draws a larger circular path, which is well matched with the results in Shum

et al [21]. We have also found that each bacterium with a spheroidal cell body converges to

a stable swimming state independent of the initial height.

Figure 10 displays the limiting values of the forward swimming speed V ∗
f (a), the height h∗

(b), the inclination angle θ∗ (c), and the radius R∗ of the circular trajectory (d) as functions

of the cell body ratio A/B. As the length A of the major axis of the cell body increases,

the forward swimming speed V ∗
f first increases and then decreases, attaining the maximum

speed around A/B = 1.3. In contrast, the height h∗, the inclination angle θ∗, and the radius

R∗ increase monotonically with the increasing aspect ratio. These results are also consistent

with the results in the previous studies [11, 21].

We can expect from these simulations that, as the cell body increases further its aspect

ratio, the bacterium swims in a circle with a larger radius and farther away from the wall

with the cell body pointing further to the free space, and may eventually escape from the

trapping zone and swim freely without any interaction with the wall. Thus we categorize the

behavior of the flagellated bacteria near a solid wall into two modes, escape and entrapment.
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FIG. 11. Critical values of helical turns Nλ as the aspect ratio A/B of the cell body changes. The

cell body ratio A/B is varied from 1.2 to 1.9 µm, while the minor axis B of the spheroidal cell

body is fixed as B = 0.5 µm. The helical pitch and radius are fixed at 1.25 µm and 0.1989 µm,

respectively. The motor frequency is set at ω = 500 Hz, and the initial height is given at h(0) = 1.5

µm. The circles in blue represent the case of entrapped cell, and the crosses in red represent the

case of escaping cell. The solid line in black is an interpolated curve that separates escape zone

(shaded area) from entrapment zone (white area).

Entrapment mode is the motion when the cell stays near the wall and swims in a circular

manner, whereas escape mode is the motion when the cell swims away from the wall and

becomes eventually unaffected by the wall. In order to investigate the cell’s modes of motility,

we consider bacteria with various flagellar lengths and aspect ratios of the cell body. We vary

the length of the helical flagellum by varying the number of helical turns, Nλ, from 1.0 to

3.0, with the fixed helical pitch and radius assigned to 1.25 µm and 0.1989 µm, respectively.

The aspect ratio of the cell body A/B is also changed from 1.2 to 1.9 with the increment of

0.1, with the minor axis being fixed at B = 0.5 µm. The cells are initially positioned near

the wall at the height of h(0) = 1.5 µm, and the motor frequency is ω = 500 Hz.

Figure 11 shows the critical values of the number of helical turns (Nλ) as the aspect ratio

of the cell body changes. We find that for each aspect ratio, there exists a critical value of
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the number of helical turns (Nλ) that separates escaping cells from entrapped cells. The

circles in blue represent the cases where the cell draws a stable circular trajectory and is

entrapped near the wall, while the crosses in red represent the cases where the cell escapes

and moves away from the wall. The solid line in black is an interpolated curve that separates

escape zone (shaded area) from entrapment zone (white area). This curve implies that the

critical number of helical turns increases almost quadratically as the cell body’s aspect ratio

increases. Overall, bacteria with a shorter flagellum and a longer cell body are prone to

escape from the wall [21]. See Movie 3 in the Supplemental Material [36] for two modes of

motility, escape and entrapment.

V. SUMMARY AND CONCLUSIONS

We have presented a comprehensive model for a swimming bacterium which is made of a

cell body and a flagellum which are linked by sharing the same motor point that is embedded

in the cell membrane. The cell body is a rigid body in the shape of either a sphere or a

spheroid of which the dynamics is described by the penalty method. The elastic flagellum

is described by the Kirchhoff rod theory as a space curve together with orthonormal triads

along the rod. In our model, the rotary motor is the only driving force that results in the

rotation of the flagellum that pushes the cell in motion and the counter-rotation of the cell

body to balance torque. The hydrodynamic interaction between the fluid and the cell is

represented by the regularized Stokes formulation. In addition, the linear and angular fluid

velocities in the Stokes flow are modified to account for the effect of the rigid wall using the

method of image system. In this work, the flagellum can represent a single flagellum for

monotrichous bacteria or a flagellar bundle for peritrichous bacteria.

The efficiency of our model has been verified by comparing two simulation results done

by the method of image system and by the target point method. We have shown that, as

the resolution (the number of the target points) of the planar wall increases, the numerical

solution of the target point method approaches that of the image system method. However,

the target point method is computationally more expensive and less efficient, while the

method of image system is naturally more accurate and efficient.

It is known that, whereas single-flagellated and multi-flagellated bacteria approximately

swim straight during the running mode in a free space, such bacteria change their swimming
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course from straight to circular trajectories in the presence of a solid surface nearby. Our

simulations have showed that the cell swimming near a solid surface is entrapped in a region

close to the surface and draws a stable circular trajectory with limiting steady values of

circular radius, height from the surface, swimming speed, and inclination angle. We have

also found that, whereas these limiting values are independent of the initial height of the

cell, they change generally depending on the rotation rate of the motor, the size of the cell

body, and the geometrical properties of the flagellum.

A most common shape of the cell body in flagellated bacteria is a prolate spheroid,

therefore, the aspect ratio of the cell body plays a key role in determining swimming patterns.

Our simulations have showed that, as the cell body is elongated in the swimming direction,

i.e., its aspect ratio increases, the limiting values of the height, the inclination angle, and

the radius of the circle increase monotonically. However, there is an optimal aspect ratio

for the maximal swimming speed, which is approximately obtained at A/B = 1.3. It is

worth mentioning that this optimal condition is met when the length of the minor axis of

the cell body is fixed. It may change the condition as the length of the minor axis vary,

which requires a significant amount of computations.

In addition to the stable circular trajectory near a solid wall, cells can also swim away

from the wall depending on the flagellar length and the aspect ratio of the cell body. Our

simulations have shown that the critical number of helical turns, corresponding to the flagel-

lar length, is quadratically proportional to the aspect ratio of the cell body. In other words,

the cells can escape from the wall when the cell body is elongated in the swimming direction

or when the flagellar length becomes shorter, which would be considered to be mutant cells.

The wild-type microorganisms might have optimal physical conditions which facilitate the

migration and adhesion of the cells to the surface to form biofilms and microbial communities

for their survival.
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APPENDIX

We derive the refined formula for the linear and angular velocities at any point in fluid

as fundamental solutions of the regularized Stokes equations in the presence of a solid wall

which is z = 0.

Given a point force f0 and a point torque n0 at the point X0 on the boundary, the

regularized Stokes equations read as follows:

−∇p + µ∆u+ f0ψδ(x−X0) +
1

2
∇× n0ψδ(x−X0) = 0, (42)

∇ · u = 0, (43)

and the solution (the linear velocity) at any x in the free fluid space, is given by

µu(x) = S[f0] +
1

2
Rψ[n0], (44)

where S[f0] is the regularized Stokeslet due to the point force f0 at X0 and Rψ[n0] is the

regularized rotlet due to the point torque n0 at X0, and they are defined as

S[f0] = (f0 · ∇)∇Bψ − f0Gψ = f0H1(r) + (f0 · r)rH2(r), (45)

Rψ[n0] = n0 ×∇Gψ = (n0 × r)Q(r), (46)

where r = x − X0, r = |r|, and, Gψ and Bψ are the regularized Green’s function and

biharmonic function, respectively, satisfying ∆Gψ(r) = ψδ(r) and ∆Bψ(r) = Gψ(r). Note

that, since the blob function ψδ(r) is radially symmetric, Gψ(r) and Gψ(r) are also radially

symmetric, and thus we can write Gψ(r) = Gψ(r) and Bψ(r) = Bψ(r). In Eqs. (45) and

(46), the functions H1, H2, and Q are defined as

H1(r) =
B′
ψ

r
−Gψ =

2δ2 + r2

8π(δ2 + r2)3/2
, (47)

H2(r) =
rB′′

ψ − B′
ψ

r3
=

1

8π(δ2 + r2)3/2
, (48)

Q(r) =
G′
ψ

r
=

5δ2 + 2r2

8π(δ2 + r2)5/2
. (49)

In order to account for the wall effect, we introduce an image pointXim
0 = (x, y,−h) of the

boundary pointX0 = (x, y, h). Then we define r∗ = x−X0, r = x−Xim
0 , r∗ = |r∗| = |x−X0|,

and r = |r| = |x−Xim
0 |, see Figure 2.
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In Eq. (42), the body force acting on the fluid consists of two contributions: force and

torque. Accordingly, we can divide the linear velocity u(x) into two parts and express it as

µu(x) = µuim
s (x) + µuim

r (x), (50)

where uim
s (x) and uim

r (x) are two velocities for the image system for a regularized Stokeslet

and a regularized rotlet, respectively. Let us first define the regularized Stokeslet, denoted

as −S im[f0], of strength −f0 at the image point Xim
0 , then the velocity uim

s (x) for the image

system of a regularized Stokeslet is given in [29] as:

µuim
s (x) = S[f0]− S im[f0] + h2P[b] + 2hD[e3,b]− 2h(Rψ[m]−Rφ[m]), (51)

where b = 2 (f0 · e3) e3 − f0 and m = f0 × e3. Here, the regularized potential dipole P is

obtained by applying the negative Laplacian to the regularized Stokeslet, −∆S, for a force

b̃ applied at X0, and thus

P[b̃] = −(b̃ · ∇)∇(△Bφ) + b̃△Gφ = −(b̃ · ∇)∇Gφ + b̃φδ

= −
(

b̃ · r
)

r

(

rG′′
φ −G′

φ

r3

)

− b̃

(

G′
φ

r
− φδ

)

= −
(

b̃ · r
)

rDφ
2 − b̃Dφ

1 , (52)

where Gφ and Bφ are the regularized Green’s function and biharmonic function, respectively,

satisfying ∆Gφ(r) = φδ(r) and ∆Bφ(r) = Gφ(r). Then the regularized dipole functions, Dφ
1

and Dφ
2 , can be derived as

Dφ
1 (r) =

G′
φ

r
− φδ =

−2δ2 + r2

4π(δ2 + r2)5/2
, (53)

Dφ
2 (r) =

rG′′
φ −G′

φ

r3
=

−3

4π(δ2 + r2)5/2
. (54)

The regularized Stokeslet doublet, D, is the directional derivative of a regularized Stokeslet,

(b̃ · ∇)S, in the direction of a constant vector b̃. For a regularized Stokeslet of strength ã,

the regularized Stokeslet doublet D[ã, b̃] is given by

D[ã, b̃] = (b̃ · ∇)S[ã] = (b̃ · ∇)(ãH1(r) + (ã · r)rH2)

= (b̃ · ã)rH2 + b̃ (ã · r)H2 + ã
(

b̃ · r
) H ′

1

r
+ (b̃ · r) (ã · r) r

H ′
2

r
. (55)

Note that the constant vectors b̃ and ã are chosen to cancel the velocity on the wall in the

image system.
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The last term in Eq. (51), which involves the difference of two regularized rotlets, can be

written as:

Rψ[m]−Rφ[m] = m× [∇Gψ −∇Gφ] =

(

G′
ψ

r
−
G′
φ

r

)

(m× r)

= −H3(m× r), (56)

where the regularized rotlet Rφ[m] is defined in the same fashion as Rψ[m] using the more

slowly decaying blob function φδ(r) in Eq. (26), and the function H3(r) is defined as

H3(r) =
G′
φ

r
−
G′
ψ

r
=

−3δ2

8π(δ2 + r2)5/2
. (57)

Assuming that there are Nb point forces fk acted at the immersed boundary points Xk, we

can derive the explicit formula for the velocity uim
s (x) given in Eq. (29) for the image system

of the regularized Stokeslet.

The image system for the regularized rotlet is known to be an antisymmetric part of the

image system for regularized Stokeslet doublet which can be obtained by differentiating the

regularized Stokeslet [30]. The explicit formula for the velocity uim
r (x) for the image system

of a regularized rotlet, which also requires the regularized rotlet −Rim
ψ [n0] of point torque

−n0 at the image point Xim
0 , has the following form [29]:

µuim
r (x) =

1

2
Rψ[n0]−

1

2
Rim
ψ [n0]−

(

D[p, e3] +D[e3,p] + hP[p]
)

+
(

Rψ[q]−Rφ[q]
)

+ h
(

Jψ[n0, e3]− Jφ[n0, e3]
)

−
h2

2
Q[n0], (58)

where p = n0 × e3 and q = n0 − (n0 · e3)e3.

In Eq. (58), the regularized rotlet doublet Jψ[ã, b̃] is defined as the directional derivative

of a rotlet of strength ã in the direction of a constant vector b̃. Thus, for a rotlet of strength

ã,

Jψ[ã, b̃] = (b̃ · ∇)Rψ[ã] = (b̃ · ∇) [ã×∇Gψ]

= (b̃ · r)(ã× r)

(

rG′′
ψ −G′

ψ

r3

)

+
G′
ψ

r
(ã× b̃). (59)

We can similarly define the regularized rotlet doublet Jφ[ã, b̃] as

Jφ[ã, b̃] = (b̃ · r)(ã× r)

(

rG′′
φ −G′

φ

r3

)

+
G′
φ

r
(ã× b̃). (60)
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The regularized quadrupole Q[c̃] is obtained by applying the negative curl to the dipole,

−∇×P, of strength c̃:

Q[c̃] = −∇× P[c̃] = ∇×
[

(c̃ · r)rDφ
2 + c̃Dφ

1

]

= (Dφ
2 −

(Dφ
1 )

′

r
)(c̃× r) = −2H4(c̃× r), (61)

where H4 is defined as

H4(r) =
(Dφ

1 )
′

2r
−
Dφ

2

2
=

15δ2

8π(δ2 + r2)7/2
. (62)

In order to derive and simplify the formula for the linear and angular velocities of the

image system, we here introduce some important identities. To do that, we first define the

following two functions:

Dψ
1 (r) =

G′
ψ

r
− ψδ =

−10δ4 + 7r2δ2 + 2r4

8π(δ2 + r2)7/2
, (63)

Dψ
2 (r) =

rG′′
ψ −G′

ψ

r3
=

−21δ2 − 6r2

8π(δ2 + r2)7/2
. (64)

Then we can show the following identities by the direct computations:

H ′
2

r
=
Dφ

2

2
, (65)

Q =
G′
ψ

r
= H2 −

H ′
1

r
, (66)

H3 =
G′
φ

r
−
G′
ψ

r
=
H ′

1

r
+H2 =

1

2
Dφ

1 −H2, (67)

H4 =
(Dφ

1 )
′

2r
−
Dφ

2

2
=
H ′

3

r
= Dφ

2 −Dψ
2 . (68)

Assuming that there are Nb point torques nk acted at the boundary points Xk, we can

derive the explicit formula for the velocity uim
r (x) given in Eq. (29) from Eq. (58) with the

help of the following two simplified equations:

D[p, e3] +D[e3,p] = ((e3 · r)p+ (p · r)e3)(
H ′

1

r
+H2) + 2(e3 · r)(p · r)r

H ′
2

r

= ((e3 · r)p+ (p · r)e3)H3 + (e3 · r)(p · r)rDφ
2 , (69)

Jψ[n0, e3]− Jφ[n0, e3] = (e3 · r)(n0 × r)
(

Dψ
2 −Dφ

2

)

+ (
G′
ψ

r
−
G′
φ

r
)(n0 × e3)

= −(r · e3)(n0 × r)H4 − pH3. (70)
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The previous models in [29, 30] have described and used only the linear velocity in the

image system given in Eq. (29). Here we provide the detailed formula for the angular velocity

in the image system since our model requires the angular velocity to rotate the orthonormal

triad {D1(s, t),D2(s, t),D3(s, t)} along the flagellum. (For the derivation of the angular

velocity in a free space, see [25].) Since the angular velocity can be computed by taking curl

on the linear velocity which is composed of the image systems of the regularized Stokeslet

and rotlet, we can write

µwim(x) = µwim
s (x) + µwim

r (x)

=
1

2
∇× µuim

s (x) +
1

2
∇× µuim

r (x), (71)

and we only have to know how to take curl on all the terms composing the linear velocity

uim(x). We state all the components needed to compute the angular velocity from the image

system of the regularized Stokeslet uim
s (x) and regularized rotlet uim

r (x) as follows:

1

2
∇× S[f0] =

1

2
∇× [f0H1(r

∗) + (f0 · r
∗)r∗H2(r

∗)] =
1

2
(H2(r

∗)−
H ′

1(r
∗)

r
)(f0 × r∗)

=
1

2
Q(r∗)(f0 × r∗),

−
1

2
∇× S im[f0] = −

1

2
Q(f0 × r),

1

2
∇× (h2P[b]) =

h2

2
∇×

[

−bDφ
1 − (b · r)rDφ

2

]

=
h2

2

[

(Dφ
1 )

′

r
−Dφ

2

]

(b× r)

= h2H4(b× r),

1

2
∇× (2hD[e3,b]) = h∇×

[

(b · e3)rH2 + b(e3 · r)H2 + e3(b · r)
H ′

1

r
+ (b · r)(e3 · r)r

H ′
2

r

]

= h

(

H2 −
H ′

1

r

)

m+ h(
H ′

2

r
− (

H1

r
)′
1

r
)(b · r)(e3 × r)

= hQm+ h(Dφ
2 −H4)(b · r)(e3 × r),

1

2
∇× (−2h(Rψ[m]−Rφ[m])) =

1

2
∇× [2hH3(m× r)]

= h
[

(r2H4 + 2H3)m−H4(m · r)r
]

,

1

2
∇×

1

2
Rψ[n0] =

1

4
∇× [(n0 × r∗)Q(r∗)]
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=
1

4
(2Q(r∗) + r∗Q′(r∗))n0 −

1

4

Q′(r∗)

r
(n0 · r

∗)r∗

= −
1

4
Dψ

1 (r
∗)n0 −

1

4
Dψ

2 (r
∗)(n0 · r

∗)r∗

−
1

2
∇×Rim

ψ [n0] =
1

4
Dψ

1 n0 +
1

4
Dψ

2 (n0 · r)r,

1

2
∇× (−D[p, e3]−D[e3,p]) = −

1

2
∇× [((e3 · r)p+ (p · r))e3H3 + (e3 · r)(p · r)rDφ

2 ]

= −
1

2
(Dφ

2 −H4)[(e3 · r)(p× r) + (p · r)(e3 × r)],

1

2
∇× (−hP[p]) = −hH4(r)(p× r),

1

2
∇× (Rψ[q]−Rφ[q]) = −

1

2
∇× [(q× r)H3]

= −
1

2

(

r2H4 + 2H3

)

q +
1

2
H4(q · r)r,

1

2
∇×h(Jψ[n0, e3]− Jφ[n0, e3]) = −

h

2
∇× [(r · e3)(n0 × r)H4 + pH3]

= −
h

2
[(r · e3)(3H4 + r2H5)n0 − ((n0 · e3)H4 + (r · e3)(n0 · r)H5) r− (p× r)H4],

1

2
∇× (−

h2

2
(Q[n0]) =

h2

2
∇× [(n0 × r)H4]

=
h2

2
[(2H4 + r2H5)n0 −H5(n0 · r)r],

where H5 is defined as

H5(r) =
H ′

4

r
=

−105δ2

8π(r2 + δ2)9/2
. (72)

In the above equations, all the single variable functions are evaluated at r when there is no

indication of the independent variable. When we have Nb point forces fk andNb point torques

nk centered at the boundary points Xk, k = 1,...,Nb, we can apply the resulting fundamental

solutions (kernels) to derive the angular velocity wim(x) which is given in Eq. (30).
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