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In the present study, we consider two independent sensing modes (auditory and visual) in Vicsek-
like models, and compare the emergent group level behaviors in terms of polarization, cohesion, and
cluster size. The auditory and visual modes differ in the determination of particle neighbors which
at the level of groups results in higher polarization, lower cohesion, and larger cluster size for the
auditory mode relative to the visual. With the increase in average density of the particles, these
differences are more pronounced. These differences are due to the fact that these sense modalities
robustly generate distinct spatial distributions of the particles. Finally, we demonstrate the use of
a data-driven approach called transfer entropy to distinguish the sensing modalities by considering
only a pair of particle trajectories. Such an approach could be applicable to real-world systems,
where it may be a challenge to measure the position and velocity of every particle within a swarm.

I. INTRODUCTION

Collective behavior refers to the emergence of group
level behavior from individual interactions, and is ob-
served in both living (birds [1], fish schools [2], human
crowds [3]) and non-living systems [4, 5]. Collective be-
havior may arise from purely local rules in the absence of
any central coordination, as demonstrated by a variety of
models [6–10]. For the popular Vicsek model [11], order
spontaneously emerges in systems where particles align
their directions of motion to those within a local neigh-
borhood, exhibiting a phase transition from a random,
disordered state to an aligned, ordered state state as the
intensity of random perturbations of individual veloci-
ties decreases or the average particle density increases.
Inspired by various features of real-world collective be-
havior, a number of variants of the Vicsek model have
been proposed, for instance a generalization to three di-
mensions [12] and consideration of both attractive and
repulsive interactions [13]. A restriction of the sensing
region (the spatial region determining the neighbors of a
particle) from a circular disk to a sector has also been
considered in the literature [14, 15]. The study is moti-
vated from the fact that the real-world swarms may not
have a panoramic view, and the results demonstrate that
restricting the sensing region enables the system to attain
faster convergence to global alignment [16].
Although it is typically implicitly assumed that pair-

wise interactions in collective behavior models are me-
diated by visual cues [14, 15, 17], there are a number of
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social species that use auditory cues to at least partly de-
termine their motion, for example bats and dolphins [18].
This motivates the present study where we investigate a
modified Vicsek model in which the particles commu-
nicate by independent use of auditory information, and
compare it to an existing model that uses a visual sens-
ing scheme. One previous study incorporated sound as an
additional mode of agent interaction in a Vicsek model
[19]. However, it was assumed that sound generation
was omnidirectional so that agents can “hear” others re-
gardless of their relative orientation. Outside the Vicsek
paradigm, the study in [20] examines more than one sense
modality using a network model with consensus and syn-
chronization protocols. However, the network model ig-
nores the spatial distribution of particles, and neighbor
detection is stochastic. In a study of midges [21], acous-
tic interactions are introduced via an ‘adaptive gravity’
model in which the attractive force between particles is
assumed to be proportional to sound intensity. Though
theoretical models have given limited consideration to
auditory cues, a number of empirical studies have pro-
vided evidence of animals altering their motion in re-
sponse to audio cues. For instance, in [22] it was shown
that bats navigate by combining signals from multiple
sensory modalities including vision and audition. An-
other study [23] has found a rear-to-front coupling in a
flying bat pair, which may indicate that pairs of bat may
adjust their flight in response to auditory stimulus.
In the present study, we examine the consequences

within the Vicsek paradigm of a purely auditory sens-
ing mode which, unlike [19], restricts the acoustic infor-
mation emitted by agents to a limited volume around
their direction of motion. The auditory sensing imple-
mented in our study emulates a well-characterized direc-
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tivity pattern that can be observed in ultrasonic beam
formation. With directional ultrasound beams, a micro-
phone inside a source’s beam can hear the sound, while
one at the same linear distance from the source but at a
different angular distance may not [24, 25]. The present
model takes inspiration from biological systems, specif-
ically bat swarms which effectively use this type of di-
rectional ultrasound to navigate their environment. We
consider in our study an idealized version of the ultra-
sonic beam, and we model it as a sector of a circle. We
quantify the resulting collective behavior of simulated
groups in terms of order parameters including polariza-
tion (group linear momentum), cohesion (a measure of
group compactness), and cluster size (a measure of sen-
sory connectedness) [8, 26, 27]. Measured this way, we
observe very different group level behaviors for a Vic-
sek model modified to reflect an auditory sensing scheme
relative to an existing model that implements a visual
sensing scheme. However, it would be difficult to assess
whether analogous differences are manifest in real-world
groups using these same order parameters. While easy to
compute for simulations with perfect state information,
they are difficult or impossible to compute when the data
for the particles’ states are partial or noisy.
To overcome this challenge, we explore the use of trans-

fer entropy, a data-driven model-free method for de-
tecting the dominant direction of information flow [28].
Data-driven methods which include approaches based on
information theoretic entropy have already proved useful
in the study of collective behavior, for example to detect
the direction of navigational influence in pairs of ani-
mals [23, 29, 30]. We implement transfer entropy on the
data generated from Vicsek models using either auditory
or visual sensing schemes, and find that transfer entropy
effectively distinguishes between these modalities.
The paper organized as follows. In Section II, we pro-

vide details of two models and the relevant order pa-
rameters. In Section III, we provide our simulation re-
sults, and discuss the effect of average density on group
level behaviors. In Section IV, we present a model-free
method for discriminating sensing modalities using the
information from trajectory data. Finally, we draw our
conclusions in Section V.

II. MODELING SENSING MODALITIES

In this section, we present the general Vicsek frame-
work and formally distinguish visual from auditory sense
modalities through the set of sensory neighbors. We then
define the order parameters in terms of which collective
behavior is described.

A. Vicsek models

We consider N self-propelled particles moving with
a constant speed v0, in a square two-dimensional box

of length L with periodic boundary conditions in dis-
crete time. The average density of particles is given by
ρ = N/L2. The position and unit velocity vectors of the
ith particle at time step k, are denoted by x

k
i ∈ R

2 and
v
k
i ∈ R

2, i ∈ 1, · · · , N , respectively. At every time
step, the ith particle assumes the average direction of
motion of the neighboring particles with an estimation
error characterized by a random noise. Specifically, the
heading angle of the ith particle at time step k + 1 is
denoted by θk+1

i , and updates as follows

θk+1
i = tan−1

(

∑

j∈Λk

i

sin(θkj )
∑

j∈Λk

i

cos(θkj )

)

+∆θki ,

where Λk
i is the index set of the neighbors of the ith

particle, including itself, and ∆θki denotes noise and is
a random variable uniformly distributed in the interval
[− η

2 ,
η
2 ], where η is the noise intensity. Based on the

heading angle, the velocity vector of the ith particle then
updates as

v
k+1
i = cos(θk+1

i )e1 + sin(θk+1
i )e2,

where e1 and e2 are two unit vectors orthogonal to each
other. Finally, the position of the ith particle updates as

x
k+1
i = x

k
i + v0v

k
i .

We use the same update protocol as defined above for
both sensory modalities. What distinguishes the two
sense modalities is the index set of neighbors, Λk

i . To
model visual sensing, we suppose each particle has a field
of vision, modeled as a sector bounded by two radii of
length r, symmetric about the individual’s current head-
ing. The opening angle of the sector is 2φ, where the
sensing angle φ can vary from 0 to π. When φ = π the
model reduces to the original Vicsek model, where the in-
teraction neighborhood of a particle is a circle. At each
time step, the particles that occupy the field of vision of
an individual comprise its set of neighbors, Λk

i . For au-
ditory sensing, each particle’s acoustic beam is modeled
as a sector of a circle. Similar to the field of vision, the
beam has an opening angle 2φ, where φ can vary from 0
to π, and is also assumed to be symmetric about the indi-
vidual’s current heading direction. The particles, whose
beams are occupied by an individual, are defined as that
individual’s neighbors. In other words, the neighbors of
a given particle are all of those particles which it can
“hear” because it is within their acoustic beam. Figure 1
presents the schematic of the two modes of interactions.

B. Order parameters

We define three observables to evaluate the collective
behavior: polarization, cohesion, and cluster size.
Polarization is a measure of group alignment given by

the average of the normalized linear momentum of the
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FIG. 1: The schematic shows the green particles
(marked with cross symbols) are neighbors of the red
particle (marked with plus symbol) based on the

sensing scheme used. The grey particles (unmarked) do
not qualify as neighbors of the red/plus particle. Left:
In the visual sensing scheme, the green/cross particles
lie inside the field of vision of the red/plus individual
and hence are its ‘neighbors’. Right: In the auditory
sensing scheme, the red/plus individual resides inside

the acoustic beam of its neighbors.

system and can be calculated as

P k =
1

N

∥

∥

∥

∥

∥

N
∑

i=1

v
k
i

∥

∥

∥

∥

∥

.

Polarization ranges between zero and one, where one cor-
responds to perfect alignment, and zero corresponds to a
random walk.
Cohesion measures the closeness of the particles with

respect to the overall center of mass. To calculate cohe-
sion, we first compute the center of mass of the group as

X
k = (1/N)

∑N

i=1 x
k
i , and then the relative position of

each particle with respect to the center of mass through
r
k
i = x

k
i −X

k. Cohesion is then defined as

Ck =
1

N

N
∑

i=1

exp

[

−

∥

∥r
k
i

∥

∥

la

]

,

where la = 4r is a scaling coefficient consistent with the
study in [8]. Cohesion ranges between zero and one,
where one corresponds to a scenario in which all particles
are at the center of mass, while zero corresponds to the
scenario in which all particles are dispersed infinitely far
from the common center of mass. Given periodic bound-
ary conditions for a finite arena, a cohesion of zero is
impossible.
Finally, cluster size corresponds to the size of the

largest collection of particles at a given time who are
connected to one another by some path in the interac-
tion graph, where the latter is built by drawing an undi-
rected edge from each particle to every one of its neigh-
bors. That is, the cluster size Sk is the size of the largest
weakly connected component of the interaction graph at
time k. Two particles are therefore in the same cluster if
they are connected by a path of interacting particles.

III. DIVERGENT GROUP BEHAVIOR FOR

DISTINCT SENSE MODALITIES

The auditory and visual models differ in the determi-
nation of particle neighbors. To ascertain the effect of
this difference on group-level behavior, we conduct con-
trasting simulations that differ only in the sensing modal-
ity. For these numerical simulations, we set the length
of the square box L = 10, radius of the sensing region
r = 1, constant speed v0 = 0.03, and the average den-
sity of the particles ρ = 10. We further vary two con-
trol parameters, the sensing angle φ, and the amplitude
of noise intensity η. The initial positions of the parti-
cles and their heading directions are randomly assigned
within the square box of side length L and in the range
[0, 2π], respectively, with uniform distributions. Though
randomly determined, these initial conditions are kept
identical for both the visual and auditory simulations.
We run our simulations for 50000 time steps, recording
the data only after excluding an initial transient phase of
10000 time steps. Next, we compute the mean polariza-
tion, mean cohesion, and mean size of the largest cluster,
averaged over the steady state.

Figure 2 shows the results for the order parameters
where ρ = 10, and η and φ are varied. Observing Figures
2a and 2b we identify that for both auditory and vi-
sual sensing cues, polarization is zero for the special case
when φ = 0. This corresponds to the absence of interac-
tion that results in a random walk for the particles for all
choices of noise intensity η. On the other hand, polariza-
tion reaches the maximal value of one when φ = π for all
choices of η and for each of the sensing cues. The special
case of φ = π corresponds to the original Vicsek model,
where the sensing neighborhood of the particles is a cir-
cle, and hence the neighbor determination mechanism for
both the visual and auditory models is equivalent.

However, comparing vertical slices of polarization
(columns of constant φ in the figures) between auditory
and visual sensing modes, we observe a difference when
sensing angle is small. In particular, for the visual sens-
ing mode we observe that the polarization is relatively
small at sensing angles of φ ≤ 6π/15, and increases with
increasing φ. But in the case of the auditory sensing
mode, the particles achieve a polarization of one for all
sensing angles φ > 3π/15 independent of noise intensity.

The difference in group level behavior between swarms
using auditory and visual sensing cues is also observed in
terms of cohesion (Figures 2c and 2d) and largest cluster
size (Figures 2e and 2f) . For example, in the visual mode
we observe cohesion is high when sensing angle is small
(0 < φ ≤ 7π/15), as the particles form closely packed
clusters. In contrast, for the auditory sensing mode, we
observe cohesion is less sensitive to the variation in sens-
ing angle, and also that the values are small relative to
the visual mode. Again, in terms of cluster size we notice
that the particles form one large cluster for φ ≥ 3π/15
in the auditory sensing scheme, but only for φ > 6π/15
in the visual sensing scheme.
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Mean polarization

(a) (b)

Mean cohesion

(c) (d)

Mean largest cluster size

(e) (f)

FIG. 2: The order parameters as computed for auditory
(left column) and visual sensing (right column) modes

when ρ = 10.

A. Effect of the average density on order

parameters

The Vicsek model [11] demonstrated a phase transition
as the noise intensity decreases or the average density in-
creases. Accordingly, next we investigate the effect of
the average density of the particles on the behaviors dis-
cussed above. Thus we perform an additional simulation
for ρ = 0.3. The other system parameters are set as be-
fore. The results are shown in Figure 3. First, we notice
that at this lower density, the difference between the two
sensing modes in terms of polarization is less pronounced.

Mean polarization

(a) (b)

Mean cohesion

(c) (d)

Mean largest cluster size

(e) (f)

FIG. 3: The order parameters as computed for auditory
(left column) and visual sensing (right column) modes

when ρ = 0.3.

For both, we clearly see a decrease in polarization from
a value of one to near zero with increasing noise when
φ = π/15, · · · , 8π/15. But polarization appears to in-
crease slightly faster with respect to φ in the auditory
mode. With respect to cohesion, differences between the
visual and auditory modes are subtle at best; comparing
vertical slices, we observe somewhat higher values of co-
hesion for the visual sensing mode at a given φ relative
to the auditory sensing mode. But the pattern of depen-
dence on φ and η for either mode is dramatically different
from the high-density case. Comparing Figures 2 and 3,
we notice that, unlike in the high density case, cohesion
at low density for both modes increases monotonically
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with φ, and attains much higher values at a maximum
sensing angle of φ = π. With respect to cluster size,
we notice that the largest cluster size increases with an
increase in the sensing angle. This is because, at small
values of sensing angles, the particles fail to interact when
the average density is small. However, with the increase
in sensing angle the particles begin interacting, and the
cluster size is primarily dictated by the noise intensity.
In particular, as noise intensity increases the particles re-
quire larger sensing angle to form one large cluster. This
phenomenon is also observed for both the sensing modes.

B. Sensing mode determines spatial distribution

(a)

(b)

FIG. 4: Standard deviation in cell occupancy for (a)
ρ = 10 and (b) ρ = 0.3.

In terms of the order parameters considered, distinct
sensing modes generate different group level behavior, es-
pecially at high particle density and small sensing angle.
The observed differences with respect to cohesion and
mean cluster size indicate that particles distribute them-
selves differently in space depending on sensing mode,
and the differences with regard to polarization suggest
that patterns of particle orientation differ as well. To
characterize the disparate spatial distribution for these
two systems, we conduct a new analysis at each density

for which φ = 4π/15 and η = 0.2, and all other system
parameters are as above. We further divide the square
domain into square cells with equal side lengths of one
unit. The number of particles in each cell constitutes the
cell occupancy. For each time step k in the simulation, we
compute the standard deviation (SD) in normalized cell
occupancy across cells. The normalization is performed
by dividing the occupancy in each cell by the total num-
ber of particles present in the system. The resulting time
series for the high density case (ρ = 10) is plotted in Fig-
ure 4a. The SD in cell occupancy is small at the begin-
ning (and identical for both modalities) as determined by
the uniform random distribution used to set the initial
particle positions. For the auditory sensing scheme, the
SD in cell occupancy maintains a small value over time,
indicating that the particles remain evenly spread over
space. This is clear from the inset of Figure 4a which
depicts a snapshot of the spatial distribution of the par-
ticles at the termination of each simulation. However, the
SD increases substantially with time in the visual sensing
scheme. This indicates that at later times in the simula-
tion the particles form closely packed clusters, resulting
in high cell occupancy values for some cells, and zero for
the remaining. This is again evident in the inset of Fig-
ure 4a. These results demonstrate that in the auditory
mode with small sensing angle the particles are evenly
distributed in space, loosely packed in one large cluster,
and perfectly aligned. On the other hand, in visual mode
with small sensing angle the particles form multiple clus-
ters. The particles within the cluster are closely packed
and aligned, but all the clusters may not have perfect
alignment, hence polarization does not attain value one,
but the cohesion increases.

For the low density case (ρ = 0.3), the differences be-
tween the sensing modes remain pronounced as is clear
from Figure 4b, though reduced relative to the high-
density case. It is still clear that in the visual case, the
SD in spatial occupancy remains higher than for the au-
ditory mode. An explanation for the reduction of the dif-
ference is suggested by the inset of Figure 4. Given the
low density, particles in either simulation end up form-
ing spatially disjoint subgroups (clusters). This has the
effect of raising the SD for the auditory sense mode. But
within those groups, we see the same pattern of behav-
ior as at high density. Specifically, the auditory sensing
agents space themselves in a lattice within a group (e.g.,
the blue group at the center of the inset), keeping spatial
SD relatively low. The visual sensing particles on the
other hand continue to form compact clusters, driving
SD relatively high (though, given that there are fewer
agents, the SD cannot be as high as in the high density
case).
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C. Distance of closest approach lower for pairwise

auditory interactions

We hypothesize that some of this difference may be
due to differences in the distance of closest approach (the
minimum separation) in pairwise interactions. Specifi-
cally, there are interactions in which only one particle
senses the other (but not vice versa) where particles op-
erating in the visual sensing mode can approach closer
to one another than those in the auditory mode. That’s
because in the latter case the sensed particle (the par-
ticle “hearing” the beam of the approaching peer) im-
mediately turns away from the oncoming particle. In the
visual case, the sensing particle itself adjusts to move into
the trajectory of the sensed particle.

FIG. 5: The difference of the distances of closest
approach between auditory and visual sensing

modalities for a pair of particles. The positive difference
means that in the auditory mode particles maintain a
larger minimum separation than in the visual mode.

To test the hypothesis that such differences in clos-
est approach are systematic and contribute to the ob-
served group level results, we simulate an isolated pair
of particles for each of the two sensing schemes. The ini-
tial positions for the two particles are set as x

0
1 = (6, 0)

and x
0
2 = (0, 0). We further fix the initial heading di-

rections, and set θ02 = π/4, and vary θ01 = π/6, · · · , π.
We choose the remaining system parameters as follows:
L = 500, r = 3, v0 = 0.01 and η = 0. Both simula-
tions are run in the absence of noise (η = 0), so that
the trajectories of both particles will be deterministic.
This is done to guarantee particle interaction when the
initial conditions would allow it, and that differences be-
tween the simulations are due to the effect of interest
rather than random variations in injected noise. Addi-
tionally, for each initial θ01 , we vary sensing angle φ from
π/15, · · · , π. The simulation is run for 1000 time steps
to enable the two particles attain a steady state, and the
distance of closest approach recorded.
Figure 5 presents the difference of the distances of clos-

est approach between the two sensing modes, where we
subtract the minimum distance of closest approach for
the visual sensing mode from that of the auditory sens-
ing mode. We observe the difference between the two
modes is zero for two scenarios: first, for θ01 ≤ π/3 at all
values of φ, and second, for φ ≥ 7π/15 at all values of θ01.
In the first scenario, the particles never pass through one
another’s sensing region as the initial heading direction
of the first particle is too oblique. In the second scenario,
the wide sensing angles mean that both particles sense
each other at the maximum possible distance, thus lead-
ing to no difference in the two sensing schemes. In all
other cases, the difference is positive. Thus the distance
of closest approach is sometimes significantly smaller for
the visual mode of interaction but never vice versa. This
both supports our hypothesis, and plausibly accounts for
the asymmetry in results seen at the group level at high
average density.

IV. DISCRIMINATING SENSE MODALITIES

The results above show that the two distinct sensing
modalities lead to significant differences in collective be-
havior of the simulated swarm at multiple levels of de-
scription. The question remains how many collective sys-
tems – animal or otherwise – are better represented in
terms of an auditory as opposed to visual sensing modal-
ity. For the Vicsek models reported here, the differences
in sensing modality are detectable in terms of the high-
level order parameters. But computation of these param-
eters requires perfect information about particle position
and momentum over long periods of (simulated) time.
This sort of information is impractical to obtain for real
world systems. Here we use these modified Vicsek mod-
els as a testbed to demonstrate a method for discerning
visual from auditory sensing modes using only partial in-
formation. This method relies on the notion of transfer
entropy.

A. Transfer Entropy

Transfer Entropy (TE) is based on information theory
and measures the amount of directed transfer of informa-
tion between two time series variables [28]. The expected
value of the information associated with the occurrence of
an event is referred to as Shannon entropy and is defined
as follows,

H(X) = −
∑

x∈X

Pr[x] log2 Pr[x], (1)

where Pr[x] is the probability mass function for a time
series variable X taking the value x and X refers to the
set containing all possible realizations of X . TE extends
this idea between two time series variables considered as
one step Markov chains to quantify information transfer.



7

(a) (b)

FIG. 6: Implementation of TE on 1D curvature based
time series data considering (a) auditory sensing scheme

and (b) visual sensing scheme.

For example, given two time series variables X and Y,
the TE from Y to X (TY→X) measures the reduction in
entropy of X when conditioned on Y , and is defined as

TY→X =
∑

x(t+1)∈X(t+1),
x(t)∈X(t),
y(t)∈Y(t)

Pr[x(t+ 1), x(t), y(t)] log2
Pr[x(t+ 1)|x(t), y(t)]

Pr[x(t+ 1)|x(t)]
,

where Pr[x(t+ 1)|x(t)] and Pr[x(t + 1)|x(t), y(t)] denote
the probability of x(t+1) conditioned on x(t) alone, and
on both x(t) and y(t), respectively; Pr[x(t+1), x(t), y(t)]
denotes joint probability. In case the time series variable
Y does not influence variable X , Pr[x(t+1)|x(t), y(t)] =
Pr[x(t + 1)|x(t)], and hence TY→X equals zero. In gen-
eral, TY→X and TX→Y are asymmetric quantities, and
by directly comparing them we can identify the domi-
nant direction of influence.
We implement TE using the open-source JIDT (Java

Information Dynamics Toolkit) [31]. To estimate the
probability mass functions (PMF) used in the above def-
initions, we used the Kraskov, Stogbauer, and Grass-
berger (KSG) method, which uses a dynamically altered
kernel width in terms of K nearest-neighbours (knn) that
decreases errors in PMF estimation [32].

B. Distinguish sense modalities by analyzing a pair

of trajectories using TE

In this simulation study, we consider the use of two sen-
sory modalities independently for a pair of particles, and
fix their initial positions by placing one particle in front
of the other. We place the front particle (f) at the coor-
dinate (1, 0), and the rear particle (r) at the coordinate
(0, 0). Both the particles start with same initial heading
angle, where θ0f = θ0r = 0 and constant speed v0 = 0.03.
This setup ensures the interaction direction is from front-
to-rear (f → r) for the visual sensing modality, whereas

the direction is from rear-to-front (r → f) in the auditory
sensing modality. The other parameters for the numeri-
cal simulation are set as L = 500, η = 0.01, φ = 4π/6,
and r = 3. We run the simulation for 10000 time steps
to generate trajectory data for each particle. As we con-
sider the presence of noise in this set up, the trajectories
are stochastic. Thus, we perform a Monte Carlo simu-
lation and generate 20 independent trajectories for the
fixed initial conditions and system parameters. From 2D
trajectory time series of each particle we compute a 1D
curvature-based time series to use as input for TE analy-
sis. We use curvature since it is a measure of a particle’s
steering, and can be used to assess pairwise interaction,
as for example in the study of bats [23, 30, 33]. Figures
6a and 6b show the TE results as computed on curvature
time series data for the auditory and visual modalities,
respectively. In each subfigure, TE in the front to rear
direction is denoted by Tf→r and TE in the rear to front
direction is denoted by Tr→f , both as a function of knn.
The central dashed line indicates the median, and the
bottom and top edges of the shaded region indicate the
25th and 75th percentiles, respectively.
We notice that TE detects the correct coupling di-

rection for each sensory modality. In particular, Figure
6a shows the TE results for the auditory sensing mode.
In this case, the median value of Tf→r is zero for all
choices of knn, whereas the median of Tr→f is strictly
greater than Tf→r. Thus, TE correctly recognizes that
the dominant direction of information transfer is from
rear-to-front. Figure 6b shows the TE results for the vi-
sual sensing mode, where the median of Tf→r is always
greater than Tr→f , thus correctly indicating the coupling
direction from front-to-rear.
Thus, TE correctly detects the correct directionality

of interaction for each sensory modality. This is an im-
portant result, as it demonstrates that TE is a potential
tool for detecting the coupling direction between a pair of
particles for which the mode of interaction is not known.
In addition, these results also confirm that 1D curvature
time series may be used as the input variable for such
analysis. Thus in the real-world, TE may be a poten-
tial tool to detect the sensory modalities used by a pair
of individuals. Specifically, if TE detects a rear-to-front
coupling we may infer that individuals use an auditory
sensing mode, and vice-versa.

V. CONCLUSION

Vicsek models have been widely studied in the context
of collective behavior. In the present study, we intro-
duce an audition based sensing modality for a group of
self-propelled particles in the Vicsek model, and com-
pare the emergent behavior with that of the vision based
sensing modality. Although the auditory and visual sens-
ing modalities differ only in the determination of particle
neighbors, they result in disparate group level behaviors
in terms of polarization, cohesion and cluster size. These
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group level differences are more pronounced as the aver-
age density of the particles increases. We further demon-
strate that the observed group level differences are due to
the fact that these sense modalities robustly generate dis-
tinct spatial distributions of the particles. Interestingly,
we find that the particles maintain a larger distance of
closest approach while using auditory sensing in compar-
ison to that while using visual sensing. Although the
group level differences are reflected in the appropriate
order parameters, the effect of distinct sensing modali-
ties may not be obvious while observing only a subset
of particles. We demonstrate the use of transfer entropy
to distinguish the sensing modality by considering only a

pair of particle trajectories. Such an approach could be
applicable to real-world systems, where it may be a chal-
lenge to measure the position and velocity of every par-
ticle within a swarm. This study demonstrates that the
sensing modality plays a key role in collective behavior
within the Vicsek paradigm, and the results suggest ap-
plications involving both biological and robotic swarms.
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