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Synchronization and chimera are examples of collective behaviour observed in an ensemble of
coupled nonlinear oscillators. Recent studies have focused on their discovery in systems with least
possible number of oscillators. Here, we present the first experimental study revealing the synchro-
nization route to weak chimera via quenching, clustering and chimera states in a single system of
four coupled candle-flame oscillators. We further report the discovery of multi-phase weak chimera
along with the first experimental evidence of the theoretically predicted states of in-phase chimera,
and anti-phase chimera.

I. INTRODUCTION

Synchronization leading to self-organization within a
population of oscillators due to their mutual coupling has
awed the human minds since time immemorial [1]. Fol-
lowing the observation of mutual adjustment of rhythms
of pendulum clocks, Huygens in the 17th century named
this behaviour as sympathy, later called synchroniza-
tion [2], wherein all oscillators adjust their timescales
to a common value upon coupling [1]. Subsequently,
both experimental and theoretical studies [3–5] have
shown the existence of various types of coupled behaviour
apart from synchronization and oscillation quenching [4].
Such coupled behaviour include weak chimeras [6, 7] and
chimeras [8, 9] in large populations (number of oscilla-
tors, N , ranging from 20 to 100) of oscillators.

Ashwin and Burylko [6] recently discovered the state of
weak chimera, a symmetry breaking phenomena found in
minimal (3 to 6 oscillators) network of coupled phase os-
cillators. Weak chimera is defined as the state where two
or more frequency-synchronized oscillators coexist with
one or more oscillators having different frequencies with
respect to the synchronized group. The pioneering ex-
perimental evidence of weak chimera state was reported
by Wojewoda et al. [7] in a system of three coupled pen-
dula, followed by experimental and theoretical studies on
pendulum-like nodes [10], electrochemical oscillators [11],
and Stuart-Landau oscillators [9]. Chimera is one of the
theoretically [3, 12–19] and experimentally [5, 8, 13, 20–
25] well-studied cases of weak chimera. Discovered by
Kuramoto and Battogtokh [3] in complex Ginzburg-
Landau oscillators and named by Abrams and Strogatz
[12], chimera is a symmetry breaking phenomenon where
oscillators having identical individual properties and cou-
pling structure separate into phase-locked (synchronized)
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and phase-drifting (desynchronized) group of oscillators.
Within the last decade, different types of chimera came
into the light such as clustered chimera [13, 15, 23, 26, 27],
breathing chimera [14, 15], symmetric and asymmetric
chimera [16], metastable chimera [17], type-I chimera and
type-II chimera [18], and virtual chimeras [19], character-
ized on the basis of instantaneous phase and amplitude
relations between oscillators.

Apart from the theoretical studies discussed so far, ex-
perimental investigations of chimera have also been re-
ported in literature. The pioneering experimental stud-
ies showing the existence of chimera in a natural system
used coupled chemical oscillators [20] and coupled map
lattices [21]. Further experimental studies observed the
existence of chimera in mechanical oscillators, such as
coupled pendula [22], metronomes [13], electrochemical
oscillators [5, 23], electronic oscillators [24], optical oscil-
lators [8], and in thermoacoustic systems [25]. Chimera
states have also been predicted for different global [28],
weak non-local [3] and local couplings [29]. The pio-
neering study by Hart et al. [8] experimentally witnessed
the existence of chimera in four globally coupled chaotic
opto-electronic oscillators which is the minimal network
of oscillators required to support the state.

Although the phenomena of chimera, synchronization,
and oscillation quenching have been widely studied, re-
cent theoretical and experimental studies find interest
in identifying their existence in systems with minimum
number (N ranging from 3 to 6) of oscillators [8–11].
The insights obtained from such minimal systems can be
equally applied to the dynamics of large, spatially ex-
tended systems. Further, the occurrence of these states
have been identified in various governable systems, sys-
tems whose bahaviour can be externally controlled, such
as optoelectronic oscillators [8], pendulum-like nodes [10],
and mechanical oscillators [7] to name a few. However,
the exhibition of all such states in a single self-governing
system remains unreported. Therefore, the present study
is a quest for the experimental evidence of such phenom-
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ena in an autonomous system with minimum number of
coupled candle-flame oscillators [30, 31] by varying a sin-
gle control parameter.

The experiments involving candle-flame oscillators,
while being unconventional, are simple to conduct and
can be used to simulate synchronization phenomena of
coupled flames in more complicated systems such as can-
annular combustors and afterburner of a gas turbine en-
gine [32]. The oscillatory nature of such coupled flames
post interaction with the acoustic modes of the com-
bustor results in the generation of large amplitude self-
sustained oscillations, known as thermoacoustic instabil-
ity [33, 34]. The presence of such oscillations is undesir-
able for the safe operation the engine; hence, the systems
are always operated away from the stability margin of
such instabilities [33].

Previous studies on coupled candle-flame oscillators,
with two [30, 31] and three [35] oscillators, show the
existence of rich dynamical behaviours such as synchro-
nization, amplitude death, and rotation mode. Subse-
quent studies [30, 36, 38] reported various possible rea-
sons behind the exhibition of these coupled dynamics in
candle-flame oscillators. Here, we investigate the pres-
ence of several nonlinear phenomena such as clustering
and chimeras (including weak chimera and bare mini-
mum chimera) in a system of four coupled candle-flame
oscillators, positioned in a rectangular topology.

II. EXPERIMENTAL SETUP

The setup consists of two platforms, one stationary
and the other movable, each consisting of two candle-
flame oscillators [Figs. 1(a,b)]. The distances between
the centers of the oscillators, dx and dy, are varied as
control parameters from 2 to 7 cm in steps of 0.5 cm. All
experiments are conducted in a dark room with a quies-
cent environment. The candles used in the experiments
are 10 cm long and have a diameter of 1 cm. Four such
candles are bundled together and lit in order to form
a single oscillating flame; such an oscillator is referred
as a candle-flame oscillator. As the distances between
the oscillators are varied, they exhibit different dynami-
cal states. These dynamics are captured using the high-
speed imaging feature of iPhone 5S outfitted with a CH*
chemiluminescence filter (wavelength centered at 435 nm
with a bandwidth of 10 nm). With the employment of
the filter, the luminous intensity of the flame would cor-
respond to the local heat release rate of the flame in each
frame [39]. Images for each combination of dx and dy are
captured at a frame rate of 119 fps for 10 s. The global
heat release rate value for each candle-flame oscillator at
a given instant (or frame) is obtained after isolating the
oscillator and summing up the luminous intensity values
(local heat release rate) of the oscillator. The global heat
release rate values are then normalized with their respec-
tive instantaneous amplitudes obtained from the Hilbert
transform of the signal [1]. Thus, four different time se-

FIG. 1. (a) Isometric view and (b) top view of the experi-
mental setup of four candle-flame oscillators.

ries, corresponding to each oscillator, are obtained for
each combination of distances.

III. RESULTS AND DISCUSSION

To gain an understanding of the various coupled dy-
namics exhibited by four candle-flame oscillators (ex-
plained hereafter) and SL oscillators (provided as Sup-
plementary material [37]), we examine the temporal vari-
ation of the normalized amplitude (I), wrapped instanta-
neous phase difference (∆φ), and the dominant frequen-
cies (f) of each oscillator. The relative phase (∆φ) is
calculated for each combination of oscillators as the dif-
ference between the instantaneous phases, obtained from
the Hilbert transform [1]. Oscillator pairs exhibiting
synchronized behaviour display a constant phase differ-
ence between them and oscillate at identical frequencies.
On the other hand, desynchronized oscillators exhibit a
phase-drifting behaviour in time and oscillate at differ-
ent frequencies. Various dynamical states observed for
each combination of inter oscillator distances, shown by
dx and dy in Fig. 1(b), are individually discussed below.

We witness the experimental evidence of weak chimera
states in coupled candle-flame oscillator system. The first
case of weak chimera is presented in Fig. 2(a), where a
group of three synchronized oscillators {1, 3, and 4} co-
exists with a desynchronized oscillator 2, when dx = dy =
7 cm (see Supplementary Movie 1 [37]). Oscillators 1 and
3 are in-phase synchronized and oscillator 4 exhibits an
anti-phase synchronization with them. In contrast, oscil-
lator 2 separates itself as the desynchronized oscillator,
exhibiting a phase-drifting behaviour with the synchro-
nized group of oscillators.

We report the discovery of the novel state of multi-
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FIG. 2. The temporal variation of (I) amplitude of each candle-flame oscillator, (II) relative phase between all combinations
of such oscillator pairs, and (III) the values of dominant frequencies of each oscillator for different states of coupled dynamics
characterized as (a) weak chimera, (b) multi-phase weak chimera, (c) in-phase chimera, and (d) anti-phase chimera. Oscillators
having the same colour in (III) possess equal frequencies.

phase weak chimera, where the oscillators in a frequency
synchronized group exhibit different phase-locking be-
haviour from the other group while retaining desyn-
chrony between them. In our system, an anti-phase syn-
chronized oscillator pair coexists with an in-phase syn-
chronized oscillator pair [Fig. 2(b)], while both pairs
are desynchronized with each other (see Supplementary
Movie 2 [37]). The oscillators {1, 3} are in-phase syn-
chronized while the oscillators {2, 4} are anti-phase syn-
chronized, when dx = 5 cm and dy = 7 cm.

A recent theoretical study by Maistrenko et al. [10]
showed the possibility of other states of weak chimera
such as imperfect chimera, chaotic chimera, anti-phase
chimera, and in-phase chimera in a theoretical model of
three pendulum-like nodes. Here, we report the maiden
experimental observation of such in-phase and anti-phase
chimera states in candle-flame oscillators. During in-
phase chimera [Fig. 2(c)], the system divides into two
pairs of in-phase synchronized oscillators, {1, 2} and {3,
4}, while retaining desynchrony between those pairs (see
Supplementary Movie 3 [37]) when dx = 7 cm and dy = 4
cm. The state of anti-phase chimera [Fig. 2(d)] displays
similarity to the state of in-phase chimera shown in Fig.
2(c) with the only difference being the synchronized pair
of oscillators exhibiting an anti-phase mode of synchro-
nization. Such a state of anti-phase chimera is observed
for dx = 5 cm and dy = 6 cm (see Supplementary Movie
4 [37]).

A yet another specific case of weak chimera which is
thoroughly investigated is the state of bare minimum
chimera [8], where a system of four oscillators separates
into pairs of synchronized and desynchronized oscillators.

We observe the existence of such a chimera state at a
distance of dx = dy = 6 cm (see Supplementary Movie
5 [37]). In Fig. 3(a,b), we see the oscillators {1, 3}
that exhibit anti-phase synchronization coexisting with
the desynchronized pair of oscillators {2, 4}.

The chimera state found in candle-flame oscillators is
observed to mediate between coherent states (clustering
states or in-phase synchronized states), due to their low
stability in small populations, commonly referred to as
alternating chimera [40]. In Fig. 3(d), we observe that
the system dynamics transition from the chimera state,
with oscillators {3, 4} as the synchronized pair and os-
cillators {1, 2} as the desynchronized pair, to a cluster-
ing state where the oscillators separate into two clus-
ters of synchronized oscillators (detailed explanation is
provided subsequently) and later returns to the chimera
state. During the chimera state, the oscillator pair {3, 4}
exhibits nearly anti-phase synchronization and the other
oscillators 1 and 2 remain desynchronized. As the dy-
namics transition to the clustering state, we observe that
the oscillators 1 and 2 are synchronized with the oscilla-
tors 4 and 3, respectively, with a zero degree phase shift.
The oscillator pair {1, 4} and {2, 3} form two clusters
oscillating at a frequency of 11.5 Hz with anti-phase syn-
chronization between the clusters.

On the other hand, in Fig. 3(e), we observe that the
chimera state is followed by the state of in-phase syn-
chronization which yet again transitions to the chimera
states. The oscillator pair {1, 2} remains in-phase syn-
chronized, having nearly zero degree phase shift through-
out the time series. In contrast, the oscillators 3 and 4
are desynchronized within themselves and with the syn-
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FIG. 3. The temporal variation in the (a) amplitude of each oscillator, (b) the relative phase between each pair of oscillators
and (c) frequencies of each oscillator. (d), (e) The plots of relative phase representing the states of alternating chimera states
seen in the experiments where the existence of chimera is observed to mediate between the states of clustering and in-phase
synchronization, respectively.

FIG. 4. Plots of temporal variation in (I) amplitude of each
candle-flame oscillator and (II) instantaneous phase difference
between all combinations of oscillator pairs for the states of
(a) in-phase synchronization, and (b) amplitude death

chronized pair during the chimera state. The oscillators
are in-phase synchronized within themselves and the oth-
ers, and have an oscillation frequency of 10.8 Hz during
the epoch of in-phase synchronization. We observe the
existence of the chimera state for an average of 80 cycles
in both the cases of alternating chimera.

Hitherto, we have discussed the existence of symmetry
breaking states where we observe a combined existence
of synchronized and desynchronized oscillators upon cou-
pling. Hereon, we will discuss the presence of only syn-
chronization states observed at various distances between
coupled candle-flame oscillators. These states are ob-
served when the oscillators are placed close to each other.

When the oscillators are very close to each other at dx
= dy = 2 cm [Fig. 4(a)], we observe that every oscilla-
tor (oscillators 1 to 4) attains maximum and minimum
amplitudes simultaneously, exhibiting in-phase synchro-

nization [1] at a frequency of approximately 10.7 Hz (see
Supplementary Movie 6 [37]). As the oscillators are posi-
tioned a small distance apart (dx = dy = 4 cm), the cou-
pling between them leads to the simultaneous quenching
of oscillations in all the oscillators (see Supplementary
Movie 7 [37]). This state where all the oscillators occupy
a homogeneous steady state due to mutual coupling is
referred to as amplitude death [4]. The amplitude plot
of this state [Fig. 4(b)] shows minor fluctuations around
zero, highlighting the lack of oscillations in the system.
The instantaneous Hilbert phases of these oscillators, al-
though physically undefined due to the lack of narrow-
band oscillations [1], do not show any particular trend
for this state.

When the candle-flame oscillators are moved to a dis-
tance of dx = 1 cm and dy = 4 cm, the population of
these oscillators separates into different clusters, depend-
ing on the values of instantaneous properties (amplitude
and phase) of their signals [5, 41]. Here, the oscillators
belonging to the same cluster exhibit equal instantaneous
phases that are different from the other clusters; while
all the oscillators in the population carry an identical
frequency of approximately 11 Hz (see Supplementary
Movie 8 [37]). In Fig. 5(a), the oscillator pairs {1, 2}
and {3, 4} separate into two clusters which exhibit anti-
phase synchronization between them. An interchange in
the distances dx and dy (i.e., dx = 4 cm and dy = 1 cm)
results in the formation of a clustering state shown in
Fig. 5(b). During this state of clustering, the oscilla-
tors belonging to the same clusters are now on different
platforms.

Apart from the aforementioned types of clustering
where adjacent oscillators on the rectangle group into a
cluster, we also observe the occurrence of clustering be-
tween diagonal pair of oscillators (dx = 3 cm and dy =
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FIG. 5. Variation in (I) amplitude, (II) relative phase, and (III) dominant frequency of each candle-flame oscillator during
different states of clustering. In all three types of clustering exhibited by four candle-flame oscillators, we observe the presence
of two clusters each consisting of two oscillators and anti-phase synchronization between the clusters.

3 cm). During diagonal clustering, the oscillators which
exhibit in-phase synchronization would be on diagonally
opposite ends of the rectangle (i.e. oscillator pairs {1,4}
and {2,3} separate into two clusters), and the adjacent
oscillators display anti-phase synchronization (see Fig.
5(c)).

Having discussed all the observed prominent synchro-
nization and symmetry breaking states in an experimen-
tal four oscillator system, let us now compare their be-
haviour on a two-parameter bifurcation plot. Figure 6
shows the overall mapping of the coupled dynamics of
candle-flame oscillators at various values of coupling pa-
rameters (dx and dy). This plot projects all the possible
modes of coupled oscillations exhibited by four limit cycle
oscillators considered in our study at a given combination
of coupling parameters. It also helps us examine the var-
ious available routes to traverse from a given mode of
oscillations to another and to smartly control the system
dynamics by the selection of the preferential route.

In non-locally coupled candle-flame oscillators, the mu-
tual interaction or coupling between them decreases with
an increase in the distance [31]. In Fig. 6, we observe
the exhibition of in-phase synchronization when the os-
cillators are placed very close to each other, due to the
presence of strong interaction between them. When ei-
ther dx or dy is increased keeping the other at a very low
value, we observe various states of clustering due to the
difference in the synchronization properties between pairs
of oscillators. On the other hand, a slight increase in the
values of both dx and dy leads to the exhibition of ampli-
tude death in their dynamics. With further increase in
the values of dx and dy, we observe the presence of desyn-
chrony in the system, through the states of chimera and

weak chimeras.
An interesting feature of the two-parameter bifurca-

tion plot is its symmetry [Fig. 6]. We observe a spatial
symmetry in the coupled dynamics of four candle-flame
oscillators about the diagonal line of the bifurcation plot.
An interchange in dx and dy would not make much signif-
icant changes in the dynamics of the group of oscillators.
This fact further confirms the repeatability of these ex-
periments.

IV. CONCLUSION

To summarize, in the present study, we provide an ex-
perimental evidence to the emergence of rich dynamical

FIG. 6. Two-parameter bifurcation plots between distances
dx & dy depicting the presence of various dynamical states
observed in a system consisting of four candle-flame oscillators
exhibiting limit cycle oscillations.
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behaviours exhibited by a system with a minimal num-
ber (N = 4) of coupled candle-flame oscillators due to a
change in their topological arrangement. Various coupled
dynamics including in-phase synchronization, amplitude
death, clustering, and chimeras are observed. We re-
port the discovery of the novel state of multi-phase weak
chimera. Further, we provide the first experimental ev-
idence of weak chimera states such as in-phase chimera,
anti-phase chimera, which were observed previously in
theoretical studies. Hence, by varying the coupling be-
tween the oscillators, we bring forth various routes of
transition from one dynamical state to another.

In many practical systems, one among these states is
undesirable. For example, phase-locked (or synchroniza-
tion) states leading to amplitude growth are unwanted
in many oscillatory systems such as, thermoacoustic sys-
tems [42, 43], pedestrians on the Millennium Bridge [44],
ecological systems [45], the spread of epidemics [46] and
epileptic seizures [47]. On the other hand, amplitude
death proves dangerous in neural systems, causing the
occurrence of Alzheimers [48] and Parkinsons disease

[49]. The difficulty in controlling the oscillatory states
enhances during the partial synchronization states, such
as chimera and weak chimera. Therefore, a transition
from these undesirable states in such oscillatory systems
to the desired state is possible with smart control of the
coupling parameters.
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