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ABSTRACT 
Oscillatory noncontinuum gas flows at the micro and nanoscale are characterized by two dimensionless 

groups: a dimensionless molecular length scale, the Knudsen number , and a dimensionless 

frequency, , relating the oscillatory frequency to the molecular collision frequency. In a recent study 

(Phys. Rev. E 89, 033305, 2014), the accuracy of the lattice Boltzmann (LB) method for simulating these 

flows at moderate-to-large  and  was examined. In these cases, the LB method exhibits spurious 

numerical oscillations that cannot be removed through the use of discrete particle velocities drawn from 

higher-order Gauss-Hermite quadrature. Here, we identify the origin of these spurious effects and 

formulate a method to minimize their presence. This proposed method splits the linearized Boltzmann 

Bhatnagar-Gross-Krook (BGK) equation into two equations: (1) a homogeneous “gain-free equation” 

that can be solved directly, containing terms responsible for the spurious oscillations; and (2) an 

inhomogeneous “remainder equation” with homogeneous boundary conditions (i.e., stationary 

boundaries) that is solved using the conventional LB algorithm. This proposed “splitting method” is 

validated using published high-accuracy numerical solutions to the linearized Boltzmann BGK equation 

where excellent agreement is observed. 
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I.  INTRODUCTION 
 

The lattice Boltzmann (LB) method has its origins in the lattice gas cellular automata [1], where it 

was devised to remove statistical noise caused by Boolean operations. Over the past three decades, the 

LB method has been developed significantly [2,3], including introduction of the Bhatnagar-Gross-Krook 

(BGK) collision operator [4], multiphase capability allowing for interphase interactions [5-7], decoupled 

particle velocities from temporal-spatial discretization [8-10], and multi-relaxation-time collision 

models [11]. Introduction of the BGK collision operator led to the prevalent LB BGK method [12,13], 

which was later shown to be a numerical scheme for solving the Boltzmann BGK equation [14,15]. The 

LB method is now applied widely to simulate fluid transport of scientific and engineering relevance 

[16-19]. 

The above-mentioned link between the LB BGK model and the Boltzmann BGK equation has spurred 

interest in using the LB BGK method to simulate noncontinuum gas flows that naturally occur at the 

micro and nanoscales [20-31]. It is known that these flows depart from continuum Navier-Stokes 

descriptions [32], with the deviations captured by solutions to the Boltzmann BGK equation [33]. Even 

so, existing LB BGK models exhibit poor accuracy for these noncontinuum flows [34]. This is in contrast 

to their demonstrated success in simulating macroscopic (continuum) flows. One reason underlying this 

issue is the widespread use of standard discrete particle velocity sets that are formulated using Gauss-

Hermite (GH) quadrature for continuum (near-equilibrium) flows. Noncontinuum flows at the micro and 

nanoscales strongly deviate from equilibrium. 

A number of modifications have been introduced to the LB framework to address this issue. Early 

proposals include the use of kinetic boundary conditions at solid walls [20] and an effective mean free 

path to account for rarefied effects near walls [21,22]. These approaches make use of the standard LB 

algorithm and particle velocity set, while achieving improved accuracy in the low Knudsen number slip 

regime. Later research focused on larger Knudsen numbers by modifying the discrete particle velocities. 

The velocity sets for continuum flows have been increased using higher-order full-space Gauss-Hermite 

(FGH) quadrature [23-25], half-space Gauss-Hermite (HGH) quadrature [26-28], and other Gauss 

quadrature rules [29]. These allow for enhanced numerical description of the distribution function over 

the particle velocity space, improving the accuracy of moment evaluation.  

Importantly, noncontinuum flows arise not only at finite and large Knudsen numbers, , 

where  is the gas mean free path and  is the hydrodynamic characteristic length scale, but also under 

highly unsteady conditions. Micro- and nano-electromechanical systems often feature resonating 
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structures that oscillate at high frequencies, inherently generating such unsteady flows [35]. In these 

practical settings, both spatial and temporal noncontinuum effects can arise. Temporal effects are 

characterized by the frequency ratio, , where  and  are the oscillation frequency and 

molecular relaxation time, respectively. A variety of numerical methods, based on the Boltzmann-BGK 

equation or its linearized form, have been used to study noncontiuum oscillatory flows between plates 

and inside cavities [36-41]. In the context of the LB method, Shi et al. [42]  investigated the numerical 

performance of a hierarchy of FGH LB models using simulations of oscillatory Couette flows at different 

 and  values. Strong spurious oscillations in the velocity field were evident at large , the origin 

of which remained unknown. Use of higher-order FGH LB models did not alleviate these spurious 

features which tended to overwhelm key flow characterisitics. 

Here we explore this issue, identify its cause, and formulate a new method that minimizes these 

spurious oscillations. We find that evaluation of the moments using the discrete particle velocity set 

underlies these effects. At a high frequency, the distribution function is strongly oscillatory which makes 

these moment evaluations problematic. This issue is addressed by splitting the linearized Boltzmann 

BGK equation into two equations: (i) a “gain-free equation” [40], and (ii) a “remainder equation”. We 

solve the gain-free equation directly using the method of characteristics, circumventing the use of the LB 

method, while the remainder equation is solved numerically using FGH and HGH LB models. This 

approach is found to drastically reduce the appearance of spurious oscillations. Similar yet different 

splitting treatments have been used previously in the kinetic theory of gases to deal with the propagation 

of boundary-induced discontinuities [40, 43-46]. 

The article is organized as follows: In Section II, we study  the linearized Boltzmann BGK equation 

for oscillatory Couette flows. By analyzing the resulting distribution function in particle velocity space, 

we explain the origin of the aforementioned spurious oscillations. We then describe the proposed splitting 

method in Section III, where the resulting gain-free equation is solved analytically for oscillatory Couette 

flows. An off-lattice LB model is used to solve the remainder equation. In Section IV, we present 

numerical results for oscillatory Couette flows using the splitting method. These results are compared to 

existing high-accuracy solutions to the linearized Boltzmann BGK equation. Concluding remarks are 

given in Section V. 

 

II.  LINEARIZED BOLTZMANN BGK EQUATION FOR OSCILLATORY 
COUETTE FLOWS 

We consider a flow generated in a gas confined between two parallel solid plates that oscillate in their 
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planes, i.e., oscillatory Couette flow. The distance between the plates is  and they move in opposite 

directions at identical speeds, ; see Fig. 1.  

 
FIG. 1. Schematic of oscillatory Couette flow. The origin of the fixed (inertial) coordinate system is 

at the center line of the bottom plate. It is fixed in the laboratory frame.  

 

This flow can be described in the frequency domain by the “steady-state” solution of a virtual time-

dependent linearized Boltzmann BGK equation [47], 

,                                                       (1) 

where  is the frequency-based distribution function that defines the (linearized) perturbation to the true 

distribution function of the gas [42,47]. The variables, ,  and , represent the virtual time, particle 

position and particle velocity, respectively. The relaxation time, , originates from the BGK model [4], 

and a complex-valued relaxation time arises, . Here,  is the (applied) oscillatory 

frequency and  is the usual imaginary unit. The local equilibrium perturbation, , is  

,                                                  (2) 

where  is the dimensionality of physical space and  is the gas constant.  and  represent the 

reference fluid density and temperature at global equilibrium, respectively. In the low Mach number 

(linear) limit, the density and temperature perturbations in oscillatory Couette flows are zero, i.e.,  

and  [42]; the flows are isothermal. The bulk fluid velocity in Eq. (2) is 

  ,                                                                (3) 

where  is the global Maxwellian of the quiescent fluid at density  and temperature . The 

Maxwell diffuse boundary conditions are employed at the solid walls, 

L

ˆwu

*

ˆ ˆ ˆ ˆeqh h h h
t t t
¶ ¶

+ × = - +
¢¶ ¶
c
r

ĥ
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where  and  are the components of  in the  and  directions. The linearized Boltzmann BGK 

equation, Eq. (1), is integrated along the characteristic line ( ). Applying the boundary 

conditions in Eq. (4), together with Eq. (2), then gives 

       (5) 

where  and . The dimensionless spatial coordinates are 

, whereas the dimensionless particle velocities are . 

 

A.  Effect of discontinuity of the distribution function in particle velocity space 

Importantly, the discontinuity in  about  exists at every point in the flow region, see Eq. (5); 

 is in the denominator of each term. This discontinuity results from the boundary condition in Eq. (4), 

and can be robustly handled through the use of half-space quadrature, which integrates the regions  

and , separately. We therefore apply the half-space LB model to solve Eq. (1) and simulate 

oscillatory Couette flows at large . The use of half-space quadrature still result in spurious oscillations 

similar to those observed in previous LB modeling [42]; see results in Section IV A. Therefore, the 

discontinuity in particle velocity space cannot account for these spurious oscillations. 

 

B.  Oscillatory component of the distribution function 

The first terms in Eq. (5) are complex-valued exponential functions, which we refer to as  for 

convenience: 
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ĥ 0yc =

yz

0yc <

0yc >

q

oscĥ
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FIG. 2. The profiles of  at  and . The top row: ; 

The bottom row: .  

Note that  is symmetric about ;  refers to center of the channel.  

Importantly, for flows at large , this exponential function is a highly oscillatory function of . Figure 

2 gives results for  at ,  and , , respectively. These 

results show that both the real and imaginary parts of  are highly oscillatory, especially in the vicinity 

of . Moreover, the amplitude and wavelength of  grow with increasing , and  converges 

to  for large . 
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0yz = oscĥ yz oscĥ
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Equation (5) also contains integrals involving the equilibrium distribution function, . Since  is 

a linear combination of the moments of , these integral expressions are expected to be less oscillatory 

than . 

Therefore, it appears plausible that the oscillatory component, , drive the spurious oscillations 

observed in previous LB simulations [42]. Importantly, , in Eq. (6), is the solution to the linearized 

Boltzmann BGK equation, Eq. (1), but with the gain term, , omitted. We henceforth refer to this 

modified equation as the “gain-free equation”. This will form a key component of the proposed “splitting 

method”, which is discussed in the next section. 

 

III.  THE SPLITTING METHOD 

Equations (1) and (4) form an inhomogeneous linear system, which can always be split into two linear 

systems, solved independently, and then combined to obtain the required solution. We therefore split the 

original distribution function, , into two components, i.e., . The first distribution function, 

, is chosen to satisfy the “gain-free equation”, 

,                                                     (7) 

subject to the boundary conditions, 

                                                  (8) 

The “remainder equation” is the corresponding inhomogeneous equation with homogenous boundary 

conditions, defined by the remainder following subtraction of Eqs. (7) and (8) from Eqs. (1) and (4), i.e., 

,                                          (9) 

where 

,            .                                         (10) 

and  are the first-order moments of  and , respectively. The inhomogeneous linear 

equation, Eq. (9), is subject to homogeneous boundary conditions at the solid walls,  
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Equations (7) and (8) are solved directly (and analytically) for  using the method of characteristics 

for oscillatory Couette flows – a similar approach can be used for other flow geometries (which may 

require numerical computation). This is possible because Eq. (7) is not of integro-differetial form – it is 

a simple differential equation – unlike the original Boltzmann BGK equation, Eq. (1). Since  can be 

a highly oscillatory function of particle velocity,  – as observed for  above (it satisfies the same 

equation, as discussed) – direct and accurate solution using the method of characteristics facilitates 

accurate evaluation of its corresponding moments; this will be explored below for oscillatory Couette 

flows. 

The remainder equation, Eq. (9), for  is driven by a source (inhomogenous) term that contains 

moments of . These moments smooth any oscillatory behavior in . Thus,  in the remainder 

equation is expected to be far less oscillatory than .  An LB method (e.g., D2Q36) is then suitable to 

solve this remainder equation and evaluate the corresponding moments of ; the required moment, 

 in Eq. (10), is evaluated directly and hence accurately from the solution to , as discussed above. 

A. Gain-free solution for oscillatory Couette flows 

As mentioned above, solution to Eqs. (7) and (8) is given by Eq. (6), i.e., , via the method 

of characteristics. The corresponding fluid velocity is then determined exactly by 

,                                          (12) 

where  

,                                             (13) 

and  is the zeroth-order Abramowitz function [48].   

The exact solutions in Eqs. (6) and (12) are used to examine whether the conventional GH LB model 

can solve Eq. (7) accurately and handle the highly oscillatory distribution function, , and its moments. 

Figure 3 compares numerical solutions of the “gain-free equation” using the D2Q36 model in Ref. [42] 

(in terms of the LB discrete velocities ) to the exact analytical solution in Eq. (6), for  and 
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( )1ĥ
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( )1û ( )1ĥ
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. For clarity, we illustrate the exact analytical solution using black open circles with a spatial 

resolution, . 

Two representative distribution functions are shown for  and , i.e.,  and , 

and the streamwise bulk velocity,  (the fluid velocity component in the x direction), is also given. 

These results are obtained using the full-space (FGH) D2Q36 model [42], denoted FD2Q36; its discrete 

particle velocities are defined by Eq. (16) and given in Table 1. The distribution functions  and  

from the LB simulation (continuous red lines) are in excellent agreement with the exact analytical 

solution in Eq. (6) (open circles). However, the streamwise velocity,  (the first-order moment of ), 

deviates significantly from the exact solution, Eq. (12), and presents strong (spurious) oscillations. These 

features are very similar to the spurious oscillations reported in Ref. [42]. 

Figure 3 shows that conventional FGH LB models accurately solve the “gain-free equation”, Eq. (7), 

even for strongly noncontinuum flows at large , but have difficulty with the subsequent moment 

evaluation, e.g., for . This is because the discrete particle velocity set of the LB method is selected 

from FGH abscissae, and GH quadrature is known to perform poorly when the integrand is a highly 

oscillatory function of particle velocity. In Ref. [42], FGH LB models are used to evaluate the moments 

of , which includes the highly oscillatory function . This explains why these previously reported 

results [42] exhibit spurious numerical oscillations for flows at large .  
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FIG 3. The profiles of ,   and the streamwise velocity  for oscillatory Couette flow at 

 and . FD2Q36 LB results (solid red line) [42]; analytical solution (open black circles) 

to Eqs. (6) and (12). Black dashed lines in (e) and (f) are included to guide the eye.  

 

B.  Lattice Boltzmann method for the remainder equation 

An LB model to solve is constructed using the conventional GH LB framework [42]. The discrete 

particle-velocity version of Eq. (9) is 

,                                         (14) 

where  denotes  evaluated at a discrete velocity , and the corresponding equilbrium functions 

are 

,                  .                                    (15) 

The source term,  in Eq. (14), does not include its density perturbation ; consistent with its 

continuous form, , in Eq. (10). However,  is included in  , see Eq. (15), because the LB 

model is derived in the low-Mach number limit. This feature is used to assess its accuracy of oscillatory 

Couette flows by checking that  vanishes. 

In Eq. (14), both FD2Q36 and half-space D2Q36 (HD2Q36) schemes are used to specify , 

                                                    (16) 

where the subscript FS denotes full symmetry, and the included constants and velocity weights of the 

two schemes are summarized in Table 1. The corresponding moments,  and , are computed 

using, 
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FD2Q36 and HD2Q36 discrete velocities do not stream among the lattice nodes in one time step. 

This requires the temporal and spatial discretizations to be decoupled from the discrete particle velocities. 

We therefore apply a finite-difference scheme [42] to discretize time and physical space in Eq. (14). This 

leads to an off-lattice LB evolution equation, 

,                   (18) 

where  and  are the nth time layer and virtual time step, respectively. The dimensionless collision 

frequencies are  and . In Eq. (18), a function  is defined to remove numerical 

implicitness,  

  .                                          (19) 

Using , the moments,  and , become 

 ,           .                      (20) 

 

TABLE I.  Constants and velocity weights for FD2Q36 and HD2Q36 schemes. 
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In addition,  on the left side of Eq. (18) represents the finite-difference approximation 

of the spatial derivative. As in Ref. [42], we apply a second-order upwind scheme to discretize spatial 

derivatives on the bulk nodes while a hybrid scheme, consisting of first-order upwind and central 
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difference schemes, is used for nodes next to the solid walls. Take the  component of  as an 

example. The second-order upwind approximations are   

,             ,       (21) 

,          ,      (22) 

and those based on the hybrid scheme are  

,        ,     (23) 

,       .     (24) 

 is the lattice spacing in the  direction and  is a numerical factor to tune the weight of first-order 

upwind and central difference methods in the hybrid scheme. In this article, we specify  to 

ensure the LB simulation is stable while nearly second-order accurate [42].  In summary, an off-lattice 

LB model is made up of Eqs. (15), (16) and (18) – (24). Its discrete particle velocities are specified by 

Table 1.  

  

V.  RESULTS AND DISCUSSION  

In this section, we examine the two possible reasons discussed in Section II for the spurious 

oscillations in previous LB simulations [42]: (1) The discontinuity of  about  in the flow region, 

and (2) the highly oscillatory variations in  in particle velocity space.  We first use the HGH LB model 

(without the proposed splitting method) to simulate oscillatory Couette flows at large , and then apply 

the “splitting method” to examine its efficacy in simulating these flows. High-accuracy numerical results 

of the Boltzmann BGK equation are used as benchmarks, whose spatial resolution is [36]. 
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FIG. 4. The streamwise velocities, , of oscillatory Couette flow at  and . Solid line 

(red): the LB results (Top row: FD2Q36; Bottom row: HD2Q36); Circles (open and black): high-

accuracy Boltzmann BGK solution [36]. Black dashed lines are included to guide the eye. 

 

A.  Half-space LB simulation for oscillatory Couette flows 

Unlike the results of Ref. [42] that implemented FGH LB models, HGH LB models inherently account 

for the distribution function discontinuity in particle velocity space. We therefore initially assess whether 

HGH LB models are stable and free of the spurious oscillations observed in the FGH LB models [42]. 

The simulations of Ref. [42], which directly solved the complete linearized Boltzmann equation, Eq. (1), 

are repeated using the HD2Q36 model. The splitting method is not used in this initial comparison. 
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Figure 4 shows the streamwise velocity, , in one representative oscillatory Couette flow at 

 and . Complex conjugates of the LB results obtained using both FD2Q36 (the same as 

the results in Ref. [42]) and HD2Q36 models are given, facilitating direct comparison to high-accuracy 

solutions of the linearized Boltzmann BGK equation [36]. Similar to FD2Q36, spurious oscillations are 

observed in results obtained using HD2Q36. Therefore, HGH quadrature does not suppress the large-  

LB instablity reported in Ref. [42], and we conclude that the discontinuty of  in the flow region does 

not drive the observed suprious oscillations. 

Nonetheless, we note that numerical accuracy is slightly improved through use of HGH quadrature. 

Oscillatory amplitudes and freqencies in the spurious oscillations decrease relative to FGH LB 

simulations; compare results in the top and bottom rows of Fig. 4. This is because HGH quadrature 

distributes more discrete particle velocities near the discontinuity in the distribution function about 

, where the solution is most oscillatory. 

  

B.  Splitting method for oscillatory Couette flows 

Next, we apply the splitting method – using both FD2Q36 and HD2Q36 LB models – to calculate 

 and its moments. Results are presented for , and two different Knudsen numbers,  

and . The 2D computational domain is a square between the two solid walls with a gap . 

Periodic boundary conditions are employed at the two ends of this domain while the distribution 

functions at the solid walls are specified using Eq. (11). We choose the Mach number, , and 

reference density, . All simulations are performed using  grids; The corresponding lattice 

spacings in the  and  directions are and , respectively. Refined grids in the  

and y directions produce an insignificant enhancement in numerical accuracy. We use a Courant-

Friedricks-Lewey number, , where  is the maximum particle speed. It is chosen to be 

0.2 to guarantee numerical stability. Results using both FGH and HGH show that  throughout 

the computational domain, as required. 
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FIG. 5. The streamwise velocities, , of oscillatory Couette flow at  and . Solid line 

(red): the present results (Top row: FD2Q36; Bottom row: HD2Q36); Circles (open and black): high-

accuracy Boltzmann BGK solution [36]; Dashed line (gree): the results in Ref. [42].  

 

The streamwise velocity, , is given in Fig. 5 for  and . These results are compared 

to high-accuracy numerical solutions of the linearized Boltzmann BGK equation [36] and the results of 

Ref. [42]. Use of the splitting method with FD2Q36 produces results that agree well with the high-

accuracy solutions of Ref. [36]; see Figs. 5(a) and 5(b). Strikingly, both the real and imaginary 

components of the streamwise velocity no longer exhibit the strong spurious oscillations of the 

conventional LB simulations reported in Ref. [42]. This confirms the mechanism anticipated in Section 

II that drives these spurious oscillations: GH quadrature is incapable of accurately computing moments 

û Kn 1 10= 5q =
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of the distribution function when it is highly oscillatory. The proposed splitting method overcomes this 

impediment allowing for accurate evaluation of moments and hence the streamwise velocity. Results 

obtained using the HD2Q36 LB model are produced in Figs. 5(c) and 5(d). This HGH LB model achieves 

slightly better accuracy in both the real and imaginary components, relative to the corresponding FGH 

LB model. Namely, the HGH velocity profiles exhibit suppressed fluctuations near the solid walls. 

 

 
FIG. 6. The streamwise velocities, , of oscillatory Couette flow at  and . Details as in 

Fig. 5.  
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Figure 6 shows corresponding results for  and . This strongly non-equilibrium flow 

generates enhanced spurious oscillations relative to  and  (see Fig. 5), when the 

conventional LB method is used [42]. Again, the proposed splitting method dramatically improves the 

situation and its results are in excellent agreement with high-accuracy numerical solutions of the 

Boltzmann BGK equation [36]; similar performance is achieved for higher , e.g.,  and  

(results not shown). As in the results of Fig. 5, use of HGH quadrature slightly improves accuracy, and 

we expect this improvement can be further enhanced through use of higher-order HGH quadrature. 

However, the primary suppression of spurious oscillations is achieved by the splitting method – use of 

HGH quadrature produces a relatively minor improvement. 

 

V.  CONCLUSIONS  

We have investigated the origin of spurious oscillations in previous LB simulations of noncontinuum 

oscillatory Couette flows [42]. These spurious effects arise at high frequency, which this study shows 

are due to inaccuracy in moment evaluations of the oscillatory distribution function. Increasing the 

number of discrete particle velocities in the standard GH LB framework has little effect on the moment 

evaluation. 

Spurious oscillations are suppressed through development and use of the proposed “splitting method”, 

where the original linearized Boltzmann BGK equation is decomposed into two linear equations. The 

first is a homogenous “gain-free equation” subject to inhomogeneous boundary conditions – it contains 

the dominant oscillatory component of the complete distribution function. The “gain-free equation” is 

solved directly using the method of characteristics, facilitating accurate evaluation. The “remainder 

equation” is inhomogeneous in form with a set of homogenous boundary conditions. This inhomogeneity 

involves moments of the distribution function that suppresses oscillatory behavior. The remainder 

equation is solved using the LB method, either using full-space or half-space GH quadrature. 

Combination of these solutions, i.e., use of the splitting method, was shown to suppress the previously 

observed spurious oscillations in Ref. [42] and gave excellent agreement with published high-accuracy 

numerical solution of the Boltzmann BGK equation. 

This splitting method circumvents the need to reformulate the current LB framework using large 

discrete velocity sets and/or more complex finite-difference (finite-volume) temporal-spatial schemes.  
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