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In this study, we present a non-intrusive reduced order modeling (ROM) framework for large-
scale quasi-stationary systems. The framework proposed herein exploits the time series prediction
capability of long short-term memory (LSTM) recurrent neural network architecture such that: (i)
in the training phase, the LSTM model is trained on the modal coefficients extracted from the high-
resolution data snapshots using proper orthogonal decomposition (POD) transform, and (ii) in the
testing phase, the trained model predicts the modal coefficients for the total time recursively based
on the initial time history. Hence, no prior information about the underlying governing equations is
required to generate the ROM. To illustrate the predictive performance of the proposed framework,
the mean flow fields and time series response of the field values are reconstructed from the predicted
modal coefficients by using an inverse POD transform. As a representative benchmark test case,
we consider a two-dimensional quasi-geostrophic (QG) ocean circulation model which, in general,
displays an enormous range of fluctuating spatial and temporal scales. We first demonstrate that
the conventional Galerkin projection based reduced order modeling of such systems requires a high
number of POD modes to obtain a stable flow physics. In addition, ROM-Galerkin projection
(ROM-GP) does not seem to capture the intermittent bursts appearing in the dynamics of the first
few most energetic modes. However, the proposed non-intrusive ROM framework based on LSTM
(ROM-LSTM) yields a stable solution even for a small number of POD modes. We also observe that
the ROM-LSTM model is able to capture quasi-periodic intermittent bursts accurately, and yields
a stable and accurate mean flow dynamics using the time history of a few previous time states,
denoted as the lookback time-window in this paper. We show several features of ROM-LSTM
framework such as significantly higher accuracy than ROM-GP, and faster performance using larger
time step size. Throughout the paper, we demonstrate our findings in terms of time series evolution
of the field values and mean flow patterns, which suggest that the proposed fully non-intrusive ROM
framework is robust and capable of predicting chaotic nonlinear fluid flows in an extremely efficient
way compared to the conventional projection based ROM framework.

I. INTRODUCTION

Large-scale turbulent flows, such as atmospheric and
geophysical flows, are nonlinear dynamical systems which
exhibit an enormous range of complex, coherent spatio-
temporal scales. Over the past half century, compu-
tational approaches have made a significant contribu-
tion to characterize and understand the behavior of such
flow phenomena. To resolve physical problems with high
spatio-temporal variabilities through numerical simula-
tion, one needs a high-fidelity modeling technique like
direct numerical simulation (DNS). However, a huge
amount of computational resources are required to cap-
ture the fine details of the flow dynamics which can be-
come inefficient and unmanageable after some level of
accuracy. Although there has been a continuous growth
in computer power and performance following Moore’s
law during the past few decades [1], the progress has
started to stagnate in the recent years [2–5]. As a re-
sult, one of the most active research areas in modeling of
turbulent flow dynamics is the development of efficient
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and robust algorithms that aim at achieving the maxi-
mum attainable quality of numerical simulations with op-
timal computational costs. Indeed, computational costs
can be reduced by using low-fidelity models such as large
eddy simulation (LES) [6] and Reynolds-averaged Navier-
Stokes (RANS) [7] with additional approximations in the
governing equations to neglect some of the physical as-
pects for closure modeling. Even so, these techniques
require parameter calibration to approximate the true so-
lution to any degree of confidence and may thus increase
costs related to model validation, benchmark data gen-
eration, and efficient analysis of the generated data sets.
As an alternative to the existing techniques, the reduced
order modeling (ROM) approach has quickly become a
promising approach to reduce the computational burden
of high-fidelity simulations. In general, ROM works in
such a way that the high-dimensional complex dynamical
systems will be represented with much lower-dimensional
(but dense) systems while keeping the solution quality
within the acceptable range [8, 9]. An introduction to
ROM methodologies can be found in recent review arti-
cles [9–11].

There have been a significant number of strategies pro-
posed over the years to obtain ROMs of nonlinear dy-
namical systems. These ROM techniques have been uti-
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lized for a wide variety of applications related to, e.g.,
flow control [12–14], data assimilation in weather and
climate modeling [15, 16], and uncertainty quantification
[17–19]. Among the different variants of ROM strategies,
the Galerkin projection combined with proper orthogo-
nal decomposition (POD) based ROMs (ROM-GP) have
been utilized extensively in various areas [20–26]. POD,
also known as principal component analysis (PCA), is a
mathematical technique to extract the dominant statis-
tical characteristics from turbulent flow fields by identi-
fying the most energetic modes [10, 11, 27–29]. These
few POD modes possess the fine-scale details of the sys-
tem and have the capability of representing the true
physics accurately. Over the years, considerable work
has been done to improve the regular POD approaches
[8–10, 12, 30–35].

In general, POD uses the data obtained from experi-
ments or high-fidelity numerical simulations and gener-
ates an orthonormal set of spatial basis vectors describing
the main directions (modes) by which the flow is repre-
sented optimally, in an L2 sense [32]. The most energetic
modes are kept to generate the reduced order system
while the other modes are truncated. However, it has
been observed that the discarded modes often contribute
to the evolving dynamics of large-scale complex turbulent
flow systems, like the geophysical flows [36], resulting in
instabilities and modeling errors in the solution [25, 37–
39]. Thus, several research efforts have been devoted to
improve the stability of ROM-GP frameworks by address-
ing the truncated modes contributions [40–44]. Noack
et al. [45] proposed an extra ‘shift-mode’ for accurate
representation of the unstable steady solution. Several
closure modeling ideas are devised to resolve the weak
dissipation associated with POD modes by introducing
eddy-viscosity terms (similar to LES eddy-viscosity mod-
els) [46–48]. San and Iliescu [49] improved the ROM per-
formance by finding an optimal value for eddy-viscosity
parameter with the assumption that the amount of dis-
sipation is not identical for all the POD modes. In our
recent work, we proposed an automated approach to find
the eddy-viscosity parameter dynamically to stabilize the
ROM-GP model [50]. An alternative approach to find
the eddy-viscosity parameter dynamically has been pro-
posed by using an extreme learning machine architecture
[51]. With the growing interest in data-driven model-
ing of ROMs using machine learning (ML) architectures,
there has been another dimension of research introduced
to the community for the improvement in ROM perfor-
mance, referred as hybrid ROM approach. Generally, the
hybridization is done by combining an imperfect physics-
based model with a data-driven technique to get a hybrid
scheme, and it is observed that the hybrid model shows
better predictive performance than the component mod-
els [52–55].

In this paper, we develop a fully non-intrusive ROM
approach as a potential alternative to already existing
ROM methodologies. Indeed, physics-based (intrusive)
ROM frameworks require an approximation of stabiliza-

tion or regularization parameters and depend on under-
lying governing equation to get the solution. On the
other hand, the hybrid approaches require computation
of both intrusive and non-intrusive contributions, which
can make the overall computation expensive. However, it
is well-known that a non-intrusive approach can make the
framework greatly efficient when it can be implemented
successfully. With the abundance of massive amounts of
data resources from high-fidelity simulations, field mea-
surements, and experiments, the data-driven modeling
approaches are currently considered some of the most
promising methods across different scientific and research
communities. In the past few years, artificial neural net-
works (ANNs) and other ML techniques have started a
revolution in turbulence modeling community [56–65].
Interested readers are directed to Refs. [66–70] for more
on the influence of ML on fluid mechanics, specifically
turbulence modeling.

With a goal to develop an efficient and robust non-
intrusive ROM framework for large-scale quasi-stationary
systems like geophysical flows, we propose a methodol-
ogy based on long short-term memory (LSTM) recur-
rent neural networks. Since reduced order modeling of
such chaotic large-scale systems is comparatively diffi-
cult due to instabilities, which results in using a very
large number of POD modes to capture the true physics,
our main motivation in this study is to utilize the time
series prediction capability of LSTM [70–74] to capture
the flow physics with a very few POD modes. As de-
tailed in Ref. [73], LSTM is very robust in predicting a
very chaotic sequential time series. In general, for this
type of random time series, LSTM does the prediction
using its own internal dynamics, which is found stable
and close to the true solution [73, 75]. For this rea-
son, we choose to utilize LSTM architecture based on
our problem of interest, which is the large-scale quasi-
stationary turbulence. However, we emphasize that this
non-intrusive model can be developed by using other rel-
evant neural network architectures as well. We also men-
tion that the development of ROM using POD and LSTM
has been used only in a few other works and proven to
be successful in capturing the temporal dynamics of fluid
flows. Wang et al. [72] proposed a non-intrusive ROM
(NIROM) based on LSTM and used it to predict lami-
nar flows. In another recent work, Vlachas et al. [76] pro-
posed a data-driven method based on LSTM to predict
the state derivative of chaotic systems using the short-
term history of the reduced order states. The predicted
derivatives are then used for one-step forward prediction
of the high-dimensional dynamics. The authors further
developed a hybrid framework combining mean stochas-
tic model and LSTM for data-driven to extend the fore-
casting capability of the proposed approach. To do the
dimensionality reduction, the authors utilized discrete
Fourier transform, singular value decomposition, and em-
pirical orthogonal functions. Mohan and Gaitonde [75]
developed a non-intrusive ROM using LSTM and POD
for flow control applications through a detailed analysis
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on different ROM-LSTM training and testing hyperpa-
rameter tuning parameters. Even though the authors’
idea of developing non-intrusive ROM based LSTM by
replacing Galerkin projection is similar to our present
work, their work is mostly focused on exploring the ca-
pability of LSTM in modeling the flow in reduced or-
der space for data sets with less randomness. Indeed,
the data sets with less randomness have more “memory”
in it, i.e., there are persistent or anti-persistent trends
and thus, are more controllable through LSTM hyper-
parameters. On the other hand, our present work is fo-
cused on exploring the capability of ROM-LSTM frame-
work in resolving large-scale geophysical flow problem
where the data sets mostly do not follow any particu-
lar trend. To this end, we develop a modular ROM-
LSTM approach in chaotic and quasi-stationary systems
to see whether it can overcome the instability issues as-
sociated with conventional ROMs for chaotic dynamical
systems. To assess our proposed framework, we consider
the barotropic vorticity equation (BVE) representing the
single-layer quasi-geostrophic (QG) model as an example
of the quasi-stationary system. We observe a remarkably
efficient predictive performance by the proposed frame-
work based on LSTM (ROM-LSTM) through a number
of numerical experiments and analyses.

The layout of the paper is as follows: Section II pro-
vides an overview of the barotropic vorticity equation
describing a single-layer QG ocean model. In Section III,
dimension reduction through Galerkin-projection and
proper orthogonal decomposition is illustrated briefly.
Our proposed non-intrusive ROM-LSTM framework with
a brief introduction to LSTM are presented in Section IV.
In Section V, we evaluate the predictive performance of
the proposed ROM framework with respect to the stan-
dard ROM and full order model solutions. We demon-
strate the the ROM-LSTM framework is a robust sur-
rogate model and show boundedness of the present ap-
proach with larger time step size in Section VI. Finally,
Section VII provides a summary of this study and the
conclusions drawn from it.

II. SINGLE-LAYER QUASI-GEOSTROPHIC
(QG) OCEAN CIRCULATION MODEL

In the present study, we consider the simple single-
layer QG ocean circulation model to develop and assess
the performance of different ROM approaches. Follow-
ing Refs. [77, 78], we consider the single-layer QG prob-
lem as a benchmark for wind-driven, large-scale oceanic
flow. Wind-driven flows of mid-latitude ocean basins
have been studied frequently by modelers using ideal-
ized single- and double-gyre wind forcing, which helps
in understanding various aspects of ocean dynamics, in-
cluding the role of mesoscale eddies and their effect on
mean circulation. However, modeling the vast range of
spatio-temporal scales of the oceanic flows with all the
relevant physics has always been challenging. As a re-

sult, the numerical simulation of oceanic and atmospheric
flows still requires approximations and simplifications of
the full model. The barotropic vorticity equation (BVE)
describing the single-layer QG equation with dissipative
and forcing terms is one of the most commonly used mod-
els for the double-gyre wind-driven geophysical flows [79].

The BVE model shares many features with the two-
dimensional Euler and Navier-Stokes equations and has
been extensively used over the years to describe various
aspects of the largest scales of turbulent geophysical fluid
dynamics [80–85]. Using β−plane assumption reason-
able for most oceanic flows, the dimensionless vorticity-
streamfunction formulation of the forced-dissipative BVE
can be written as [52]:

∂ω

∂t
+ J(ω, ψ)− 1

Ro

∂ψ

∂x
=

1

Re
∇2ω +

1

Ro
sin(πy), (1)

where ∇2 is the standard two-dimensional Laplacian op-
erator. ω and ψ are the kinematic vorticity and stream-
function, respectively, defined as:

ω = ∇× u, (2)

u = ∇× ψk̂, (3)

where u is the two-dimensional velocity field and k̂ refers
to the unit vector perpendicular to the horizontal plane.
The kinematic equation connecting the vorticity and
streamfunction can be found by substituting the velocity
components in terms of streamfunction in Equation (2),
which yields the following Poisson equation:

∇2ψ = −ω. (4)

Equation (1) contains two dimensionless parame-
ters, Reynolds number (Re) and Rossby number (Ro),
which are related to the physical parameters and non-
dimensional variables in the following way:

Re =
V L

ν
, Ro =

V

βL2
, (5)

where ν is the horizontal eddy viscosity of the BVE model
and β is the gradient of the Coriolis parameter at the
basin center (y = 0). L is the basin length scale and V
is the velocity scale, also known as the Sverdrup velocity
[86], and is given by

V =
τ0
ρH

π

βL
, (6)

where τ0 is the maximum amplitude of the double-gyre
wind stress, ρ is the mean fluid density, and H is the
mean depth of the ocean basin. Despite not being ex-
plicitly represented in Equation (1), there are two im-
portant relevant physical parameters, the Rhines scale,
δI , and the Munk scale, δM , which are the boundary
layer thicknesses for the inertial and viscous layers of the
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basin geometry, respectively. As a physical interpreta-
tion of these parameters in BVE model, δI accounts for
the strength of nonlinearity and δM is a measure of dis-
sipation strength. Here, δI and δM can be defined as

δI
L

=

(
V

βL2

) 1
2

,
δM
L

=

(
ν

βL3

) 1
3

(7)

and are related to Ro and Re by the following relations

δI
L

= (Ro)
1
2 ,

δM
L

=

(
Ro

Re

) 1
3

. (8)

Finally, the nonlinear advection term in Equation (1)
is given by the Jacobian

J(ω, ψ) =
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
. (9)

Since ocean circulation models where the Munk and
Rhines scales are close to each other, like the QG model,
remain time dependent rather being converged to a
steady state as time approaches to infinity [87], numerical
computations of these models are conducted in a statis-
tically steady state, also known as the quasi-stationary
state. Hence, in our study, we utilize numerical schemes
suited for simulation of such type of ocean models and for
long-time integration. For the full order model (FOM)
simulations, we utilize the second-order central finite dif-
ference schemes for the derivatives in the linear terms.
The nonlinear Jacobian term in Equation (1) is mod-
eled by the second-order skew-symmetric, energy- and
enstrophy-conserving Arakawa scheme [88] to avoid com-
putational instabilities arising from nonlinear interac-
tions. For the time integration, we use the optimal total
variation diminishing third-order accurate Runge-Kutta
scheme [89]. Following previous theoretical studies of
large-scale ocean circulation models in simplified Carte-
sian oceanic basins [78, 83, 84, 90, 91], we utilize slip
boundary condition for the velocity, which implies ho-
mogeneous Dirichlet boundary condition for the vorticity
and streamfunction:

ω|Γ = ψ|Γ = 0, (10)

where Γ refers to all boundary coordinates. We start
our computations from a quiescent state, i.e., ωt=0 =
ψ|t=0 = 0 initial conditions and integrate the model until
a statistically steady state is obtained. Details of the
relevant numerical discretization schemes for this study
can be found in related work [52, 78, 91].

III. INTRUSIVE ROM-GP METHODOLOGY

The intrusive ROM framework is developed based on
a standard Galerkin projection methodology using the
method of snapshots, an efficient method for computing
the POD basis functions [92]. In this section, we give

a brief idea on the ROM-GP framework utilized in our
work. We obtain N number of snapshots for vorticity
field, ω(x, y, tn) for n = 1, 2, ..., N at pseudo-time t = tn
from full order model simulation (FOM). Algorithm 1
describes the POD basis construction procedure from the
stored snapshots.

Algorithm 1 POD basis construction

1: Compute the time-invariant mean fields and the fluc-
tuation fields (mean-subtracted snapshots) for the
given number of snapshots of the 2D vorticity field
as:

ω̄(x, y) =
1

N

N∑
n=1

ω(x, y, tn), (11)

ω′(x, y, tn) = ω(x, y, tn)− ω̄(x, y). (12)

2: An N × N snapshot data matrix A = [aij ] is com-
puted from the inner product of mean-subtracted
snapshots

aij = 〈ω′(x, y, ti);ω′(x, y, tj)〉, (13)

where i and j refer to the snapshot indices.
3: Compute the optimal POD basis functions by per-

forming an eigendecomposition of A as AV = VΛ,
where Λ is a diagonal matrix whose entries are the
eigenvalues λk of A, and V is a matrix whose columns
vk are the corresponding eigenvectors. In our com-
putations, we use the eigensystem solver based on
the Jacobi transformations since A is a symmetric
positive definite matrix [93].

4: Using the eigenvalues stored in a descending order
(i.e., λ1 ≥ λ2 ≥ · · · ≥ λN ), for proper selection of
the POD modes in Λ, compute the orthogonal POD
basis functions for the vorticity field φk as

φk(x, y) =
1√
λk

N∑
n=1

vnkω
′(x, y, tn), (14)

where vnk is the nth component of the eigenvector
vk. The scaling factor, 1/

√
λk, is to guarantee the

orthonormality of POD modes, i.e., 〈φi;φj〉 = δij ,
where δij is the Kronecker delta.

5: Obtain the kth mode for the streamfunction, θk(x, y)
utilizing the linear dependence between streamfunc-
tion and vorticity given by Equation (4):

∇2θk = −φk, (15)

for each k = 1, 2, ..., R. To be able to use the same
ak(t) coefficients for both streamfunction and vortic-
ity fields, the following elliptic equation holds true
for the mean variables:
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∇2ψ̄ = −ω̄. (16)

6: Construct kth time-dependent modal coefficients
ak(tn) for N snapshots by using POD modes and
forward transformation:

ak(tn) = 〈ω(x, y, tn)− ω̄(x, y);φk〉. (17)

We can approximate the field variables, i.e., kinematic
vorticity and streamfunction using the most energetic R
POD modes, where R << N , such that these R largest
energy containing modes correspond to the largest eigen-
values (λ1, ..., λR). The resulting full expression for the
field variables can be written as:

ω(x, y, t) = ω̄(x, y) +

R∑
k=1

ak(t)φk(x, y), (18)

ψ(x, y, t) = ψ̄(x, y) +

R∑
k=1

ak(t)θk(x, y), (19)

where ak(t) accounts for both streamfunction and vor-
ticity based on the kinematic relation given by Eq. (4).
It should be mentioned that in our ROM formulations,
we use the following angle-parenthesis definition for the
inner product of two arbitrary functions f and g:∫

Ω

f(x, y)g(x, y)dxdy = 〈f ; g〉. (20)

We refer to [50] for the details of the integration tech-
nique utilized in this study. In conventional projection
based intrusive ROM framework, we apply Galerkin pro-
jection to the governing equation, which yields R coupled
ordinary differential equations (ODEs) for the time evo-
lution of the temporal modes of the system while the
spatial modes are kept constant [34, 40, 94]. Any stan-
dard time integration technique can be utilized to solve
the coupled ODE system, since the basis functions and
corresponding modal coefficients will be precomputed in
the offline computation stage. The Galerkin projection
approach is summarized in Algorithm 2.

Algorithm 2 Galerkin projection to obtain ROM

1: Given an initial condition ω(x, y, t0) at time t0, com-
pute the initial modal coefficients ak(t0) using the
relation below:

ak(t0) = 〈ω(x, y, t0)− ω̄(x, y);φk〉. (21)

2: Perform an orthogonal Galerkin projection by mul-
tiplying the governing equation with the POD basis
functions and integrating over the domain [95], which
will yield the following dynamical system for ak:

dak
dt

= Bk +

R∑
i=1

Likai +

R∑
i=1

R∑
j=1

Nij
k aiaj , (22)

where k = 1, 2, ..., R and the predetermined model
coefficients can be computed by the following numer-
ical integration (offline computing):

Bk =
〈
− J(ω̄, ψ̄) +

1

Ro
(sin(πy) +

∂ψ̄

∂x
) +

1

Re
∇2ω̄;φk

〉
,

Lik =
〈
− J(ω̄, θi)− J(φi, ψ̄) +

1

Ro

∂θi
∂x

+
1

Re
∇2φi;φk

〉
,

Nij
k =

〈
− J(φi, θj);φk

〉
. (23)

IV. NON-INTRUSIVE ROM-LSTM
METHODOLOGY

In this section, we discuss our proposed ROM-LSTM
methodology. As outlined in Algorithm 1, we obtain the
time-dependent modal coefficients ak by performing a
POD transform on stored snapshot data. The modal
coefficients are a sequence of data points with respect to
time, i.e., a time series representing the underlying dy-
namical system. In intrusive or physics-based ROM, we
do Galerkin projection using governing equation to ob-
tain a coupled system of ODEs for ak, and then solve the
ODE system on the given time interval. However, the
limitations of projection based ROMs, such as suscepti-
bility to instability for chaotic data set, numerical con-
straints for solving ODE system, or inefficient reduced or-
der modeling, encourage us to replace the physics-based
Galerkin projection phase of ROM-GP methodology with
a data-driven approach. Among the variety of ideas to
resolve the issues associated with projection based ROM,
a number of published works related to ROM based on
POD and neural networks have shown signs of future
success. The recurrent neural network (RNN) is one of
the widely used neural network architectures in ROMs
which is designed to operate on input information as well
as the previously stored observations to predict the de-
pendencies among the temporal data sequences [96, 97].
LSTM is a special variant of RNN which is capable of
tracking long-term dependencies among the input data
sequences. Hence, we consider LSTM recurrent neural
network to develop our non-intrusive ROM-LSTM frame-
work. Before describing the ROM-LSTM procedure, we
first briefly review the LSTM architecture.

As the name suggests, RNNs contain recurrent or
cyclic connections that enable them to model complex
time-varying data sequences with a wide range of tem-
poral dependencies or correlations between them. In
general, RNNs map a sequence of data to another se-
quence through time using cyclic connections, and con-
strain some of the connections to hold the same weights
using back-propagation algorithm [98]. However, the
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standard RNN architecture suffers from vanishing gra-
dient problem when the gradient of some weights starts
to become too small or too large [99]. This leads to the
development of improved RNN architectures which over-
come the modeling issues of standard RNNs. There are
several variants of RNN which are found to work well in
tackling long term dependencies [100–103]. One of the
most successful forms of improved RNN architectures is
the LSTM network, which solves the limitation of van-
ishing gradients [104]. In contrast to most of the ANN
architectures, LSTM operates by cell states and gating
mechanisms to actively control the dynamics of cyclic
connections and thus, resolves the vanishing gradient is-
sues. Similar to the standard RNNs, LSTM can learn and
predict the temporal dependencies based on the input in-
formation and previously acquired information, i.e., the
internal memory of LSTM allows the network to find the
relationship between the current input and stored infor-
mation to make a prediction. There has been a number
of variants of LSTM developed later as well which showed
promise for better performance, for example, grid LSTM
[105].

The conventional LSTM architecture contains mem-
ory blocks in the recurrent hidden layers, which have
memory cells to store the cell states and gates to con-
trol the flow of information. Each memory block has
an input gate controlling the flow of input activations
into the cell, a forget gate to adaptively forgetting and
resetting the cell’s memory (to prevent over-fitting by
processing continuous inflow of input streams), and the
output gate controlling the output flow of cell activations
into the next cell. We have shown a schematic of a con-
ventional LSTM cell in Figure 1 to illustrate how the
data stream flows through LSTM cells. In our LSTM
architecture, we consider an input sequential data ma-
trix Xk and the output sequential data matrix Yk. Each
sample of the input training matrix Xk is constructed

as
{
a

(n)
1 , . . . , a

(n)
R ; . . . ; a

(n−σ+1)
1 , . . . , a

(n−σ+1)
R

}
and the

corresponding output sample in output sequential data

matrix Yk is
{
a

(n+1)
1 , . . . , a

(n+1)
R

}
. In our study, we call

σ as the lookback time-window. The lookback time-
window, in our definition, means the time history over
which the LSTM model does the training and prediction
recursively. Indeed, increasing the value of σ increases
the quality of training the model, but makes the model
dependent on an increased number of initial states dur-
ing prediction. Considering input gate as I, the forget
gate as F , the output gate as O, the cell activation vec-
tors as c, and the LSTM cell output activation vector
or the hidden state vector as h, the LSTM model does
the mapping from the input sequence to an output se-
quence by using the following set of equations iteratively
[73, 74, 104, 106]. The equations for input network and
gate functions, respectively, are:

z
(n+1)
k = λ

(
Whh

(n)
k +WXX (n+1)

k

)
, (24)

m
(n+1)
k = ζ

(
Wmz

(n+1)
k + bm

)
, (25)

where m ∈ (I,F ,O). The internal cell state equation is
given by:

c
(n+1)
k = F (n+1)

k � c(n)
k + I(n+1)

k � ξ, (26)

where ξ = tanh
(
Wcz

(n+1)
k + bc

)
. The output state of

the LSTM cell and the output network can be expressed
by the following equations, respectively:

h
(n+1)
k = O(n+1)

k � tanh
(
c
(n+1)
k

)
, (27)

Y(n+1)
k = λ

(
WYh

(n+1)
k + bY

)
, (28)

where z vector is given by the input vector and hid-
den state vector of previous timestep, W represents the
weight matrices for each gates, b denotes the bias vec-
tors for each gates, � is the element-wise product or
Hadamard product of two vectors, λ is the network in-
put and output activation function which is tanh in our
paper, and ζ is the logistic sigmoid function.

FIG. 1. Schematic representation of a typical LSTM network.

Similar to the ROM-GP methodology, the workflow
of the ROM-LSTM framework consists of two phases as
displayed in Figure 2. In the offline training phase, we
first obtain POD basis functions and modal coefficients
using Algorithm 1. The known time series of modal co-
efficients from training snapshots are used to train the
LSTM model. Based on the values of σ, the input of the
LSTM model M will be the previous time states of the
input modal coefficients for R retained modes and the
output of the model will be the next time state recur-
sively for R modes. Training LSTM model is the com-
putationally heavier part of the ROM-LSTM framework,
but this is done offline. In online testing phase, we recur-
sively predict the modal coefficients for the total time
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using the trained model M. When the model is de-
ployed, the input of the trained model M will be the

initial states
{
a

(1)
1 , . . . , a

(1)
R ; . . . ; a

(σ)
1 , . . . , a

(σ)
R

}
based on

the preselected value of σ and the output will be recursive
prediction of corresponding future time states. Thus, we
bypass the physics-based Galerkin projection part with
completely data-driven neural network approach to pre-
dict the modal coefficients. Also, the computational cost
of prediction through trained LSTM network is signifi-
cantly lower than the physics-based approach. Finally,
we reconstruct the mean vorticity and streamfunction
fields using inverse transform to analyze the behavior of
the quasi-stationary flow. The key steps of the ROM-
LSTM framework are outlined below in Algorithm 3.

Algorithm 3 ROM-LSTM framework

Training (offline)

1: Collect N snapshot data for the vorticity field,
ω(x, y, tn) =

{
ω(1)(x, y), ω(2)(x, y), ..., ω(N)(x, y)

}
from the FOM simulation.

2: Compute R POD modes for kinematic vorticity, φk
and streamfunction, θk using Equation (14) and
Equation (15), respectively, for k = 1, 2, ..., R.

3: Construct modal coefficients by a forward transform
through projection

ak(tn) = 〈ω(x, y, tn)− ω̄(x, y);φk〉, (29)

where ak(tn) =
{
a

(1)
k , a

(2)
k , . . . , a

(N)
k

}
.

4: Train LSTM model on reduced order snapshots for
selected lookback time-window σ:

M :
{
a

(n)
1 , . . . , a

(n)
R ; . . . ; a

(n−σ+1)
1 , . . . , a

(n−σ+1)
R

}
⇒
{
a

(n+1)
1 , . . . , a

(n+1)
R

}
. (30)

Testing (Online)

5: Given initial values {a(1)
k , a

(2)
k , . . . , a

(σ)
k } based on σ,

precomputed mean values and basis functions.
6: Use the trained LSTM model M to recursively pre-

dict ak(t) until final time reached.
7: Reconstruct the mean fields by inverse transform us-

ing Equation (18) and Equation (19).

To design our LSTM architecture for ROM-LSTM
framework, we utilize Keras [107], a high level API de-
signed for deep learning, combined with standard Python
libraries. The FOM simulation for data snapshots gen-
eration and POD basis construction codes are written in
FORTRAN programming language. We use grid-search
selection procedure coupled with k-fold cross-validation
to study the performance of LSTM network for different
sets of hyperparameters. Cross-validation procedure is
used to measure the performance of the model on un-
seen data. In this procedure, the training data is first

divided into k groups. For each group, the remaining
groups are used for training the LSTM model and the
model’s performance is evaluated for that group. Once
the performance is estimated for all groups, the mean and
standard deviation of the evaluation metric is used to se-
lect the hyperparameters. Therefore, if we use five-fold
cross-validation, the model is trained five times and the
process can become computationally expensive as num-
ber of folds increases. For the single-layer QG ocean cir-
culation model, we are interested in the ability of LSTM
network to predict the mean field and hence we compare
mean modal coefficients for hyperparameters selection.
We define the evaluation metric as given in Equation 31

Evaluation metric =
1

R

R∑
k=1

∣∣∣∣ 1

N

N∑
i=1

(
a

(i)
k − â

(i)
k

)∣∣∣∣, (31)

where N is number of snapshots in validation dataset,
ak is true modal coefficients, âk is modal coefficients pre-
dicted by LSTM model and R is the number of modes.

We use three different number of layers L = 4, 6, 8
and three different numbers of neurons N = 40, 60, 80
for each of these layers. We report the mean evalua-
tion metric for these hyperparameters along with stan-
dard deviation in Figure 3. It can be observed that the
mean evaluation metric is almost the same for all hyper-
parameters. We utilize 6 LSTM layers with 40 neurons in
each layer. These hyperparameters were found to be suit-
able for all our numerical experiments in which we test
the LSTM model for different numbers of modes, and
different numbers of lookback time-windows. Also, the
computational cost is found manageable in this deep ar-
chitecture setup, which encourages us to perform all the
numerical experiments with this same setup. The mean-
squared error (MSE) is chosen as the loss function for
weight-optimization, and a variant of stochastic gradient
descent method, called ADAM [108], is used to optimize
the mean-squared loss. The other relevant hyperparam-
eters utilized in our LSTM architecture are documented
in Table. I. The hyperparameters are kept constant for
all simulations to obtain a fair comparison between the
results in different numerical experiment runs. It should
be noted that the training data is normalized by the min-
imum and maximum of each time series to be in between
the range [−1,+1].

V. NUMERICAL RESULTS

The predictive performance of the ROM-LSTM frame-
work is thoroughly examined in this section in terms of
time series evolution of the modal coefficients and mean
flow fields. It is well documented in literature that the
ROM-GP framework is incapable of capturing mean flow
dynamics for quasi-stationary flows using lower number
of POD modes, and susceptible to instability [49, 109].
There have been a number of approaches proposed in
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FIG. 2. Workflow diagram of the ROM-LSTM framework. Note that the training phase (offline computation) is computationally
heavier compared to the testing (online computation) phase.

TABLE I. A list of hyperparameters utilized to train the
LSTM network for all numerical experiments.

Parameters Values

Number of hidden layers 6
Number of neurons in each hidden layer 40
Batch size 16
Epochs 500
Activation functions in the LSTM layers tanh
Validation data set 20%
Training-testing ratio 4:9
Loss function MSE
Optimizer ADAM
Learning rate (α) 0.001
First moment decay rate (β1) 0.9
Second moment decay rate (β2) 0.999

previous literature to improve the ROM performance.
One way to stabilize the ROM is by adding an empiri-
cal stabilization parameter based on the analogy between
large eddy simulation and truncated modal projection
[40, 110]. Later, it is found that the ROM performance
further improves taking the optimal value for the sta-
bilization parameter rather than selecting it arbitrarily
[49, 109, 111, 112]. In our previous work, we have shown
that computing the stabilization parameter dynamically

at each time step improve the ROM performance signifi-
cantly [50]. However, the proposed ROM-LSTM method-
ology has several advantages over the physics-based ap-
proaches, such as, no dependence on the underlying gov-
erning dynamical system to obtain the solution, i.e., the
process is free of numerical constraints, no burden of
adding stabilization parameter to account for instabil-
ity issues and so on. To reach a conclusion about the
performance of the ROM-LSTM framework, we compare
ROM-LSTM predictions with the FOM simulation and
the standard ROM-GP results. Moreover, we present
the performance of the ROMs based on lookback time-
window σ and LSTM training for different number of
POD modes to show the robustness and capability of the
proposed framework. Furthermore, we present the L2-
norm errors to perform a quantitative assessment on the
accuracy of the ROM-LSTM solutions with respect to
ROM-GP solutions.

We choose the single-layer QG problem as our test
bed to evaluate the performance of ROMs. Because of
the complex flow behavior with wide range of scales, QG
problem has been utilized as test problem in many no-
table literature [77, 78, 83, 84, 113]. To make the analyses
simple and easily understandable, we present simulation
results only for Re= 450 and Ro= 3.6× 10−3 flow condi-
tion, which can be considered turbulent enough and suit-
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FIG. 3. Evaluation results for hyperparameters search for
LSTM architecture. We perform five-fold cross validation for
different number of layers L = 4, 6, 8 and number of neurons
N = 40, 60, 80. The mean of the evaluation metric for five
data samples is used to select the hyperparameters. The error
bars shows the standard deviation of evaluation metric score
for five samples.

able for reduced order modeling. The FOM simulation is
done from t = 0 to t = 100 using a constant time step of
∆t = 2.5×10−5 on a Munk layer resolving 256×512 grid
resolution (i.e., consisting of about four grid points in the
Munk scale, i.e., δM/L = 0.02). The computational do-
main of our test problem is (x, y) ∈ [0, 1] × [−1, 1]. The
time step size ∆t = 2.5 × 10−5 ensures that Courant-
Friedrichs-Lewy (CFL) condition for stability is met at
all times as shown in Figure 4 in which the CFL num-
ber is below 1 at all times. In our computations, CFL
number is computed by

CFL = Umax
∆t

∆x
, (32)

where Umax is the maximum speed |u| at time t within the
entire ocean basin. Therefore, for constant ∆t and ∆x,
the time evolution of the CFL number also relates to the
variation of the maximum flow speed in the QG dynam-
ics. Although we have utilized dimensionless numbers
in our analysis, one can easily compute corresponding
dimensional quantities using typical mid-latitude ocean
basin dimensions. For example, CFL=0.3 refers to a
physical maximum speed of approximately 2.53 m/s with
the help of Equation (6) if we set L = 1000 km, H = 1
km, τ0 = 0.266 N/m2, ρ = 1030 kg/m3, β = 1.5× 10−11

m−1s−1, Sverdrup velocity scale V = 0.054 m/s, and
reference time scale L/V = 214 days. Further details
of non-dimensionalization can be found in [91]. We note
that the dimensionless time unit in our computations be-
comes approximately 7 months using the above reference
values. To avoid the initial transient time interval, we
store 400 data snapshots from t = 10 to t = 50 to gen-
erate the POD bases and modal coefficients to train the
LSTM model. We refer to Ref. [50] to get an idea on the

POD analysis as well as the instantaneous vorticity field
plots for the same flow condition. To understand the na-
ture of the QG data set, we compute the Hurst exponent,
H, for the modal coefficients. The Hurst exponent is a
statistical measure of the presence of long-term trends in
a non-stationary time series [114]. Thus, the Hurst ex-
ponent can help in selecting the appropriate model for a
given time series prediction. We also note that the Hurst
exponent has been utilized in many research fields, e.g.,
hydrology, finance, and healthcare industry [115–119]. H
can be statistically defined as [120]:

E

[
Range(n)

SD(n)

]
= knH , as n→∞. (33)

Here, E is the expected value of the ratio between the
range of the first n cumulative deviations from the mean
and their corresponding standard deviations (SD), n is
the time span of the observations, and k is constant.
The range of H is in between 0 and 1. H → 1 means
a persistent series (a strong trend in the time series at
hand), H → 0 means an anti-persistent series (a time
series with long-term switching between high and low
values) and H ≈ 0.5 indicates a random series (fewer cor-
relations between current and future observations). In-
terested readers are directed to Ref. [75] for a detailed
description of suitability of LSTM as a predictive mod-
eling approach for different time series data using the
measurement of H. We calculate the H for modal coeffi-
cients of QG data set for given flow conditions using the
so called rescaled range (R/S) analysis, popularized by
Mandelbrot and Wallis [121, 122]. The details of (R/S)
analysis can be found in Ref. [120]. The Hurst exponents
for the modal coefficients of QG case are tabulated in Ta-
ble II, where we can see that the values of H are around
0.5. This indicates the randomness of the QG problem,
which can be a good representative of large-scale quasi-
stationary geophysical turbulent flow systems.

TABLE II. Hurst exponents of modal coefficients.

Modal coefficient Hurst exponent

a1(t) 0.52
a2(t) 0.35
a3(t) 0.63
a4(t) 0.59
a5(t) 0.49
a6(t) 0.59
a7(t) 0.59
a8(t) 0.46
a9(t) 0.58
a10(t) 0.53

Figure 5 shows the mean streamfunction and vorticity
field contours obtained by the ROM-GP model. To com-
pare the predictive performance of the ROM-GP model
with respect to the true solution, we include the mean
contour plots of FOM simulation on the left column as
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FIG. 4. Variation of CFL number from time t = 10 to t = 100 for the full order model simulation.

well. We can see the full order solution displays a four-
gyre circulation patterns for both mean streamfunction
and vorticity fields. Since the instantaneous fields for
the QG flow is always fluctuating in time, it becomes
difficult to compare solutions of different models at the
same time state. However, the mean fields always exhibit
the four-gyre circulation for higher Re (highly turbulent
regime, i.e., turbulence with weak dissipation) which im-
plies a state of turbulent equilibrium between two inner
gyres circulation representing the wind stress curl forc-
ing and the outer gyres representing the eddy flux of po-
tential vorticity (the northern and southern gyres found
in geostrophic turbulence) [84]. In our study, the time-
averaged (mean) field data are obtained by averaging be-
tween t = 50 and t = 100 (since the model has already
seen the training data between t = 10 to t = 50 during
training). Another point to be noted in FOM field plots
that the bright orange circulations in the four-gyres (top
circulation of the inner gyres and bottom circulation of
the outer gyres) indicate the circulation in counter clock-
wise or positive direction and the other two circulations
signifies the circulation in clockwise direction. We can
observe in Figure 5 that the ROM-GP simulations with
R = 10 and R = 20 modes display a non-physical two-
gyre circulation for streamfunction whereas the vorticity
field does not capture almost any conclusive physical pat-
tern. However, the results improve with increasing modes
as we can see the streamfunction contour is showing clear
four-gyre patterns even though the vorticity plots are
very chaotic compared to the true solution. These ob-
servations are supported by the time series evolution of
first and tenth modal coefficient plots in Figure 6. It is
apparent that the increasing modes stabilize the system
to yield a physical solution for both modal coefficients.

We note that the time scale in our formulation is
normalized by L/V to obtain dimensionless time unit.
Following [123], typical oceanic values (e.g., L = 2000
km and β = 1.75 × 10−11 m−1s−1) yield approximately
L/V = 0.25 year for Ro = 0.0036. Therefore, a numeri-
cal simulation over 100 computational time units refers to

the evolution of flow dynamics over 25 years in physical
time. Therefore, the intermittent bursts appeared in the
true projection of the most energetic mode (i.e., a1(t)
indicate the seasonal variations in QG dynamics. Al-
though ROM-GP yields non-physical solution for R = 10
and R = 20 cases, ak(t) series reaches more meaningful
levels for R = 30 and beyond. However, it is hard to
claim from Figure 6 that the ROM-GP yields an accu-
rate prediction of these seasonal bursts even for higher R
values.

We present the field contours obtained by ROM-LSTM
based on different σ values in Figure 7. It can be seen
that σ = 1 and σ = 2 do not provide much accu-
rate results as the patterns get distorted in some extent
even though they are being able to capture the four-
gyre. However, both streamfunction and vorticity con-
tours show a stable and accurate prediction of the true
mean fields for σ = 4 and σ = 5. Though the vorticity
field contour is not displaying as smooth contour lines as
the true solution due to the reduction of dimension or-
der, it is showing a better performance compared to the
ROM-GP solutions. As shown in the recent work of Yeo
[106], the LSTM network trained on chaotic data learns
to reduce the contributions of randomness of input data
by developing its own dynamics and thus, the prediction
remains close to the truth rather than being unstable.
Hence, the LSTM prediction is expected to yield a stable
and physical solution for a fluctuating quasi-stationary
system. It should be noted that these results are obtained
for LSTM training with R = 10 modes. The time series
evolution plots for the modal coefficients based on σ = 5
and R = 10 modes in Figure 8 show that ROM-LSTM
time series predictions are almost on top of the true pro-
jection of modal coefficients. Even though the model is
trained for t = 10 to t = 50 only, the ROM-LSTM model
is able to obtain a stable and accurate prediction up to
the final time t = 100. To further evaluate whether the
ROM-LSTM can predict the statistical features of the
temporal variation of POD coefficients accurately or not,
we compare the probability density function (PDF) of
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true and predicted modal coefficients in Figure 9. The
PDF is plotted for modal coefficients only between t = 50
to t = 100. Figure 9 shows that the PDF of predicted
modal coefficients matches accurately the true PDF for
all modal coefficients.

Another impressive observation on the predictive ca-
pability of the ROM-LSTM framework is presented in
Figure 10 where we show the mean field plots based on
the number of modes retained to train the LSTM model.
We keep σ = 5 for this numerical experiment. As we
can see the ROM-LSTM model is being able to capture
the four-gyre circulation even with only two modes. In-
deed, the first few modes contain most of the dynamics in
the system and we can also see reduction of some smaller
scales for lower mode predictions. Nevertheless, this find-
ing indicates the prediction capability of the ROM-LSTM
framework to produce a stable solution of a chaotic sys-
tem. However, we have seen the ROM-GP model be-
comes unstable to predict chaotic data set with lower
number of modes which makes it very inefficient. In con-
trast, the proposed non-intrusive framework can be very
efficient to produce stable solution with a very few modes.
Since we observe promising predictive performance for
training with 2 modes only, we present a couple of more
analyses on results obtained by the ROM-LSTM frame-
work retaining 2 modes for LSTM training. We can see
in Figure 11 that lower σ values simulations are unable
to capture the fluctuations along the mean and goes al-
most straight along the line after a few time states. The
model starts to capture the fluctuating flow fields with
the increase of σ values. The field plots in Figure 12
also displays the similar conclusions. Since the lower σ
value solutions stay along the line around the mean (un-
like rapid oscillations in ROM-GP solutions), the field
plots still show the mean physics to some extent. It is
obvious that the model with lower σ ignores most of the
scales of the system. However, the prediction improves
with higher σ as displayed in the Figure 12.

Finally, we include a comparison plot in Figure 13
where we present the first two modal coefficients predic-
tion obtained by different ROM set up. The σ value is
kept 5 for all the ROM-LSTM simulations. As expected,
the ROM-GP solutions for 10 modes become totally non-
physical and unstable. On the contrary, the ROM-LSTM
predictions for R = 2, R = 4, R = 8 and R = 10 modes
show a good match between the true solution and the
prediction. For the quantitative assessment on the ac-
curacy of both ROM-GP and ROM-LSTM frameworks,
L2-norm errors of the reduced order models (with respect
to FOM) for the mean vorticity and streamfunction fields
are tabulated in Table III. The root mean-square error
or Euclidean L2-norm error is computed by:

L2 = ||e||2 =

√√√√ 1

NxNy

Nx∑
i=1

Ny∑
j=1

e2
i,j (34)

where Nx and Ny are the grid resolutions in x and y
directions. For the vorticity field, the error i.e., the dif-

ference between the predicted mean and FOM solution
mean is:

ei,j =
∣∣ω̄ROM
i,j − ω̄FOM

i,j

∣∣. (35)

For ROM-LSTM framework, the results are presented
for R = 10 modes. We can observe that the prediction
accuracy increases with the increase in lookback time-
window σ and we can obtain a more accurate result
than the ROM-GP simulation with R = 80 using only
10 modes in ROM-LSTM framework. We present the
CPU time per time step (between t = 10 and t = 100)
for ROM-LSTM framework simulations based on R = 10
modes and different σ in Table IV. We can observe a
gradual reduction of computational time (for both train-
ing and testing) with lower values of σ. All the simu-
lations of ROM-LSTM frameworks are done in Python
programming environment and CPU time is computed
as per time step. The computational time step is set
to 1 × 10−1 for online testing. In our FOM simulation
in FORTRAN, the CPU time per time step is about
1.17 × 10−1 seconds, where computational time step is
set ∆t = 2.5×10−5 due to the CFL restriction of numer-
ical stability for our explicit forward model, a third order
Runge-Kutta integrator, on the resolution of 256 × 512.
With the same time integration tool, the computational
CPU time required by the ROM-GP approach using sim-
ilar flow conditions can be found elsewhere [50]. It should
be noted that the ROM-GP computations are also com-
puted using FORTRAN programming platform, where as
LSTM-ROM computations are performed using Python.
Even so, we observe our ROM-LSTM CPU times are in
the same order of ROM-GP simulations with R = 80
modes (i.e., 4.84 × 10−3 seconds per time step). Since
the ROM-GP requires a small time step to get a con-
verged solution (i.e., see Figure 17 in Section Section VI),
the total CPU time required for the time integration of
the ROM-GP model often becomes large (i.e., 1.7 × 103

seconds). Instead, ROM-LSTM can be used with much
bigger time step, which constitutes one of the strengths
of this non-intrusive modeling framework.

VI. OUT-OF-SAMPLE PERFORMANCE

The numerical results in Section V show that the data-
driven ROM-LSTM framework can predict the mean field
with sufficient accuracy. On the other hand, the con-
ventional ROM-GP framework cannot predict the mean
field accurately for lower POD modes, since the insta-
bility of ROM-GP causes errors in calculating POD co-
efficients. It can be argued that the ROM-LSTM has
learned from the history of POD coefficients and it is not
surprising that the ROM-LSTM was able to predict the
mean field correctly. The fundamental question then is,
can the ROM-LSTM learn something more than the solu-
tion field obtained by simply averaging the training data
set? To address this question, we test the performance
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FIG. 5. Mean streamfunction and vorticity fields obtained by the FOM simulation and the standard ROM-GP simulation at
Re = 450 and Ro = 3.6 × 10−3 flow condition. (a) ψFOM at a resolution of 256 × 512, (b) ψROM-GP with R = 10 modes, (c)
ψROM-GP with R = 20 modes, (d) ψROM-GP with R = 40 modes, (e) ψROM-GP with R = 80 modes, (f) ωFOM at a resolution of
256× 512, (g) ωROM-GP with R = 10 modes, (h) ωROM-GP with R = 20 modes, (i) ωROM-GP with R = 40 modes, (j) ωROM-GP

with R = 80 modes.

of ROM-LSTM model for operating conditions which are
not included in the training dataset.

We generate the FOM solution for different operating
conditions (Re, Ro) for the single-layer QG ocean circula-
tion model. We construct the global basis functions using
Algorithm 1. The only difference is that instead of us-
ing snapshots for only one operating condition, we select
snapshots from different operating conditions solution.
This ensures that the global basis represents dynamics
for different physical conditions. The different operating
conditions used for POD bases reconstruction is shown
in Figure 14. We select 180 snapshots randomly between
t = 10 to t = 100 for each operating condition and hence,
the total number of snapshots utilized is 900. The first
10 modes capture around 58% of the energy. We test the
performance of ROM-LSTM model for Re=250 and Ro

= 1.6×10−3 which lies within the design space and hence
the POD bases represent the dynamics of test condition
too.

We construct modal coefficients using a forward trans-
form through projection as described in Algorithm 3 to
generate the training dataset for ROM-LSTM model.
Since, there are five operating conditions in the in-sample
design space, we get 2000 training samples (400 sam-
ples from t = 10 to t = 50 for five different operating
conditions). The input to the LSTM network is modi-
fied slightly with Re and Ro included in input features.
Therefore, the LSTM model can be given as

M :
{

Re,Ro, a
(n)
1 , . . . , a

(n)
R ; . . . ; a

(n−σ+1)
1 , . . . , a

(n−σ+1)
R

}
⇒
{
a

(n+1)
1 , . . . , a

(n+1)
R

}
. (36)
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FIG. 6. Time series evolution of the first and tenth modal coefficients, a1(t) and a10(t) respectively, between t = 10 to t = 100
for standard ROM-GP simulation at Re = 450 and Ro = 3.6 × 10−3. (a) a1(t) for ROM-GP with R = 10 modes, (b) a10(t)
for ROM-GP with R = 10 modes, (c) a1(t) for ROM-GP with R = 20 modes, (d) a10(t) for ROM-GP with R = 20 modes,
(e) a1(t) for ROM-GP with R = 30 modes, (f) a10(t) for ROM-GP with R = 30 modes, (g) a1(t) for ROM-GP with R = 40
modes, (h) a10(t) for ROM-GP with R = 40 modes, (i) a1(t) for ROM-GP with R = 80 modes, (j) a10(t) for ROM-GP with
R = 80 modes. True projection series is underlined in each figure with black straight line. The training zone is shown with
orange dashed line (from t = 10 to t = 50) and the out-of-sample testing zone is shown with red dashed line (from t = 51 to
t = 100) in ROM-LSTM solution series in each figure.

This approach was found to be robust and accurate for
nonlinear transient flows [124].

We run a similar numerical experiment with a different
number of modes and σ = 5 as in Section V to examine
the effectiveness of ROM-LSTM framework for prediction

of the mean field for out-of-design parameters. Figure 15
shows the PDF for true and predicted modal coefficients
for Re = 250 and Ro = 1.6× 10−3 test case. The statis-
tics of all modal coefficient are accurately captured by the
ROM-LSTM framework which will lead to accurate pre-
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FIG. 7. Mean streamfunction and vorticity fields obtained by the ROM-LSTM simulation based on different lookback time-
window, σ at Re = 450 and Ro = 3.6× 10−3 flow condition. (a) ψFOM at a resolution of 256× 512, (b) ψROM-LSTM with σ = 1,
(c) ψROM-LSTM with σ = 2, (d) ψROM-LSTM with σ = 4, (e) ψROM-LSTM with σ = 5, (f) ωFOM at a resolution of 256 × 512,
(g) ωROM-LSTM with σ = 1, (h) ωROM-LSTM with σ = 2, (i) ωROM-LSTM with σ = 4, (j) ωROM-LSTM with σ = 5. Note that the
LSTM model is trained with R = 10 modes.

diction of mean field. Figure 16 shows the performance
of interpolatory ROM-LSTM model in predicting mean
field for the different number of modes. We use the same
lookback time-window σ = 5 for all these cases. The
ROM-LSTM model can capture the four-gyre even when
only two POD modes are used since the first two modes
are the most dominant modes. As we increase the num-
ber of modes, we see an improvement in the prediction
of mean field. The results in Figure 16 demonstrate that
ROM-LSTM model can also be used for predicting the
mean field for parameters that are different from the one
included in the training dataset. If we have a high-fidelity
dataset for different physical conditions (different dimen-
sionless numbers characterizing the flow, in the present
case Re, Ro), a robust surrogate model can be obtained
using LSTM network which can go beyond the training

data.

In addition to acting as a robust surrogate model,
we highlight one more advantage of non-intrusive ROM
framework concerning large time step that can be used.
The ROM-GP results shown in Section V were obtained
by using third-order Runge-Kutta numerical scheme with
the time step ∆t = 2.5 × 10−5. The same time step is
used for calculating the full-order model solution. In the
case of the full-order model, the time step that can be
used is restricted by the CFL condition. In the case of
ROM-GP, we can also use a higher time step to speed up
the time integration. It is difficult to estimate the sta-
bility region for ordinary differential equations used in
Galerkin projection. We perform numerical experiments
with a different time step sizes and different numbers of
modes for Re=250 and Ro=1.6× 10−3. We find that for
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FIG. 8. Time series evolution of the modal coefficients between t = 10 to t = 100 for ROM-LSTM simulation at Re = 450 and
Ro = 3.6 × 10−3. Note that the LSTM model is trained with R = 10 modes and σ = 5. True projection series is underlined
in each figure with black straight line. The training zone is shown with orange dashed line (from t = 10 to t = 50) and the
out-of-sample testing zone is shown with red dashed line (from t = 51 to t = 100) in ROM-LSTM solution series in each figure.

time step size larger than ∆t = 2.5 × 10−3, the solution
diverges for all cases as shown in Figure 17. As we in-
crease the number of modes, the computational time of
time integration also increases for ROM-GP framework.
Even if the solution does not diverge for fewer modes
and smaller time step size, the predicted modal coeffi-
cients are much larger than the true modal coefficients
(as seen in Figure 5).

The ROM-LSTM framework is purely data-driven and
hence it is not restricted by time step size that can be

used between two snapshots. For all our previous nu-
merical experiments, the data snapshots were separated
by time step size ∆t = 1 × 10−1. We can also train the
LSTM network using data snapshots that are separated
by some other time step size. We illustrate the perfor-
mance of ROM-LSTM framework using the same data
snapshots separated by time step size ∆t = 2 × 10−1

(i.e., we use every other data snapshots between t = 10
to t = 50. Therefore, we have 200 training examples in
this case). Figure 18 shows field plots for vorticity and
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FIG. 9. Probability density function for true and predicted modal coefficients between t = 50 to t = 100 for ROM-LSTM
simulation at Re = 450 and Ro = 3.6 × 10−3. Note that the LSTM model is trained with R = 10 modes and σ = 5. The
training is done using true modal coefficients between t = 10 to t = 50.

TABLE III. L2-norm errors of the reduced order models (with
respect to FOM) for the mean vorticity and streamfunction
fields. Note that the ROM-LSTM model trained with R = 10
modes results are presented here.

Vorticity Streamfunction

Intrusive ROM
ROM-GP (R = 10) 3.19× 106 5.59× 103

ROM-GP (R = 20) 4.46× 105 9.87× 102

ROM-GP (R = 30) 9.35× 102 9.99× 10−1

ROM-GP (R = 40) 6.60× 102 4.33× 10−1

ROM-GP (R = 80) 1.16× 103 3.84× 10−1

Non-intrusive ROM
ROM-LSTM (σ = 1) 1.90× 103 6.12× 10−1

ROM-LSTM (σ = 2) 2.65× 103 7.44× 10−1

ROM-LSTM (σ = 3) 8.31× 102 4.34× 10−1

ROM-LSTM (σ = 4) 5.17× 102 4.68× 10−1

ROM-LSTM (σ = 5) 8.78× 102 3.87× 10−1

streamfunction for Re=250 and Ro=1.6× 10−3 test case
using data snapshots separated by ∆t = 1×10−1 for dif-
ferent σ values with 10 POD modes. This is similar to
what we saw in Section V for Re=450 and Ro=3.6×10−2

test case. Furthermore, we perform the same numeri-

TABLE IV. Computational overhead for the ROM-LSTM
model trained with R = 10 modes. For training, CPU time is
presented as per epoch for 400 samples and for testing, CPU
time is presented as per time step. Note that, the time step
for testing is set 1×10−1 since the non-intrusive set up is free
of numerical stability constraints.

ROM-LSTM Training time (second) Testing time (second)

σ = 1 8.10× 10−2 1.15× 10−3

σ = 2 1.07× 10−1 1.38× 10−3

σ = 3 1.30× 10−1 1.56× 10−3

σ = 4 1.59× 10−1 1.79× 10−3

σ = 5 1.80× 10−1 2.00× 10−3

cal experiment with time step size ∆t = 2 × 10−1 for
Re=250 and Ro=1.6× 10−3 test case and the field plots
are given in Figure 19. We observe that the mean field
predicted by ROM-LSTM framework is not as accurate
as the mean field predicted with ∆t = 1× 10−1. We see
that the mean field prediction improves with larger look-
back time-window σ. However, the modal coefficients
and the solution field predicted with larger time step size
are bounded and stable. This can be considered as one of
the main accomplishments of this approach in using non-
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FIG. 10. Mean streamfunction and vorticity fields obtained by the ROM-LSTM simulation based on the number of modes to
train the LSTM model at Re = 450 and Ro = 3.6× 10−3 flow condition. (a) ψFOM at a resolution of 256× 512, (b) ψROM-LSTM

for LSTM training with R = 2 modes, (c) ψROM-LSTM for LSTM training with R = 4 modes, (d) ψROM-LSTM for LSTM training
with R = 8 modes, (e) ψROM-LSTM for LSTM training with R = 10 modes, (f) ωFOM at a resolution of 256×512, (g) ωROM-LSTM

for LSTM training with R = 2 modes, (h) ωROM-LSTM for LSTM training with R = 4 modes, (i) ωROM-LSTM for LSTM training
with R = 8 modes, (j) ωROM-LSTM for LSTM training with R = 10 modes. Note that the LSTM model is trained with σ = 5.

intrusive ROM framework for flow-control applications,
and surrogate models where computational performance
is one of the main bottlenecks.

VII. SUMMARY AND CONCLUSIONS

In this paper, we propose an efficient and robust
fully non-intrusive ROM framework to capture the large
spatio-temporal scale of fluctuating quasi-stationary sys-
tems. Due to the robustness and stability of LSTM re-
current neural network in predicting chaotic dynamical
systems, we consider LSTM architecture to develop our
data-driven ROM, denoted as ROM-LSTM in this paper.
As an example of large-scale turbulent flows exhibiting

a wide range of spatio-temporal scales, we investigate
the reduced order modeling of a simple general ocean
circulation model, single-layer QG turbulence, to assess
the predictive performance of our proposed ROM-LSTM
framework. It was previously observed that the conven-
tional physics-based (or intrusive) ROM of QG model re-
quires a large number of POD modes to yield stable and
physical flow dynamics. However, the proposed ROM-
LSTM framework shows a very promising improvement
in reduced order modeling that only a few modes are able
to capture a physical solution without any prior knowl-
edge about the underlying governing equations. We first
demonstrate that the conventional Galerkin projection
ROM approach yields non-physical predictions when we
use a small number of representative modes. Although
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FIG. 11. Time series evolution of the modal coefficients between t = 10 to t = 100 for ROM-LSTM simulation based on
different lookback time-windows, σ and LSTM training with R = 2 modes at Re = 450 and Ro = 3.6 × 10−3. (a) a1(t) with
σ = 1, (b) a2(t) with σ = 1, (c) a1(t) with σ = 2, (d) a2(t) with σ = 2, (e) a1(t) with σ = 3, (f) a2(t) with σ = 3, (g) a1(t) with
σ = 4, (h) a2(t) with σ = 4, (i) a1(t) with σ = 5, (j) a2(t) with σ = 5. True projection series is underlined in each figure with
black straight line. The training zone is shown with orange dashed line (from t = 10 to t = 50) and the out-of-sample testing
zone is shown with red dashed line (from t = 51 to t = 100) in ROM-LSTM solution series in each figure.

ROM-GP converges to a more physical solution when
increasing the number of modes, it does not seem to
capture the intermittent bursts appearing in the dynam-
ics of the first few most energetic modes. However, the
proposed ROM-LSTM approach is able to capture these
bursts and yields remarkably accurate results even when
using a small number of modes.

The proposed methodology consists of two phases: of-
fline training and online testing or prediction phase. Ini-
tially, we collect the high-fidelity simulation or experi-
mental data snapshots for a certain flow condition. The
data snapshots are collected up to a certain time of the
full order model simulation for training. Then we do a
mapping of the high-resolution instantaneous data snap-
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FIG. 12. Mean streamfunction and vorticity fields obtained by the ROM-LSTM simulation based on different lookback time-
windows, σ and LSTM training with R = 2 modes at Re = 450 and Ro = 3.6× 10−3. (a) ψFOM at a resolution of 256× 512,
(b) ψROM-LSTM for LSTM training with σ = 2, (c) ψROM-LSTM for LSTM training with σ = 3, (d) ψROM-LSTM for LSTM
training with σ = 4, (e) ψROM-LSTM for LSTM training with σ = 5, (f) ωFOM at a resolution of 256× 512, (g) ωROM-LSTM for
LSTM training with σ = 2, (h) ωROM-LSTM for LSTM training with σ = 3, (i) ωROM-LSTM for LSTM training with σ = 4, (j)
ωROM-LSTM for LSTM training with σ = 5.

shots into a reduced order, i.e., low-dimensional space
through POD transform. In this process, we generate
POD basis functions of the field variables and time de-
pendent modal coefficients for training the LSTM archi-
tecture. The LSTM architecture is trained for the modal
coefficients based on a preselected lookback time-window,
σ. In the online phase, the trained model is used to pre-
dict the modal coefficients recursively for the total time
based on initial time history and σ. Finally, we recon-
struct the mean fields for analyses using the predicted
coefficients, precomputed basis functions, and mean field
values.

We demonstrate the performance of the ROM-LSTM
through time series evolution of modal coefficients and
mean vorticity and streamfunction fields. To assess the

performance of the proposed model, the ROM-LSTM
predictions are compared with the high-dimensional solu-
tions as well as with the conventional Galerkin projection
based ROM (ROM-GP) solutions. We also compare the
PDF of true and predicted modal coefficients to estimate
the ability of ROM-LSTM framework to capture mean
flow dynamics. We find that the ROM-LSTM predic-
tions are stable and accurate even with only a couple of
POD modes. On the other hand, the ROM-GP frame-
work, as expected, requires a very large number of modes
to obtain a physically stable solution, since the ROM-
GP framework is susceptible to numerical instability in
quasi-stationary flow fields. We further observe that the
ROM-LSTM framework gives accurate and physical pre-
dictions based on a few time history data points. Indeed,
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FIG. 13. Time series evolution of first two modal coefficients, a1(t) and a2(t) respectively, between t = 10 to t = 100 for different
ROMs at Re = 450 and Ro = 3.6 × 10−3. (a) a1(t) for ROM-GP with R = 10 modes, (b) a2(t) for ROM-GP with R = 10
modes, (c) a1(t) for ROM-LSTM trained with R = 2 modes, (d) a2(t) for ROM-LSTM trained with R = 2 modes, (e) a1(t)
for ROM-LSTM trained with R = 4 modes, (f) a2(t) for ROM-LSTM trained with R = 4 modes, (g) a1(t) for ROM-LSTM
trained with R = 8 modes, (h) a2(t) for ROM-LSTM trained with R = 8 modes, (i) a1(t) for ROM-LSTM trained with R = 10
modes, (j) a2(t) for ROM-LSTM trained with R = 10 modes. True projection series is underlined in each figure with black
straight line. The training zone is shown with orange dashed line (from t = 10 to t = 50) and the out-of-sample testing zone is
shown with red dashed line (from t = 51 to t = 100) in ROM-LSTM solution series in each figure.

if we increase the value of σ, the prediction accuracy will
increase, but the computational cost of offline training
and online prediction will also go up. To quantify the
accuracy of the prediction of ROM-LSTM framework,
we present the L2-norm errors for ROM-GP and ROM-

LSTM frameworks, which show that the proposed frame-
work trained with 10 modes and σ = 5 gets a better
accuracy than the ROM-GP predictions with 40 or 80
modes.

We extend the ROM-LSTM framework as a surrogate
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FIG. 14. In-sample and out-of-sample flow parameters
used for evaluating interpolatory performance of ROM-LSTM
model

model and demonstrate the performance of the present
approach for unseen training data. It is seen that the
ROM-LSTM trained using a set of parameters can pro-
duce a bounded mean solution field for parameters which
are not included in the training. This shows that if the
high-fidelity dataset is available for different parameters
characterizing the flow, then these parameters can also
be included during the training process to predict the
solution field for out-of-sample parameters with good ac-
curacy. This opens up the application of ROM-LSTM
framework in surrogate modeling, and flow control ar-
eas. We analyze the predictive capability of ROM-LSTM
framework for different time step sizes between data
snapshots and show that the mean field prediction re-
mains bounded even with a large time step size. This
can be considered as one of the major advantages of non-
intrusive ROM over conventional ROM-GP framework
which is restricted by certain stability conditions.

Based on our findings, we conclude that the ROM-
LSTM framework provides a stable emolator for large-
scale quasi-stationary flows in terms of prediction and re-
duced order modeling. Since the ROM-LSTM framework
is fully non-intrusive, it does not rely on the governing
equations to obtain the solution, which means that there
are no numerical constraints while predicting the solu-
tions. Additionally, it is computationally more efficient
to predict the solution using a trained model rather than
the physics-based approach of solving ODEs. Hence, the
proposed ROM-LSTM framework can be considered a
very promising approach in developing a robust and ef-
ficient ROMs for large-scale flows with chaotic spatio-
temporal behavior. In our future studies, we will investi-
gate how physics can be incorporated into ML based emu-
lators to enforce certain symmetries and physical consid-
erations to build more robust and interpretable ML meth-
ods [125]. We will also focus on testing the ROM-LSTM
framework in more complex three-dimensional turbulent
flow problems. Furthermore, we plan to improve extrap-
olation capabilities of the existing framework based on
our findings, and implement the proposed approaches in

several ROM-in-the-loop applications, such as, flow con-
trol, parameter estimation, uncertainty quantification,
and data assimilation.
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FIG. 15. Probability density function for true and predicted modal coefficients between t = 50 to t = 100 for ROM-LSTM
simulation at Re = 250 and Ro = 1.6 × 10−3. Note that the LSTM model is trained with R = 10 modes and σ = 5. The
training is done using true modal coefficients between t = 10 to t = 50 for (Re, Ro) = (100, 1.6 × 10−3), (200, 0.9 × 10−3),
(200, 1.6× 10−3), (200, 3.6× 10−3), and (450, 3.6× 10−3).
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FIG. 16. Mean streamfunction and vorticity fields obtained by the ROM-LSTM simulation based on the number of modes to
train the LSTM model at Re = 250 and Ro = 1.6 × 10−3 flow condition. The model is trained for five different operating
conditions and is evaluated for out-of-sample parameters. (a) ψFOM at a resolution of 256 × 512, (b) ψROM-LSTM for LSTM
training with R = 2 modes, (c) ψROM-LSTM for LSTM training with R = 4 modes, (d) ψROM-LSTM for LSTM training with
R = 8 modes, (e) ψROM-LSTM for LSTM training with R = 10 modes, (f) ωFOM at a resolution of 256× 512, (g) ωROM-LSTM for
LSTM training with R = 2 modes, (h) ωROM-LSTM for LSTM training with R = 4 modes, (i) ωROM-LSTM for LSTM training
with R = 8 modes, (j) ωROM-LSTM for LSTM training with R = 10 modes. Note that the LSTM models are trained with σ = 5.
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FIG. 17. Computational overhead for the ROM-GP frame-
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size ∆t for Re = 250 and Ro = 1.6 × 10−3 test condition.
The number in each box presents the CPU time required for
integration of Galerkin projection ODEs from time t = 10 to
t = 100. NaN means the solution diverges after few time-
steps.
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FIG. 18. Mean streamfunction and vorticity fields obtained by the ROM-LSTM simulation based on different lookback time-
windows, σ and LSTM training with R = 10 modes at Re = 250 and Ro = 1.6 × 10−3. The model is trained using 400
snapshots stored at time interval ∆t = 1× 10−1 from t = 10 to t = 50. (a) ψFOM at a resolution of 256× 512, (b) ψROM-LSTM
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