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Combining Poiseuille flow with an external electric field is a demonstrated method to drive trans-

verse migration in capillary electrophoresis. Despite both computational and experimental study, a

number of questions about how to best model polymers under these conditions remain. Attempts

have been made to develop a kinetic theory for a bead spring dumbbell model, but these have only

been accurate at low electric field strength and have not captured the non-monotonic relationship

between migration and electric field strength. In this paper, we revisit the development of a ki-

netic theory for a bead spring dumbbell in a combination of parabolic flow and an external electric

field. The resultant theory yields a compact formula that predicts polymer concentration profiles

that agree excellently with our Brownian dynamics simulations including the aforementioned non-

monotonic relationship. Further, we compare our theoretical results to experimental data, and find

that our model nearly quantitatively predicts the position of maximum in migration.

I. INTRODUCTION

It has been found that in parallel or anti-parallel exter-
nal pressure-driven flow and electric field, DNA migrates
perpendicular to the flow and field [1, 2]. Understanding
the mechanism for this phenomena could guide the de-
velopment of the next generation of microfluidic devices
and allow for the manipulation and study of individual
molecules with a high degree of control. When flexible
polymers are exposed to pressure driven flow in a chan-
nel (without electric field), the polymers will migrate to-
wards the center[3, 4]. This migration is understood to be
hydrodynamically driven in nature[5, 6]. However, this
mechanism is not strong enough to explain the migration
of DNA in the experiments with electric fields.

It is believed that the migration of DNA in both
flow and field is due to electrohydrodynamic interactions
(EHI) between parts of the DNA [7]. These interac-
tions lead to a electrophoretic mobility tensor that de-
pends on conformation. The use of combined flow and
electric fields has been to successfully trap and sepa-
rate molecules by manipulating their conformation de-
pendent mobility[8–10] as well as concentrate genomic
length DNA[11].

To date, there have been two major approaches to in-
corporate EHI into the modeling flexible polyelectrolytes.
One, developed by Liu and Larson[12], discarded the
long range electrohydrodynamic interactions, opting in-
stead to include only those interactions on a scale of a
Kuhn length. The one-dimensional model was success-
fully used to understand qualitative changes in confor-
mation dependent mobility as a function of electric field
strength. However, this model assumed that the polymer
was strongly stretched in the field direction, and could
not capture transverse migration. This model was later
generalized by Pandey and Underhill[13] and later used
to understand the trapping of flexible polyelectrolytes
in T-Channels[8]. These coarse-grained models take the
form of a bead-spring chain in which the mobility of a

spring depends on the conformation of the spring. In
this way, they incorporate the EHI between polymer seg-
ments within a spring.

The other approach, developed by Butler, Ladd, and
coworkers is a bead-spring chain model that directly
includes long range EHI between segments[14]. This
method captures the fluctuations of the electrophoretic
mobility as the conformation fluctuates and includes the
long range interactions that are important near equilib-
rium, when the polymer is only weakly deformed. How-
ever, representing polymers that are stretched far from
equilibrium would require a large number of springs, all
interacting with one another. This would greatly increase
the computational cost of using such a model.

Butler, Ladd and coworkers have successfully used
their model to quantify the dynamics and migration
in devices with combinations of fluid flow and electric
field[10, 11]. This includes currently capturing the non-
monotonic dependence of the amount of migration on
the strength of the electric field. They also developed
a kinetic theory for a bead spring dumbbell model in a
combination of parabolic flow and an external force[15].
Though their kinetic theory accurately predicts migra-
tion at low electric field strengths, it incorrectly predicts
a monotonic relationship between electric field strength
and migration. This has led to questions regarding the
mechanism for the non-monotonic trend and why the
bead-spring chain with direct interactions captures it but
the kinetic theory of a coarse-grained dumbbell does not.

In this article, we show using Brownian dynamics (BD)
simulations that a bead spring dumbbell model is suffi-
cient to capture the non-monotonic relationship between
electric field strength and migration for a variety of flow
strengths. Further we show that a modified derivation of
the kinetic theory captures this non-monotonic relation-
ship in agreement with our BD simulations.
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II. SIMULATION METHOD

A standard BD method[16–18] was utilized for this re-
search. The polymer was reduced to a bead-spring dumb-
bell whereas the solvent was represented by a continuum,
which accounted for the stochastic motion and the vis-
cous drag. Note that explicit hydrodynamic interactions
(HI) have not been included. The positions of the beads
are denoted by r1 and r2. During each time step, a se-
ries of forces are applied to each bead to determine their
motion. The polymers are exposed to a fully developed
Poiseuille flow in x and varying in y. Further, the sys-
tem includes a uniform electric field pointing in the x
direction. The dynamical equations take the form:

dr1 =
[

uf (r1) +µ ·E +
1

ζ
F s

]

dt+

√

2kBTdt

ζ
dW1, (1)

dr2 =
[

uf (r2) +µ ·E − 1

ζ
F s

]

dt+

√

2kBTdt

ζ
dW2, (2)

where uf is the external fluid flow, µ is the elec-
trophoretic mobility tensor, E is the external electric
field, ζ is the bead drag coefficient, Fs is the spring force,
kB is Boltzmann constant, T is the absolute tempera-
ture, dt is the timestep, and dW1 and dW2 are vectors
with components that are independent stochastic vari-
ables chosen from a distribution with zero mean and a
variance of 1. We define the spring connecter vector as
Q = r2 − r1 and the center of mass rc = (r2 + r1)/2.
The springs make use of the Finitely Extensible Non-

linear Elastic (FENE) spring force law[19], which is given
by:

Fs =
HsprQ

1− f2
, (3)

where f = |Q| /Q0 is the spring’s fractional extension,
Q0 is the maximal extension of the spring, and Hspr is
the spring constant.
The coarse-grained mobility tensor for a FENE spring

is given by [13]

µ =
(

µ0 +
4µ1f

2

3− f2

)

Q̂Q̂+
(

µ0 −
2µ1f

2

3− f2

)

(I − Q̂Q̂), (4)

where I is the identity tensor, Q̂ = Q/Q0, µ0 is the
mobility of the polymer at equilibrium, and µ1 is related
to the mobility of the polymer away from equilibrium due
to EHI between polymer segments.
For all the cases examined here, the fractional exten-

sion of the springs are small enough that the results are
the same as with a Hookean spring with the force law

Fs ≈ HsprQ, (5)

with an approximate Hookean mobility tensor given by

µ ≈
(

µ0 −
2

3
µ1f

2
)

I + 2µ1f
2Q̂Q̂ (6)

For this work, the external fluid flow is parabolic, so
the flow profile is given by

ufx = γ̄H(1− (y/H)2), (7)

where γ̄ is the average shear rate, y is the distance from
the channel center, and H is the channel’s half height
with the walls at y = H and y = −H . We quantify
the strength of the fluid flow using a flow Weissenberg
number, defined as WiF = γ̄τ , where τ is the Rouse re-
laxation time given by τ = ζ/4Hspr. Due to the fact that
the electric field is uniform, we cannot use a field gradi-
ent to define an electric Weissenberg number. Rather,
we define WiE such that WiE = WiF corresponds to
the case that µ0E equals the mean fluid flow. Using the
relationship between the average shear rate and the mean
fluid flow, this results in WiE = 3µ0Eτ/(2H).

III. KINETIC THEORY

The kinetic theory for an uncharged dumbbell in a
channel in dilute solution was developed in Ref. [4].
Later, this theory was generalized to include an exter-
nal force in Ref. [15]. For the sake of brevity, only the
essential points are elucidated here.
The steady-state distribution for a polymer dumbbell

in solution is given by the distribution function Ψ, which
is a function of the center-of-mass rc and the end to end
vector Q, and satisfies the conservation equation

0 = − ∂

∂rc
· (ṙcΨ)− ∂

∂Q
· (Q̇Ψ), (8)

where ṙc and Q̇ can be determined by combining Eqs.
(1) and (2).

ṙc =
uf (r1) + uf (r2)

2
+ µ ·E − Db

2

∂ lnΨ

∂rc
, (9)

Q̇ = uf (r2)− uf (r1)−
2

ζ
Fs − 2Db

∂ lnΨ

∂Q
, (10)

where Db = kBT/ζ is the bead diffusivity. It is worth
noting that previous studies assumed that two terms in
Eq. (8) are both independently near zero due to the
polymer’s rapid connector vector equilibration relative to
migration [15] . We do not make that assumption here.
The probability distribution is then decomposed into

a center of mass distribution function, n, and end-to-end
distribution function,ψ,

Ψ(rc,Q) = n(rc)ψ(rc,Q), (11)

where

n(rc) =

ˆ

Ψ(rc,Q)dQ. (12)
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If Eq. (8) is integrated over Q, the steady state distri-
bution of the center of mass can be written:

∂

∂rc
· (n〈ṙc〉) = 0, (13)

where the angle brackets 〈〉 represent an average over
Q using the conditional distribution ψ.
Plugging Eq. (9) into Eq. (13) and using a Taylor

expansion of the flow yields

0 =
∂

∂rc
·
[

nuf (rc) +
n

8
〈QQ〉 :

( ∂

∂r

∂

∂r
uf

)

|r=rc

+ n〈µ〉 ·E − Db

2

∂n

∂rc

]

.

(14)

Due to the form of the flow field and electric field used
here, Eq. (14) simplifies to

d

dy

[

n〈µyx〉E − Db

2

dn

dy

]

= 0, (15)

where 〈µyx〉 is the averaged yx component of the mobil-
ity tensor and y is the component of the center of mass
position. Because n only depends on y, it has been re-
normalized to a one dimensional probability distribution.
Inside the brackets is the net y-component of the trans-
lational flux of dumbbells. It can be seen that the flux
is determined by the sum of the EHI migration and the
counteracting diffusion term. The boundary conditions
require that the flux at the walls is zero, leading to

d ln(n)

dy
=

2

Db
〈µyx〉E. (16)

To simplify our analysis, we use a Hookean spring and
approximate mobility for the kinetic theory. The yx com-
ponent for the Hookean mobility [Eq. (6)] is given by

〈µyx〉 =
2µ1

Q2
0

〈QxQy〉. (17)

Plugging this into Eq. (16) yields

d ln(n)

dy
=

4µ1E

DbQ2
0

〈QxQy〉. (18)

The concentration profile is therefore related to the
second order xy moment of the spring connector vector.
In order to determine the second order moments, Eq. (8)
is multiplied by QQ and integrated over Q. The term
with the Q derivative can be manipulated using standard
integration by parts manipulations from Ref. [20]. The
shear, spring, and Brownian diffusion contributions in
Eq. (10) lead to corresponding terms in the moment
equation.
The center of mass terms can be simplified using

n〈ṙcQQ〉 = nuf 〈QQ〉+ n

8
〈QQ :

( ∂

∂r

∂

∂r
uf

)

|r=rc
QQ〉

+ n〈µ ·EQQ〉 − Db

2

∂

∂rc
n〈QQ〉.

(19)

In order to nondimensionalize our system, we scale
channel quantities by (3kBT/Hspr)

1/2 while scaling the

spring vector by (kBT/Hspr)
1/2. Therefore, we define

ỹ = y/(3kBT/Hspr)
1/2,H̃ = H/(3kBT/Hspr)

1/2, and

Q̃ = Q/(kBT/Hspr)
1/2. Applying these definitions to

Eq. (18) results in

d ln(ñ)

dỹ
= Φ〈Q̃xQ̃y〉. (20)

where ñ = n(3kBT/Hspr)
1/2 and

Φ = 32H̃µ1WiE/(µ0b) =
16τµ1E

Q2
0

√

3kBT

Hspr
. (21)

The FENE parameter b = HsprQ
2
0/(kBT ) is three times

the number of Kuhn segments in the chain. The parame-
ter Φ is a key dimensionless group that is proportional to
the electric field and determines the migration. It quan-
tifies the balance between the two fluxes present in Eq.
(15), by which the deviation of the spring distribution
from equilibrium creates an electrophoretic flux that is
balanced by a diffusive flux to determine the overall con-
centration profile. Eq. (20) quantifies the relationship
between the concentration profile and the conformation
distribution. Further insight to the mechanism of migra-
tion is gleaned by developing expressions for the second
order moments, which can also be nondimensionalized.
The necessary yx, xx, and yy components are

24ñ
[

〈Q̃2
y〉γ̃−〈Q̃xQ̃y〉

]

= Φ
d

dỹ

(

ñ〈Q̃2
xQ̃

2
y〉)−

d2

dỹ2
(ñ〈Q̃xQ̃y〉),

(22)

24ñ
[

1− 〈Q̃2
y〉
]

= Φ
d

dỹ
(ñ〈Q̃3

xQ̃y〉)−
d2

dỹ2
(ñ〈Q̃2

y〉), (23)

and

24ñ
[

2〈Q̃xQ̃y〉γ̃−〈Q̃2
x〉+1

]

= Φ
d

dỹ
(ñ〈Q̃xQ̃

3
y〉)−

d2

dỹ2
(ñ〈Q̃2

x〉),
(24)

where

γ̃ = γ̇τ = 2
γ̄ỹ

H̃
τ =

2WiF ỹ

H̃
. (25)

These equations yield insight to the phenomena that
impact the second order moments. In particular Eq. (22)

describes the mechanisms that determine 〈Q̃xQ̃y〉, which
then determines the concentration profile via Eq. (20).

The value of 〈Q̃xQ̃y〉 is determined by a balance of shear,

represented by the 〈Q̃2
y〉γ̃ term, an electric field migra-

tory flux, represented by the Φ term, and a diffusive flux,
represented by the second derivative term. The impor-
tance of these terms varies as a function of electric field
strength, as will be discussed in the following section and
shown schematically in Fig. (2).
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FIG. 1: The distribution of polymers across a series of
simulations with different WiE . The circles represent
the amount of polymer in that region of the channel

from the BD simulations. The solid lines are a Gaussian
fit to the profiles. All simulations were run using

WiF=0.3. The values of WiE are WiE=1 (blue line),
WiE=10 (red dot-dashed line), WiE=25 (green dashed
line), WiE=50 (black dotted line). The walls of the

channel are represented by the vertical dot-dashed lines.

As mentioned earlier, previous kinetic theories examin-
ing migration of polymer dumbbells simplified the system
by assuming that the polymer’s connector vector distri-
bution relaxed quickly compared to the polymer’s migra-
tion across the channel. If that approximation is made,
the right hand sides of Eqs. (22), (23), and (24) are zero.

IV. RESULTS AND DISCUSSION

A. Brownian Dynamics Simulations

For the simulations presented here we used dumbbell
bead springs. The channel width was chosen to corre-
spond to a physical channel with a width of 80µm con-
taining λ-DNA. This corresponds to H̃ = 21.775. The
length of the chain was such that b=450, which is roughly
equivalent to the length of labelled λ-DNA[21]. Each sim-
ulation had three polymers with a µ1/µ0 of 0.125 were
simulated, and was run using a forward Euler integration
scheme for 106 steps where dt = 10−3τ .
By tracking the center of mass of each spring over the

course of the simulation, we are able to generate the
probability distribution for the polymers across the chan-
nel. A series of example distributions are shown in Fig.

(1) for a variety of WiF and WiE , which we fit with
a normalized Gaussian profile. The standard deviation
was determined from this fitting and used to quantify
the amount of migration. From the figure, we can see
that the migration increases as WiE increases from 1
to 25, as evidenced from the tighter distributions. For
WiE greater than 25, the distributions begin to widen
again, signifying a decrease in the amount of migration.
The presence of a maximum of migration is consistent
with experiment. The dimensionless standard deviation,
σ̃ = σ/(3kBT/Hspr)

1/2, from these profiles are shown in
Fig. (3) in blue. We also simulated a number of other
larger WiF , also shown in Fig. (3). The results show
that the shape of the migration curves as well as the
position of the minimum in σ̃ is unaffected by changes
in WiF . However, the overall amount of migration at a
given WiE is strongly impacted by the WiF , with larger
WiF corresponding to larger amounts of migration. The
curves in Fig. (3) are the results of the kinetic theory
prediction developed in the following section.
To summarize, the BD simulations show that using a

dumbbell model produces a non-monotonic relationship
between migration and electric field strength, which is
consistent with experiment [9]. Because previous approx-
imate kinetic theories based on a dumbbell model showed
a monotonic trend, it was thought that a dumbbell model
was insufficient to match with experiments [9, 15]. Our
results suggest that the discrepancy may have been due
to the approximation in the kinetic theory instead of the
use of a dumbbell model.

B. Solving the Kinetic Theory

The kinetic theory Eqs. (22), (23), and (24) did not
make additional assumptions beyond Eq. (8) but do re-
quire knowledge of the fourth order moments to solve.
Unfortunately, deriving the fourth order moments in the
same manner used for the second order moments results
in a larger system of equations that depend, in turn, on
the sixth order moments. Appendix A describes a new
type of closure approximation valid in weak flows which
allows the equations to be solved. For most of the re-
sults shown here a simpler approach is accurate in which
the fourth order moments take their equilibrium values,
which in our non-dimensionalization are 〈Q̃2

xQ̃
2
y〉 ≈1, and

〈Q̃3
xQ̃y〉 ≈ 〈Q̃xQ̃

3
y〉 ≈ 0. Appendix B uses the BD sim-

ulations to show that the diffusive flux terms (second
derivative terms) in Eqs. (22), (23), and (24) are small
for the cases examined here. Once the simplifications are
applied, Eq. (23) becomes 〈Q̃2

y〉 = 1 and Eq. (22) now
takes the form:

24ñ[γ̃ − 〈Q̃xQ̃y〉] = Φ
d

dỹ
ñ, (26)

which is coupled with Eq. (20). The loss of the second
derivative leads to boundary layers at the walls, but they
do not affect the migration in the channel center when
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FIG. 2: A schematic for the mechanism of migration. The solid arrows illustrate how the phenomena affect each
other. The arrow labels refer to the corresponding equations where the relationship is demonstrated. The dashed
green arrow highlights the new phenomenon incorporated in our kinetic theory that is important at intermediate

and high electric field strengths.

the width of the distribution is small compared to the
channel width.
Figure (2) shows a schematic that illustrates the mech-

anism of migration. Equation (26) incorporates how the
conformational distribution is determined by a combi-
nation of the shear (via γ̃) and the electrophoretic flux
(via Φ). The conformation, in turn, determines the elec-
trophoretic mobility via Eq. (17) which manifests as
electrophoretic fluxes in Eqs. (20) and (26). Because
the electric field migratory flux impacts the conformation
distribution (green arrow in Fig (2)) it acts as a feedback
mechanism. The impact of this feedback is more clearly
seen if the derivative on the right hand side of Eq. (26)
is eliminated using Eq. (20) and the resulting equation
is solved to obtain

〈Q̃xQ̃y〉 = − 48WiF ỹ

H̃(24 + Φ2)
. (27)

This result can then be plugged into Eq. (20) in order
to determine the concentration profile and by extension
the σ̃. Because the shear rate is linear, the function ln(n)
becomes quadratic corresponding to a Gaussian profile
with

σ̃ =
( H̃(24 + Φ2)

48WiFΦ

)1/2

. (28)

Equation (28) is plotted for a range of WiF in Fig.
(3) in comparison with the BD simulations. There is ex-
cellent agreement between our simulated data and Eq.
(28). Unlike previous kinetic theory models, our model
is accurate at both low and high electric field strengths
and accurately predicts the non-monotonic relationship
between the migration and electric field strength. That
being said, the error increases with increasingWiF . This
isn’t surprising as the stronger flows are better able to
push polymers out of equilibrium, which reduces the va-
lidity of the assumption that the fourth moments are near
their equilibrium values.
From our formula for σ̃, we can determine the point of

maximal migration for a givenWiE and WiF . From Eq.

(28) we find that Φmin =
√
24 and

min(WiE) =

√
24

32

µ0b

µ1H̃
. (29)

from which we see that the position of the minimum is
independent of WiF , as seen in Fig. (3). Further, we
can use Eqs. (28) and (26) to understand the physical

mechanism for the non-monotonic trend. For Φ ≪
√
24,

the migration contribution in Eq.(26) is small and the
second spring moment is determined by the shear flow.
However, for Φ ≫

√
24, the second spring moment decays

as Φ−2. Simultaneously, dñ/dỹ scales as Φ−1 such that
the migration contribution in Eq.(26) balances the shear
flow. In this way, the migration is self-limiting as the
balance among the terms in Eq.(26) shifts depending on
the strength of the electric field.

C. Relation to Experiment

Sections IV.B showed that there was excellent agree-
ment between our theory and BD simulations. However,
it does not give insight to how well the mechanism in
the theory explains the non-monotonic trend seen in the
experimental data. To determine this, we extracted the
experimental migration data, consisting of electric field
strength and σ̃’s, from Ref. [9]. More specifically, we
used the data from Figure 8 of Ref. [9] for the S1 (40 mM
TAE) and S2 (0.4 mM TAE and 0.1 mM NaCl ) solutions
at WiF=0.6. These two solution conditions were chosen
due to their different ionic strengths and Debye lengths.
From the data, the corresponding electric field strengths
were calculated. We used the electric field strength in
conjunction with the channel size (H̃ = 21.775), molecule
size (b = 450), and molecule relaxation time (τ = 0.1s)
to calculate WiE in accordance with the definition given
earlier in this paper, instead of the definition give in Ref.
[9]. The dimensionless results are plotted in Fig. (4) a)
for the S1 data and in Fig. (4) b) for the S2 data.
To determine how well our model could reproduce the

non-monotonic trend, a least squared fitting was per-
formed on both data sets using Eq. (27) with µ1/µ0
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as the fitting parameter and a WiF=0.5. The best fit
plots are shown in Fig. (4) in green. The best fit values
are µ1/µ0 = 1.24 for the S1 solution and µ1/µ0 = 5.13
for the S2 solution. These values represent how the con-
formation dependent mobility due to EHI appears in the
coarse-grained model and varies with ionic strength. It
is also worth noting that the experiments take place in a
channel with a square cross-section, while the theory ex-
amined a cross-section with one dimension much larger
than the other. Within these differences and the use
of a coarse-grained model, the kinetic theory matches
the migration and turn-around nearly quantitatively. In
Refs. [12] and [13], the ratio µ1/µ0 is interpreted in terms
of the mobility of a Kuhn segment parallel and perpen-
dicular to the rod. In that interpretation, µ1/µ0 is ex-
pected to be less than or equal to 1/4, and applies to
situations with large enough fractional extension so that
long-ranged EHI is negligible. In this article, using Eqs.
(4) and (6), the fractional extension is relatively small so
that the ratio µ1/µ0 also incorporates contributions from
long-ranged EHI in a coarse-grained way.
Recall that the non-monotonic trend is due to the in-

clusion of an additional term in the kinetic theory. To
illustrate the importance of that term in matching with
the experimental data, we will also show the correspond-
ing prediction if that mechanism were not included. Pre-

0 20 40 60 80 100
WiE

0

2

4

6

8

10

12

14

σ̃

FIG. 3: Standard deviation of polymer concentration
profiles. The solid circles are the calculated σ̃ from our
BD simulations: WiF=0.3 (blue dotted line), WiF=0.6
(red dot-dashed line), WiF=0.9 (green dashed line),
WiF=1.2(black line). The lines are Eq. (27) for the
corresponding value of WiF : WiF=0.3, WiF=0.6,

WiF=0.9, and WiF=1.2.

vious investigators assumed that the polymer’s connector
vector distribution relaxed quickly compared to polymer
migration across the channel. This assumption results
in the right hand side of Eqs. (22), (23), and (24) be-
coming zero. This different set of equations results in a
prediction similar to Eq. (28) of the form

σ̃ =
( H̃

2WiFΦ

)1/2

. (30)

Eq. (30) was then plotted using the same parameters
and the best fit value of µ1/µ0. This is shown by the red
curves in Fig. 4. As can be seen from the figures, there
is excellent agreement between the Eqs. (28) and (30)
at low WiE . However, as WiE (and by extension Φ) in-
creases, the two equations deviate, with Eq. (28) captur-
ing the minimum near the experimental values, whereas
Eq. (30) continues to decrease monotonically.

V. CONCLUSIONS

In this work we have quantified the migration due to
the conformation dependent mobility of a coarse-grained
dumbbell model in a combination of parabolic flow and
an external electric field. We have shown that BD simula-
tions making use of a coarse-grained dumbbell are capa-
ble of capturing the non-monotonic relationship between
migration andWiE. This result is in contrast to the pre-
dictions made from a previous kinetic theory. To gain
mechanistic insight into the migration, we then devel-
oped a kinetic theory for the dumbbell bead spring. Via
assumptions about the nature of the moments and the
magnitude of the individual components, we were able
to develop a compact formula for the amount of migra-
tion. This approximation [Eq. (28)] agreed excellently
with our simulations across all of the WiF and WiE ex-
amined here.
Further, the form of the differential equation in Eq.

(26) yields insight to the underlying phenomenon de-
termining the amount of migration. More specifically,
the migration is determined by the balance of the shear
flow trying to distort the spring distribution from equilib-
rium, the spring force resisting that distortion, and the
electrophoretic mobility migrating the polymers across
regions with different shear rates. When varying elec-
tric field at constant shear rate, the shear term always
contributes, whereas the balance of the spring force and
electrophoretic mobility terms varies with WiE . At low
WiE, the migration does not significantly alter the spring
distribution which is determined by the shear. However,
at high WiE, the migration itself alters the spring dis-
tribution leading to a self-limiting migration. Schemati-
cally, this mechanism is described in Fig. (2). Finally, we
compared our model to experimental data presented in
Ref. [9] and found that our results were near quantitative
at predicting the conditions for maximum migration.
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FIG. 4: Comparison of experimental data from Ref. [9].
The blue triangles are the experimental data for the S1
solution at WiF=0.6 are shown in a) and S2 solution at
WiF=0.6 is shown in b). The best fit plots of Eq. (28)
(green line) give a µ1/µ0 of 1.24 for the S1 solution and
5.13 for the S2 solution. Equation (30) is plotted using
the corresponding best fit value for µ1/µ0 from Eq. (28)

(red dotted line).

It should be noted that this model is designed to study
phenomenon at relatively low shear rates and electric
field strengths. At higher shear rates and electric fields,
other phenomena will also couple with the mechanism
described here. For example, hydrodynamic migration
becomes significant at higher shear rates[4]. Further,
at high electric field strengths, charged polymers can
collapse[22], impacting its electrophoretic mobility.
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APPENDIX A: CLOSURE

In order to solve Eqs. (22), (23), and(24), it is nec-
essary to develop some expression for the fourth order
moments. We found that assuming that the fourth order
moments kept their equilibrium values and that the dif-
fusive flux could be neglected gave excellent agreement
with our simulations. To demonstrate the validity of this
approximation, we take a different approach here. Eqs.
(22),(23), and (24) are first simplified via the order of
magnitude analysis from the BD simulations described
in Appendix B. The resultant equations are

24ñ[〈Q̃2
y〉γ̃ − 〈Q̃xQ̃y〉] =

d

dỹ
ñ(Φ〈Q̃2

xQ̃
2
y〉), (31)

[1− 〈Q̃2
y〉] = 0, (32)

2γ̃〈Q̃xQ̃y〉+ [1− 〈Q̃2
x〉] = 0. (33)

These equations were solved in Section IV.B by as-
suming the fourth order moment in Eq. (31) remains at
equilibrium. Instead, we here use a closure in order to
capture out of equilibrium behavior. Moment closures
have also been used to understand migration processes
in swimming active matter systems [23–25], though the
mechanism for migration is different. The approximation
used here incorporates the correlation between the con-
nector vector components in the x and y directions in
weak shear flows and combinatorial factors when group-
ing terms and takes the form:

〈Q̃2
yQ̃

2
x〉 ≈ 〈Q̃2

y〉〈Q̃2
x〉+ 2〈Q̃xQ̃y〉2, (34)

〈Q̃3
yQ̃x〉 ≈ 3〈Q̃xQ̃y〉〈Q̃2

y〉, (35)

〈Q̃yQ̃
3
x〉 ≈ 3〈Q̃xQ̃y〉〈Q̃2

x〉. (36)
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FIG. 5: Validation of the three closures for WiE=25 and WiF=0.6. Red triangles show the fourth order moments
given by a) 〈Q̃2

yQ̃
2
y〉, b) 〈Q̃xQ̃

3
y〉, and c) 〈Q̃3

xQ̃y〉. Blue circles give the corresponding approximations using second
order moments from Eqs. (34), (35) ,(36). All data are from BD simulations. The horizontal blue dashed lines show

the equilibrium value (the no flow, no field case).

The latter two approximations are not needed to solve
Eqs. (31), (32), and (32) but are included for complete-
ness.

In order to gauge the accuracy of these approxima-
tions, we calculated both the second and fourth order
moments from our BD simulations and compared them
in accordance with Eqs. (34), (35), and (36). The re-
sults are shown in Fig. (5). As can be seen, there is
excellent agreement between the fourth order moments
and the corresponding combinations of second order mo-
ments. Though the channel coordinate goes from -21.775
to 21.775, we have only included the central portion of
the channel where there was sufficient statistics to pre-
dict accurate data due to the migration. Further, we
have plotted the equilibrium value for the fourth order
moments, and see that the BD simulations show only
mild deviations away from those values under these con-
ditions.

Having validated the closure, Eq. (34) can then be
plugged into Eq. (31) to produce a set of coupled equa-

tions. Using Eq. (32) and Eq. (33) to eliminate 〈Q̃2
y〉

and 〈Q̃2
x〉 and using Eq. (20) results in

24

Φ
(γ̃ − 〈Q̃xQ̃y〉) = Φ〈Q̃xQ̃y〉

(

1 + 2γ̃〈Q̃xQ̃y〉

+ 2〈Q̃xQ̃y〉2
)

+
d

dỹ
(1 + 2γ̃〈Q̃xQ̃y〉+ 2〈Q̃xQ̃y〉2).

(37)

The variability of the shear rate with position can be
shown explicitly by writing γ̃ = 2WiF ỹ/H̃, which results
in

[

− 48WiF ỹ

H̃Φ

]

=
24

Φ
〈Q̃xQ̃y〉+Φ〈Q̃xQ̃y〉

(

1− 4WiF ỹ

H̃
〈Q̃xQ̃y〉

+ 2〈Q̃xQ̃y〉2
)

+
d

dỹ
(1 − 4WiF ỹ

H̃
〈Q̃xQ̃y〉+ 2〈Q̃xQ̃y〉2).

(38)

The solution in the center of the channel can be com-
puted using a Taylor series incorporating the odd sym-
metry using the form

〈Q̃xQ̃y〉 ≈ −a1ỹ + a3ỹ
3 + ... (39)

where a1 and a3 are undetermined coefficients. We found
that only the first order term contributed significantly
and all other terms could be dropped. By plugging Eq.
(39) into Eq. (38) we can solve for a1, and by extension

〈Q̃xQ̃y〉. The coefficient a1 must satisfy

0 = 4a21 −
[24

Φ
+ Φ− 8WiF

H̃

]

a1 +
48WiF

H̃Φ
, (40)

which can be solved, yielding

a1 =

(

24
Φ +Φ− 8WiF

H̃

)

−
√

(

24
Φ +Φ− 8WiF

H̃

)2

− 768WiF
ΦH̃

8
(41)

This solution can be plugged back into Eq. (39) to get

an expression for 〈Q̃xQ̃y〉. In turn, this can be used to
calculate σ̃ for the distributions using Eq. (20) as in the
body of the paper, which is given by

σ̃ =
1√
Φa1

. (42)
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FIG. 6: The standard deviation of polymer
concentration distributions as a function of WiF and

WiE . The circles show the data from our BD
simulations, and are the same as in Fig. 3. The solid

curves are predictions for σ̃ making use of Eqs. (41) and
(42). The small difference between these curves and

those in Fig. 3 is from relaxing the assumption about a
fourth moment and using a closure approximation. The

values of WiF are WiF=0.3 (blue dashed line),
WiF=0.6 (red dot-dashed line), WiF=0.9 (green

dashed line), and WiF=1.2 (black line).

A comparison between this prediction and the BD sim-
ulations is shown in Fig. (6).For small WiF , Eqs. (42)
and (28) become the same and match with the BD sim-
ulations across all values of WiE. For larger WiF , Eq.
(42) more accurately captures the distortion of the fourth
moments from equilibrium but matches the BD simula-
tions comparably well, demonstrating the validity of our
original assumption.

APPENDIX B: SIMPLIFICATION OF THE

SYSTEM OF DIFFERENTIAL EQUATIONS

In this work, we showed that our kinetic theory ad-
equately capture the migration of the polymers and we
could solve the kinetic theory more easily if we made
assumptions about the importance of terms within the
theory.In this Appendix, we use the BD simulations to
validate assumptions made in the kinetic theory. In the
BD simulations, the polymer concentration and moments
are computed for each region of ỹ and derivatives are
computed from them using central finite difference. The

results are shown in Fig. (7). We show two conditions:
one at low electric field strength [WiE=1, Fig (7) a)-
c)] and high electric field strength [WiE=100, Fig. (7)
d)-f)]. This was done in order to demonstrate how the
magnitude of certain terms were significant while other
terms could not be neglected over a range of WiE .
Due to the many terms in Eqs. (22), (23), and (24),

it is useful to note that on the right hand side of the
equations the terms containing the first derivative and
fourth moments resulted from the electrophoretic migra-
tory flux, and terms containing the second derivatives
represent diffusive flux. On the left hand side, we dis-
tribute the 24ñ term onto the terms within the brackets
for these results. The terms containing γ̃ represent shear
distorting the spring distribution, the second order mo-
ments represent the spring force acting to push the spring
distribution towards equilibrium, and the terms with 1
represent Brownian diffusion.
In all cases, the diffusive terms (black stars) are small.

This supports the assumption made in Section IV.B and
Appendix A that the diffusive terms could be neglected.
Similarly, the migratory flux terms(blue upwards trian-
gles) are small in Fig. (7) b),c),e),f), which validates our
assumption that the fourth order moments for Eqs. (23)
and (24) would be close to their equilibrium values of
0. However, the fourth order moment term in Eq. (22)
contributes significantly in the high WiE case [Fig. (7)
d)], but not for the low WiE case [Fig. (7) a)]. Because
the fourth order moment does contribute significantly at
higher WiE, this warrants its inclusion to the system of
equations, as in Section IV.B.
Furthermore, Fig. (7) a) and d) show that though

the shear is significant at both high and low WiE , the
magnitude of the other terms differs. At high WiE the
shear contribution is matched by the fourth order mo-
ment term. At low WiE, the shear contribution is bal-
anced by the spring extension term. As WiE increases,
so to does the fourth order moment’s term, whereas the
spring extension term decreases. This trend continues
until the behavior shown in Fig. (7) d) manifests.
These quantifications using the BD simulations of the

terms in Eqs. (22),(23),(24) validate which phenom-
ena are important and how they are rewritten as Eqs.
(31),(32),(33) in Appendix A.
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ỹ

10-5
10-4
10-3
10-2
10-1
100
101
102
103

Te
rm

 M
ag

ni
tu
de

f)

FIG. 7: The calculated values from the BD simulations for each term in Eqs. (22), (23), and (24).The top row
corresponds to WiF=0.6 and WiE=1. a) shows the components of Eq. (22), b) shows the components of Eq. (23),

and c) shows the components of Eq. (24) under these conditions. The bottom row corresponds to WiF=0.6
WiE=100. d) shows the components of Eq. (22), e) shows the components of Eq. (23), and f) shows the

components of Eq. (24) under these conditions. The terms displayed include migratory flux (blue upward facing
triangles), diffusive flux terms (black stars), shear (green diamonds), spring extension (red circles), and Brownian

diffusion (cyan downward facing triangles).
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