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Complex networks with directed, local interactions are ubiquitous in nature, and often occur with
probabilistic connections due to both intrinsic stochasticity and disordered environments. Sparse
non-Hermitian random matrices arise naturally in this context, and are key to describing statistical
properties of the non-equilibrium dynamics that emerges from interactions within the network struc-
ture. Here, we study one-dimensional (1d) spatial structures and focus on sparse non-Hermitian
random matrices in the spirit of tight-binding models in solid state physics. We first investigate
two-point eigenvalue correlations in the complex plane for sparse non-Hermitian random matrices
using methods developed for the statistical mechanics of inhomogeneous 2d interacting particles.
We find that eigenvalue repulsion in the complex plane directly correlates with eigenvector delocal-
ization. In addition, for 1d chains and rings with both disordered nearest neighbor connections and
self-interactions, the self-interaction disorder tends to de-correlate eigenvalues and localize eigenvec-
tors more than simple hopping disorder. However, remarkable resistance to eigenvector localization
by disorder is provided by large cycles, such as those embodied in 1d periodic boundary condi-
tions under strong directional bias. The directional bias also spatially separates the left and right
eigenvectors, leading to interesting dynamics in excitation and response. These phenomena have
important implications for asymmetric random networks and highlight a need for mathematical
tools to describe and understand them analytically.

I. INTRODUCTION

First suggested for the heavy nuclei problem in the
mid-twentieth century [1], random matrix theory has
been an important, constantly evolving tool in the stud-
ies of large systems with otherwise intractable numbers
of degrees of freedom. The first random matrix ensem-
bles, motivated by applications to quantum many-body
systems, imposed Hermitian symmetry and all-to-all in-
teractions. However, the past two decades have seen a
surge of theoretical and experimental progress identifying
and understanding the structure and dynamics of a much
wider variety of real-world complex systems. Because in-
teractions within these systems often have a directional
bias and depend on spatial or functional locality, their
representations as networks and graphs require matrices
that are both asymmetric and sparse [2–6].

The spectral characteristics of sparse non-Hermitian
random matrices provide information on the stability,
susceptibility to perturbations, and synchronization of
biological networks [6–13], guide the construction of prac-
tical methods such as graph partitioning and commu-
nity detection [14, 15], and help evaluate search algo-
rithms [16–18]. In addition, advancements in technol-
ogy in recent years have mapped out the connectivity of
large biological systems, such as neural and gene regula-
tory networks [19–22]. These developments motivate the
study of sparse random matrices with spatial structure.
For example, in neural networks, the anatomical or func-
tional distance between neurons or neural clusters sig-
nificantly affects their connection probabilities [12, 23].
Likewise, layered or recurrent architectures of artificial
neural networks can also be trained by exploiting exist-
ing knowledge about the network structure.

Unfortunately, classic random matrix theory tools,
originally developed for symmetric matrices with dense
connectivity [24–27], are not always directly applicable to
these problems. Thus, a better understanding of sparse
non-Hermitian random matrices not only provides rich
opportunities for analyzing and constructing complex
networks, but also opens new doors in mathematics. Re-
cent theoretical progress includes analytical formulations
for the spectral distribution and its support, as well as
statistics of eigenvalue outliers and their corresponding
eigenvector probability distribution [28]. However, one
key spectral observable that has received less attention
is the two-point eigenvalue correlation, which controls
the interplay between eigenmodes central to the behav-
ioral response to external perturbations and small fluc-
tuations.

In this work, we uncover connections between two-
point eigenvalue correlations and the localization of
eigenvectors of structured sparse non-Hermitian random
matrices. We focus here on matrices with the structure of
one-dimensional (1d) tight-binding models in solid state
physics [29], which arise naturally in, e.g., ring attrac-
tor neural nets [23, 30] and in more highly connected
networks that nevertheless contain a spatial scale over
which the connections fall off [31]. We also focus on the
effect of random self-interactions on the eigenvalues and
eigenvectors, for both undirected and directed ring net-
works.
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A. Structured sparse non-Hermitian matrices and
neural networks

In general, statistics about the eigenspectra and eigen-
functions are critical for understanding the dynamics of
any system in a linear regime that can be described by
a coupled system of differential equations, which we’ll
represent by a random matrix M. When only a dilute
concentration of weakly localized states are activated, the
eigenfunctions can also be useful for describing the non-
linear dynamics [32]. Of course, level statistics have dif-
ferent physical meanings depending on the specific type
of system being modeled. In this paper, for concreteness,
we will motivate our results in terms of a continuous time
recurrent neural network (CTRNN). If M represents the
connectivity matrix of the neurons, the full nonlinear fir-
ing rate model is,

τ
dri(t)

dt
= −ri(t) + f

hi(t) +
∑
j

Mijrj(t)

 , (1)

where ri is the deviation from the background firing rate
of the neuron on the i-th site, τ is the relaxation time
scale for the local firing rate, hi is the external input
to the i-th neuron (from, say, a sensory system), Mij

describes what is in general an asymmetric connectivity
matrix from neuron j to neuron i, and f [·] is a nonlinear
activation function (often with a sigmoidal shape).

When neural activities are not near saturation, it is
convenient to take an activation function of the “thresh-
old linear” form, f(x) = (x + 1)Θ(x + 1) ≡ [x + 1]+
[30, 33]. When the stimuli exceeds the threshold (x+1 >
0) so as to trigger a response, the firing model describes
a linear recurrent neural network [23, 31],

τ
dri(t)

dt
= −ri(t) + hi(t) +

∑
j

Mijrj(t), (2)

where the Heavyside function Θ is implied and the offset
can be taken to be 0 without loss of generality by redefin-
ing hi(t)→ hi(t) + 1. Such a linearized model is capable
of both selective amplification and input integration [23].
Each eigenmode of the matrix M corresponds to a dif-
ferent neural firing pattern; the corresponding complex
eigenvalues indicate the frequency and growth/decay of
the firing pattern, while the spatial support of the eigen-
vector indicates the spatial distribution of the active neu-
ral cluster. In the simplest models, the eigenfunction cor-
responding to the eigenvalue with the largest real part
dominates the sustained activity. More generally, the
superposition of firing patterns corresponding to nearby
eigenvalues in spectral space typically controls the in-
formation transfer and computation carried out by the
neural network in response to various external stimuli.

FIG. 1: (a): Schematic representation of Eq. (3)
studied in this work. The parameters s+, s−, and d

denote site-specific random variables whose
distributions describe the randomness of the

counterclockwise connections, clockwise connections,
and self-interactions, respectively. (b): The form of the
independent probability distributions for s+, s− (Pu(s))

and d (Pv(d)), where the half-box widths u and v
control the ratio of the variance of the connectivity

strengths to their mean magnitude.

B. Random matrix models

We study one-dimensional networks, whose interac-
tions are dominated by local spatial couplings. As shown
schematically in Fig. 1, this connection scheme corre-
sponds to a banded matrix, familiar in condensed matter
physics as a tight-binding model, written here in a com-
pact Dirac bra-ket notation as

M =

N∑
j=1

[
s+
j e

g|j + 1〉〈j|+ s−j e
−g|j〉〈j + 1|+ djε|j〉〈j|

]
,(3)

where s+
j , s−j , and dj are random variables that can take

on both positive and negative values (thus allowing for
both excitatory and inhibitory connections), g controls
a potential asymmetry of the hopping directional bias
(g > 0 indicates stronger connections in a counterclock-
wise direction for ring geometries), and ε controls the
strength of the random self interactions relative to the
random nearest-neighbor connections. Following previ-
ous works [34], we assume balanced inhibition and ex-
citation and investigate symmetric bimodal double-box
probability distributions centered on ±1, for both the di-
agonal and off diagonal randomness, with box half-widths
u and v as tuning parameters (Fig. 1). As presented in
Eq. (3), this class of models appears to violate Dale’s law
(connections originating from the same neuron must be
all excitatory or all inhibitory [10]). However, as shown in
Ref. [31], the spectra for Eq. (3) are identical with those
of related models that do obey the constraint. Moreover,
if each site in Eq. (3) is regarded as a coarse-grained
representation of a cluster of neurons, we expect that
the same site can exhibit both excitatory and inhibitory
characteristics.
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In Sec. II to Sec. IV, we study the spectra of Eq. (3)
both with and without disordered self-interactions (ε > 0
and ε = 0) but no directional bias (g = 0). An important
parameter in the problem then becomes the ratio ε of the
self-interaction strength to the neighboring interaction
strength. In the limit of ε = 0 with zero variance in the
magnitude of the hopping interaction Pu=0(s), Eq. (3)
is the random sign model, first proposed in Ref. [35].
We find that its spectrum (shown in Fig. 2) is a fractal
and, via the box-counting algorithm [36], calculate its
boundary fractal dimension to be Dbound = 1.086±0.004
and its area fractal dimension to be Darea = 1.912 ±
0.003. (For comparison, the Hausdorff dimension of the
Julia boundary set for f(z) = z2 + 1

4 and the Sierpinski
carpet are 1.082 and 1.8928, respectively [36].)

In Sec. V, we examine Eq. (3) in the case of strong
directional bias g � 1 both with and without periodic
boundary conditions, |n〉 = |N + n〉. In particular, we
study a “one-way” model, such that counterclockwise in-
teractions on the subdiagonal vanish. We find particu-
larly striking spectra in the limit when the strengths of
the diagonal and superdiagonal randomness are equal,
for which eigenvalues condense onto the infinity symbol
(lemniscate) curve in the complex plane, along which
there is a continuous variation in the spatial extent of
both the left and right eigenfunctions.

C. Summary of main results

This paper focuses on three main themes: 1) eigen-
value repulsion in the complex plane and how it corre-
lates with eigenvalue delocalization in 1d non-Hermitian
random matrices; 2) what happens when random self-
interactions are added to random nearest-neighbor inter-
actions in 1d tight-binding random matrices; and 3) the
effect of directional bias on the localization and spatial
separation of the left and right eigenvectors.

We find that significant eigenvalue repulsion in the
complex plane only occurs in the presence of eigenfunc-
tion delocalization, and vice versa. Similar results were
obtained for localized and extended states in Hermitian
tight binding models with diagonal disorder in both three
and two dimensions by Shklovskii et al. [37]. We demon-
strate this remarkable correlation numerically for 1d non-
Hermitian matrices described by Eq. (3) with neither self-
interaction nor directional bias in Sec. II and Sec. III, but
emphasize that similar results are obtained for all 1d non-
Hermitian random matrices we have examined. In Sec. II
and Appendix A, we describe the procedure used for ex-
traction of the local pair correlation function, whose be-
havior as a function of the eigenvalue separation depends
on the region of the complex spectrum being sampled. In
Sec. III, we discuss the relation between the size of the
eigenvalue correlation hole in the complex plane and the
eigenvector localization length.

Second, we find that adding disordered self-
interactions reduces eigenvalue correlations and enhances

FIG. 2: (a): Spectrum from a single N = 5000
realization of the random sign model (Eq. (3) with

random sign connection probability distribution
Pu=0(s), and no self-interaction and directional bias
ε = g = 0). (b): Spectra in the first quadrant of the
complex plane, averaged over 18000 realizations of
N = 5000 matrices. Color indicates the natural

logarithm of the spectral density. Calculation via the
box-counting algorithm [36] gives its boundary fractal
dimension to be Dbound = 1.086± 0.004 and its area

fractal dimension as Darea = 1.912± 0.003.

eigenvector localization more than random nearest-
neighbor connections alone in Eq. (3). We study this phe-
nomenon for systems both with and without directional
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bias, and with and without periodic boundary conditions.
Along the way, we make several interesting observations:
In Sec. IV, upon adding disordered self-interactions to
zero directional bias random nearest neighbor connec-
tions, we observe the formation of intricate spectral horns
in the complex plane, which elucidates the nature of level
mixing under increasing inter-site interactions. First or-
der perturbation theory about basis sets focused on col-
lections of self-inhibiting and self-exciting nodes success-
fully captures eigenvalue spreading in the limit of weak
interactions, and we observe a two-dimensional analog of
electronic band structure in the complex plane for this
disordered system.

Finally, in Sec. V, we study the interplay between
directional bias and boundary effects. The large cycle
embodied in a ring with periodic boundary conditions,
coupled with strong directional bias, leads to eigenval-
ues confined to a collection of one-dimensional spectral
curves with a nontrivial continuous spectral flow con-
nected with eigenvector localization. We identify the
spectral curves with equipotential surfaces, generated by
charges placed in the complex plane according the prob-
ability distribution of the diagonal coefficients. Interest-
ingly, nonzero directional bias leads to the spatial sepa-
ration of left and right eigenvectors with the same eigen-
value. The formal and physical implications of the asym-
metry between left and right eigenvectors is explored in
Appendix B.

This paper concludes with a discussion of the physical
implications of these results as well as open mathematical
questions.

II. EIGENVALUE CORRELATIONS

A. Random matrix eigenliquid and the statistical
mechanics of interacting particles

To identify two-point eigenvalue correlations, we treat
the eigenvalues as interacting particles in the complex
plane and utilize concepts from statistical mechanics. In
this section, we outline and demonstrate this method us-
ing the complex Ginibre ensemble. The reader is referred
to Appendix A for more details.

The complex Ginibre ensemble [24] consists of ran-
dom matrices whose every element has real and imag-
inary parts drawn separately from independent Gaus-
sian distributions (Mjk = Mx,jk + iMy,jk where
P (Mx/y,jk) ∼ exp(−M2

x/y,jk/2)). Its eigenvalue joint

probability distribution function (JPDF) is known an-
alytically:

P ({λ}) ∼ exp

−βN
 N∑
i=1

1

2
|λi|2 −

1

2N

∑
i 6=j

ln |λi − λj |

 ,(4)
where the inverse temperature β = 2 and the eigenval-
ues have been scaled as λi → λi/

√
2N . From Eq. (4), it

is apparent that the eigenvalue distribution map exactly

FIG. 3: (a): Left: spectrum of a single N = 1000
realization of the complex Ginibre ensemble, where the
real and imaginary parts of every matrix element are

independently drawn from a Gaussian distribution with
mean 0 and variance 1/2N . Right: pair correlation

function g(r), where ~r = (Re(λ− λ′), Im(λ− λ′)) is the
separation between two eigenvalues λ and λ′ on the

complex plane, numerically extracted from and
averaged over 20 realizations of N = 5000 matrices from

the Ginibre ensemble. Blue shading describes a
correlation hole between g(r) and 1 when g(r) < 1; red
shading highlights the small region between g(r) and 1
where g(r) > 1. The radial distribution function g(r)

vanishes quadratically as r → 0, indicating logarithmic
inter-particle repulsion at short distances with β = 2,
and eventually approaches 1 as r increases, indicating
the decay of correlations at large separation distances.
The black dashed line plots the analytical expression
obtained from direct mapping to a one-component

two-dimensional (2d) plasma, as shown in Ref. [38]. (b):
Left: spectrum of a single N = 1000 realization of a

random matrix where the real and imaginary parts of
every matrix element is independently drawn from a

uniform distribution with mean 0 and variance 1/2N .
The spectrum looks qualitatively similar to that of the
Ginibre ensemble. Right: pair correlation function g(r),

averaged over 20 realizations of N = 5000 random
matrices draw from the uniform distribution. The g(r)
curve follows the same functional form as that of the

Ginibre ensemble in (a), illustrating the universality of
the correlations embodied in Eq. (4).

onto a 2d Coulomb gas under a central harmonic poten-
tial. The resulting spectrum follows a “Circular Law”,
in the sense that eigenvalues are uniformly distributed
inside a unit circle in the complex plane, with the frac-
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tion of eigenvalues lying outside the circle vanishing in
the limit N → ∞ (see Fig. 3a) [38]. As also shown in
Fig. 3b, similar results are obtained when the Gaussian
distribution is replaced by a box distribution, illustrat-
ing that the results for the Ginibre ensemble are universal
for a large collection of random matrices with all-to-all
connectivities [39].

Within the uniform disk, however, Eq. (4) predicts that
eigenvalues experience logarithmic inter-particle repul-
sion. The key quantity used to characterize correlations
among interacting particles in equilibrium statistical me-
chanics is the radial distribution function g(r), defined in
two dimensions as [40],

ρ̄g(r) =
1

N

〈∑
i6=j

δ(r − |~ri − ~rj |)

〉
, (5)

where ρ̄ = N
A is the particle density averaged over the

region of area A containing N particles, and the brack-
ets 〈· · · 〉 denote averaging over the ensemble. Note
that if the density distribution for a single realization

is ρ(~r) =
∑N
j=1 δ(~r−~rj), then ρ̄ = 1

A

∫
Ω
d2rρ(~r), where Ω

denotes the space of area A containing all particles. For
a particular realization of the ensemble, g(r) determines
the probability of finding a second particle a distance r
away from some first particle, given that the first parti-
cle exists in that realization. Since the right hand side of

Eq. (5) scales as ∼ 1
N
N2

A , g(r) is expected to be on the
order of unity, as shown in the rest of this paper. Note
that the radial distribution function g(r) from equilib-
rium statistical mechanics in two dimensions is also the
pair correlation function of eigenvalues in the complex
plane. Henceforth, we will use “pair correlation func-
tion” and “radial distribution function” interchangeably.

By generating multiple realizations, and upon identi-
fying a two-dimensional vector ~rn = (Reλn, Imλn) with
each complex eigenvalue λn, we can count all eigenvalue
pairs within a range of separation distances. After prop-
erly normalizing, we obtain numerically the radial dis-
tribution function for the Ginibre ensemble. As seen in
Fig. 3a, g(r) for the Ginibre ensemble contains a correla-

tion hole at small r, with a size that scales as 1/
√
N , the

typical separation distance between the rescaled eigenval-
ues in the complex plane. In fact, g(r) vanishes quadrat-
ically as r → 0, consistent with the logarithmic inter-
particle repulsion in Eq. (4) with β = 2. As r increases,
g(r) grows and approaches 1, indicating the decay of cor-
relations at long separation distances, at which particles
no longer affect each other. These behaviors are con-

sistent with the analytical expression g(r) = 1 − e−Nr2 ,
derived from direct mapping onto a one-component 2d
plasma [38]. Note the qualitatively similar behavior for
the box distribution shown in Fig. 3b, again illustrating
the universality of the Ginibre results for large rank ran-
dom matrices with independent elements selected from
two different probability distributions.

In evaluating the pair correlation function g(r) for the
Ginibre ensemble, we were able to assume a uniform

ensemble-averaged density (ρ̄ is uniform in space). How-
ever, as seen in Fig. 2, the eigenspectra of the random
sign model corresponds to a 2d fluid with both anisotropy
and an inhomogeneous density. In this case, the pair cor-
relation function does not depend only on the distance
between two particles, but more generally also on the
global coordinates of the two particles (~r1, ~r2). Thus, we
will now let g(r)→ g(r)~R, which describes the probabil-
ity of finding a particle at some point ~r2 that is a distance
r away from some particle at ~r1, given that there is a par-
ticle at ~r1 and the mean location of the particle pair is
~R ≡ (~r1 + ~r2)/2.

B. Level repulsion in nearest neighbor hopping
models in one dimension

We first examine a nearest neighbor hopping model
in 1d with no directional bias and no self-interaction
(g = ε = 0 in Eq. (3)), while varying the box-width pa-
rameter u of the probability distribution for the hopping
term Pu(s) (Fig. 1) from u = 0 (random sign model) to
u = 1 (single box model). The reason for these choices
of parameters will become clear in Sec. III; the resulting
spectra strongly suggest that our findings apply more
generally to a broad class of sparse non-Hermitian ran-
dom matrices.

Due to a singular spike in eigenvalue densities on the
real and imaginary axes (see Fig. 2 and Ref. [31]), we ex-
tract our local pair correlation function g(r)~R (denoted as
g(r) henceforth) for the bulk eigenvalues inside quadrants
I–IV and along the real and imaginary axes separately.
We treat the former as a two-dimensional inhomogeneous
fluid and the latter as a one-dimensional inhomogeneous
fluid (see Appendix A for details on numerical methods
and normalization procedure). We approximate the 2d
eigenfluid inside the various quadrants to be isotropic and
justify this approximation in Appendix A 3 by examining
the weak directional variation of g(r) when r is fr from
the coordinate axes. Each local pair correlation func-
tion g(r) shown in Figs. 4 and 5 is averaged over a small
region of the spectrum within which the eigenvalue den-
sity is approximately homogeneous. The right column of
Fig. 4 shows the spectra for u = (0, 0.1, 0.5, 0.9), av-
eraged over 100 realizations for each value of u. As u
increases, one can observe that the exact and statistical
symmetries of the eigenvalue distribution, as well as its
overall diamond-like shape, stay the same [31], but details
of the fractal edges become smeared out. Our findings
for two-point eigenvalue correlations are as follows:

First, eigenvalues at a distance sufficiently far from the
origin, and also not too close to the spectral edges so as
to experience boundary effects, are uncorrelated (as in an
ideal gas) for all values of u. However, eigenvalues close
to the origin behave differently. For u = 0, where the
nearest neighbor matrix elements are randomly chosen
to be ±1, g(r) dips significantly below 1 as r approaches
0 and vanishes for r = 0, whereas for large r, g(r) grows
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and plateaus to 1 (Fig. 5 and Fig. 4). This behavior is
reminiscent of that of the bulk eigenvalues of the Ginibre
ensemble in Fig. 3. In other words, we discover that
for the random sign model, eigenvalues near the origin
experience inter-particle repulsion.

The exact form of the repulsion is different from that
of the Ginibre ensemble, as g(r) approaches 0 for small r
with a different functional form than the quadratic van-
ishing we see in Fig. 3 (Sec. III). The left of Fig. 4 shows
examples of g(r) for the eigenvalues close to the origin,
averaged over (710770, 54000, 54000, 423000) realizations
for u = (0, 0.1, 0.5, 0.9), respectively. The regions of
the spectra for which we evaluate the local g(r) are in-
dicated by small, white, off-center squares on the right
of Fig. 4. As the box-width u increases, the region near
the origin of the complex plane in which eigenvalue pairs
experience repulsion with each other shrinks. When u
is large enough, the eigenvalues are entirely uncorrelated
and the correlations approximate those of an ideal gas
everywhere in the spectrum.

We have applied the same analysis to eigenvalues on
the real and imaginary axes, treating them as 1d ensem-
bles. The statistical symmetry of the spectra under 90◦

rotation [31] insures identical behavior on these two axes.
Since axial eigenvalues near the edge of the spectra ex-
hibit fractal modulations in the eigenvalue density, we
examine axial eigenvalues in the region near the origin of
the complex plane, where the average eigenvalue density
increases linearly along the axis, with increasing distance
from the origin [31]. The behavior of g(r) for the axial
eigenvalues in this region, as a function of probability
distribution box-width u, is qualitatively consistent with
that of the bulk correlations. Specifically, the range and
strength of 1d eigenvalue repulsion along the axes, as well
as the radial extent along the axes in which eigenvalues
experience that repulsion, are largest for u = 0 and de-
creases as u increases. The correlations vanish as u→ 1.

Finally, we also examined the evolution of the eigen-
spectra under other balanced bimodal distributions,
specifically a bimodal Gaussian distribution centered at
±1. The results are qualitatively similar: as the variance
of the Gaussian increases, delocalized states and eigen-
value repulsion both disappear.

III. EIGENVALUE REPULSION AND
EIGENFUNCTION DELOCALIZATION

What determines the regions in the eigenspectra over
which the eigenvalues experience inter-particle repulsion?
To better understand our findings in the previous section,
we examine the localization properties of the eigenfunc-
tions.

The main metric we use to characterize the degree of
localization of an eigenfunction is the Inverse Participa-
tion Ratio (IPR), defined as follows: For the n-th eigen-

FIG. 4: Subfigures (a, b, c, d) show the local
eigenvalue pair correlation functions (left) and

eigenvalues colored according to the IPR of their
corresponding eigenvectors (right) for random hopping
strength variance u = (0.0, 0.1, 0.5, 0.9) (see Fig. 1 for
Pu(s)), zero diagonal randomness (ε = 0), and no

directional bias (g = 0) in Eq. (3). Correlation functions
in (a, b, c, d) are averaged over (710770, 54000, 54000,
423000) realizations of rank N = 5000 matrices, and

IPR values are averaged over (100, 100, 100, 100)
realizations of rank N = 5000 matrices. The numbers of
realizations are chosen to be sufficiently large such that

the pair correlation functions have converged. The

mean eigenvalue pair locations ~R of the pair correlation
functions g(r) are located within the small white box on
each spectrum. For small u, the region near the origin
of the eigenspectra contains more highly delocalized

eigenstates; eigenvalues in that region experience
inter-particle repulsion. As u increases, the localization
lengths near the origin of the complex plane decrease

and the eigenvalues there become de-correlated.
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FIG. 5: (a): The u = 0 random sign spectra, colored by
eigenvector IPR. Local pair correlation functions g(r)

are examined for eigenvalue pairs in the 9 (0.05× 0.05)
square grids closest to the origin of the complex plane,

enclosed by the magenta box. (b): Numerical
correlation data of the random sign spectra fit to

gs(r) = 1− exp
[
−
(

r
rcorr

)α]
. (c): Quantities

corresponding to eigenvalues in each of the 9 squares
grids. As eigenvalue magnitude increases, the

correlation hole width rcorr decreases, the exponent α
decreases, and the average IPR of the corresponding
eigenvectors increases. (d): Logarithm of the inverse

correlation hole width r−1
corr versus IPR, corresponding

to eigenvalues in the 16 square grids closest to the
origin of the complex plane (including the 9 shown in

(b) and (c)). The linear fitting shows exponential
dependence, from which Eq. (8) follows.

value λn, the IPR of the right eigenfunction ψRn is

IPR(λn) ≡

[(∑
i |ψRn (i)|2

)2∑
i |ψRn (i)|4

]−1

, (6)

where |ψRn (i)| is the amplitude of the n-th right eigen-
function at site i. Here, we focus on localization proper-
ties of the right eigenfunctions of the asymmetric random
matrices. The left eigenfunctions, as well as the the in-
ner product of the left and right eigenfunctions, behave
in a similar fashion for g = 0 (see Appendix B). The
IPR varies from being O(1/N) for eigenfunctions spread
uniformly across all sites, to O(1) for those localized near
a specific site. For each spectrum examined in this work,
we have also calculated the Lyapunov exponents and con-
firmed that they are consistent with the behavior of the
IPR.

Heat maps of the IPR for the random hopping eigen-
spectra with box-widths u = (0.0, 0.1, 0.5, 0.9) are shown
on the right of Fig. 4. For u = 0, the localization
lengths of the eigenfunctions diverge as their eigenval-
ues approach the origin, as analyzed in detail in Ref. [31].
More generally, for small u, there is a region near the ori-
gin of the eigenspectra that contains rather delocalized
eigenstates. Note that as u increases, the region of ex-
tended states centered at the origin of the complex plane
shrinks and disappears, such that the complex plane is
eventually populated entirely by localized eigenstates as
u→ 1.

These findings correlate strongly with our results on
eigenvalue repulsion from the previous section: the eigen-
value repulsion near the origin is only present when the
more extended eigenvectors are also present. Conversely,
when states are highly localized, as near the edge of the
spectrum for u = 0, or everywhere in the complex plane
for u = 0.9, there is no level repulsion and the eigenvalues
behave like an ideal gas. We have observed this connec-
tion between eigenvalue repulsion and extended eigen-
states for all non-Hermitian random matrices we have
examined. There is no way for highly localized eigen-
functions at very different locations in a one-dimensional
lattice to know about each other, so it is plausible that
their eigenvalues are uncorrelated. Similar correlations
for eigenvalue spacings along the 1d real axis and Ander-
son localization have been seen in various Hermitian dis-
ordered systems by studying the nearest-neighbor spac-
ing distribution (see for example [37, 41]). We conjecture
here, for non-Hermitian random matrices with a com-
plex spectrum, that when the eigenfunctions are delo-
calized, their complex eigenvalues repel each other, and
conversely, when eigenvalues repel each other, their eigen-
functions are delocalized.

We can make this connection more precise using the
spectra of the u = 0 random sign model. Fig. 5 shows
the local correlation functions g(r) in the 9 (0.05 × 0.05)
square grids closest to the origin of the complex plane,
enclosed by the magenta box in the spectra shown in the
top panel. Motivated by the correlation function of the
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Ginibre ensemble gG(r) = 1 − exp(−Nr2) (Fig. 3), we
fit the numerical correlation data of the spectra for the
u = 0 random sign model to the following function,

gs(r) = 1− exp

[
−
(

r

rcorr

)α]
, (7)

which allows us to extract the width of the correlation
hole rcorr and the exponent α characterizing the vanish-
ing of the correlations as r goes to 0. As shown in Fig. 5c,
as the magnitude of the eigenvalue (i.e. its distance
from the origin) increases, the correlation hole rcorr de-
creases (the spatial extent of the inter-particle repulsion
shrinks) and the exponent α decreases (the correlation
function g(r) approaches 1 more sharply as r increases).
Furthermore, the inverse correlation hole width r−1

corr ap-
pears to depend exponentially on the IPR (Fig. 5d). In
one-dimensional systems, the IPR is in fact just the in-
verse of the localization length lloc [42]. Upon rescaling

r̄corr = rcorr
√
N and l̄loc = lloc/N , where 1/

√
N is the

average interparticle spacing of N eigenvalues spanning a
2d complex spectrum of area O(1) and l̄loc measures the
fraction of the N -site ring occupied by an eigenfunction,
we find that the eigenvalue correlation hole width r̄corr
and the eigenvector localization length l̄loc are related as
follows:

r̄corr = c1 exp

(
− c2
l̄loc

)
, (8)

where c1 = 2.4±0.2 and c2 = 0.196±0.005. According to
the conjecture embodied in Eq. (8), r̄corr vanishes in the
limit of strongly localized eigenvectors (l̄loc → 0) and in-
creases when eigenvectors become more delocalized (l̄loc
increases) .

The interpretation of this relation between eigenvalue
repulsion and eigenvector delocalization for neural net-
works is as follows: The n-th eigenmode of the connec-
tivity matrix M in a dynamical model like Eq. (1) corre-
sponds to a firing pattern ψn(i); the pattern is selectively
distributed over certain neurons according to the sites
i at which the eigenfunction amplitude is nonzero, and
these neurons collectively fire, with growth or decay, and
oscillations of the firing rates controlled by the complex
eigenvalue λn. Given two distinct firing patterns corre-
sponding to two eigenmodes of the connectivity matrix
M, the higher the number of active neurons participat-
ing in each of these firing patterns (i.e. the more delocal-
ized the normal modes), the more separated their firing
frequencies and growth/decay rates, represented by the
eigenvalues in the complex plane.

We also comment on the universality of eigenvalue cor-
relations for large rank random matrices. First, recall
that, as illustrated in Fig. 3, eigenvalue correlations of
dense non-Hermitian random matrices are insensitive to
changes in the specific shape of the matrix element proba-
bility distribution. For example, in the Ginibre ensemble,
each matrix element is independently drawn from a Gaus-
sian distribution, yielding the correlations in Fig. 3a. If

the elements were instead drawn from a box distribu-
tion with the same mean, the pair correlation function
g(r) does not change except up to a possible rescaling of
r [43], as illustrated in Fig. 3b. In contrast, the sparse
one-dimensional non-Hermitian random matrices studied
here are more sensitive to variations in the matrix ele-
ment probability distribution (see Fig. 4). The eigenvalue
correlations change qualitatively with the parameter u in
the matrix element probability distribution. Neverthe-
less, the behavior of the spectra for the large N random
one-dimensional hopping models considered so far are in-
variant to changes in boundary conditions (open or peri-
odic). This insensitivity to boundary conditions will be
violated dramatically for the models with directional bias
examined in Sec. V of this paper.

IV. EFFECTS OF SELF INTERACTION

Generally, network models incorporate self-
interactions via nonzero diagonal elements. In biological
networks, these feedback effects are referred to as
“self-inhibition” (or “self-regulation”) when the diagonal
matrix element is negative, and “self-excitation” when
the diagonal matrix element is positive. In condensed
matter physics, such couplings are exemplified by
“onsite-disorder” [44]. In this section, we take ε > 0,
the strength of the diagonal disorder in Eq. (3), in
order to study the effects of self-interactions through
probabilistic on-site elements with random signs in the
connectivity matrix M of, say, a neural network. In
general, one could consider a wide variety of probability
distributions for the self-interacting coefficients. We
focus our attention here on the case of the random sign
distribution Pv=0(d) for the diagonal matrix elements
(identical in form to the probability distribution Pu=0(s)
for the random nearest-neighbor connections), because it
exhibits important new features and is tractable enough
for analysis.

A. Eigenfunctions in an eigengas generated by
diagonal disorder are localized.

How do disordered self-interactions affect the spectrum
and the localization of its eigenfunctions compared to
the hopping-only random sign model? To answer this
question, we first study Eq. (3), with g = 0 and strictly
bimodal ±1 interactions for both the hopping and diag-
onal matrix elements, i.e. with probability distributions
Pu=0(s) and Pv=0(d) shown in Fig. 1. However, we now
vary the relative magnitude of the diagonal disorder by
tuning the parameter ε > 0.

Upon turning on the random self-interaction strength
ε with diagonal probability distribution Pv=0(d) (i.e. the
diagonal matrix elements are ±ε, each with probability
1/2), the nearly extended states shown near the origin
at the top panel of Fig. 4 start to disappear. By the
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FIG. 6: (a)–(c): Spectra of Eq. (3) with random sign
nearest-neighbor coupling probability Pu=0(s) and

random sign self-interactions distribution Pv=0(d) as
the self interaction strength ε is increased from 0. (d):
Spectra of Eq. (3) when random self-interaction and

random hopping have equal strengths, with g = 0 and
ε = 1. Eigenvalues form four new horn-like boundaries

hovering above and below ±1 along the real axis, which
are the values of the diagonal elements ±ε. Compared

to the random sign hopping spectrum at the top of
Fig. 4, the addition of random on-site disorder removes
both the eigenvalue repulsion and the weakly localized
eigenstates near the origin of the complex plane. The
lower inset shows the radial distribution function g(r)

with mean pair location ~R in the small white box near
the origin, averaged over 9000 realizations of N = 5000
matrices. The pair correlation function g(r) is a flat line
at 1, showing the eigenvalues behaving like an ideal gas

with no correlations.

time ε reaches 1, such that the self-interactions have the
same level of disorder as the hopping interactions, all
eigenstates are strongly localized. The resulting eigen-
value distribution and variation in eigenvector localiza-
tion, averaged over 200 realizations, are shown in Fig. 6.
Examination of eigenvalue correlations reveal the radial
distribution function g(r) ≈ 1 for all regions in the com-
plex plane within the spectral support. An example is
shown in the inset of Fig. 6. In other words, the addition
of strong diagonal randomness decorrelates all eigenval-
ues; the eigenfluid studied in Sec. II has lost its inter-
particle interactions and behaves instead as a 2d ideal
gas. We performed the same analysis for nonzero dis-
tribution box-width u > 0, and found the same results
qualitatively—eigenvalues do not experience correlations
and all eigenvectors are strongly localized. These results

are consistent with our findings from Sec. III, and con-
firms our conjecture that localized eigenfunctions lead to
no level repulsion.

B. Spectral horn formation and complex level
mixing in the complex plane

The second intriguing feature of Fig. 6 is the accumu-
lation of eigenvalues onto a pattern of spectral “horns”,
whose real parts are predominantly at ±1 on the complex
plane. (For large N random matrices with g = 0, these
and other features of the spectra described here and in
the following are insensitive to applying open or periodic
boundary conditions, as for the random hopping model.)

It is useful to observe the formation of these spec-
tral horns from a different regime, starting with strong
self-interactions and negligible interactions between sites
(ε → ∞). As ε is gradually reduced, the random hop-
ping terms, with probability distribution Pu=0(s), be-
come more important, and the eigenspectra evolve as in
Fig. 7. The spectral horns at ±ε emerge because the self-
interaction coefficients are distributed at ±ε. When hop-
ping interactions are turned on, eigenvalues bloom from
their degenerate point condensations on the real line into
almost-continuous patches in the complex plane. This
phenomenon is the non-Hermitian analog of band the-
ory in quantum condensed matter, where, when isolated
identical atoms are brought closer together and begin in-
teracting as they do in dense solids, single-atom energy
levels broaden into a continuous electronic band struc-
ture.

In the context of neural networks, the atomic orbitals
which lead to discrete energy levels are replaced by self-
inhibiting and self-exciting neurons. For large ε, if one
scales out ε, these neurons at first do not interact with
each other, and exhibit locally either purely growing and
saturating or purely decaying firing rates. As ε is de-
creased and connections between neurons become more
important, the eigenspectrum expands about ±ε on the
real axis, and the firing patterns each spread out over
more participating neurons (marked by the small but
noticeable decrease in the IPR for eigenfunctions with
eigenvalues close to the origin in Fig. 6) and experi-
ence a richer set of oscillatory and growth/decay behav-
ior. However, the presence of self-inhibition and self-
excitation still dominates the dynamics. For the situa-
tion shown in Fig. 7, with the spectrum centered on the
origin, the eigenmodes separate into a group of mostly
growing modes and a group of mostly decaying modes,
as indicated by the high density patches of eigenvalues
within the spectral horns centered at ±ε. We study this
phenomena quantitatively and extract further physical
insights using a perturbative approximation in the fol-
lowing section.
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FIG. 7: (a)–(c): Spectra of Eq. (3) with random sign
hopping Pu=0(s) (i.e. s+

j and s−j = ±1 with equal

probabilities) and random sign self-interactions Pv=0(d),
where the self-interaction strength is much greater than
the hopping interaction strength, ε� 1. The clustering
of eigenvalues around the spectral horns at ±ε is due to

the self-interaction coefficients being distributed at
these values. When hopping interactions are turned on,

eigenvalues bloom from their degenerate point
condensations at ±ε on the real line into two

almost-continuous patches in the complex plane. (d):
First order perturbation theory in 1/ε about a system
of two disconnected sub-networks, consisting of only
self-exciting neurons or only self-inhibiting neurons,
captures the start of the spectral blooms at ε = 104.

The neural connections kept in this approximation are
shown in the schematic.

C. Perturbation theory in 1/ε

Given a connectivity matrix M, one can always reshuf-
fle the basis to restructure M in terms of the following
matrix blocks: the matrix of all connections between neu-
rons that are self-excitatory M+1, the matrix of connec-
tions between all neurons that are self-inhibitory M−1
(we explicitly exclude diagonal matrix elements from
M+1 and M−1), the matrix of connections from self-
exciting neurons to self-inhibiting neurons C+−, and the
matrix of connections from self-inhibiting neurons to self-
exciting neurons C−+:

M = ε

[
1N+ 0

0 −1N−

]
+

[
M+1 C+−
C−+ M−1

]
, (9)

where N+ and N− is the number of self-exciting and self-
inhibiting neurons, respectively, and M±1 and C±∓ all
contain elements of order O(1). For 1/ε � 1, one can
neglect the off-diagonal matrices C+− and C−+, since
their contribution to the eigenvalue vanishes to first order
in perturbation theory. M can then be approximated in
block diagonal form,

M ≈
[
ε1N+ + M+1 0

0 −ε1N− + M−1

]
. (10)

Upon comparing the eigenvalues of Eq. (10) to those from
the exact diagonalization of the full matrix M, we see
that this perturbative approximation captures the start
of the spectral bloom perfectly (Fig. 7d).

For neural networks, this approximation implies that
when the random hopping interaction strengths are weak
compared to the self-interactions, the neural network
can be approximated by two sub-networks of only self-
exciting neurons and only self-inhibiting neurons, and
connections between the subnetworks can be neglected
(see schematic at top left of Fig. 7).

V. COUPLING SELF-INTERACTIONS WITH
STRONG DIRECTIONAL BIAS

Thus far, we have examined Eq. (3) for different sce-
narios all without directional bias (i.e. g = 0 in Eq. (3)).
The parameter g controls the directionality, or orientabil-
ity, of the network, and has been examined in the context
of random hopping models motivated by vortex physics in
high temperature superconductors and neural networks
[31, 45]. In this section, we study the infinite bias limit
of an oriented network (the “one-way” model of Fein-
berg and Zee [35]) with the addition of random self-
interactions.

Mathematically, an “oriented graph” is a graph where
there can only exist one directed connection between any
pair of nodes. In the language of the matrix model in
Eq. 3, only one of Mij and Mji can be nonzero. In the
case of a 1d ring network, the most interesting case is
when all connections are pointed in the same direction.
If the directionality is counter-clockwise, M has only a
nonzero superdiagonal and a zero subdiagonal, as well as
a nonzero corner matrix element in the lower left. (Clock-
wise directionality leads to similar structure on the subdi-
agonal and in the upper right corner.) Such systems can
be understood via the recursion relation for the cofactor
expansion of a cyclic, tridiagonal matrix, from which one
can easily show that the eigenvalues all condense onto ±ε
for all other cases. A schematic of such a network, which
we examine in the following subsections, is shown at the
top left of Fig. 10.
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A. From resolvent to eigenvalue distribution: an
electrostatics connection

There are well-known connections [28, 32, 46–49] be-
tween non-Hermitian random matrix theory and 2d elec-
trostatics in the complex plane. For example, the trace
of the resolvent (or Green’s function) of a random matrix
M,

G(z) =
1

M− z
, (11)

is related to an electrostatics potential φ, whose corre-
sponding charge distribution gives us the eigenvalue den-
sity of states ρ(z) in the complex plane:

4

N
∂z̄ Tr G(z) = − ∂2

∂z∂z̄
φ(x, y) (12)

= −
(
∂2

∂x2
+

∂2

∂y2

)
φ = −4πρ(z), (13)

where x and y respectively denote the real coordinate and
the imaginary coordinate, and z and z̄ denote a complex
number x + iy and its conjugate. Note that TrG(z) is
itself closely related to the electric field associated with
the charge distribution ρ(z). For sparse, oriented, and
locally tree-like graphs with no cycles, the trace of the
resolvent can be calculated via the cavity method [28]:

TrG(z) =

N∑
j=1

1

dj − z
. (14)

Note that this result depends on the random diagonal
elements of M, and is independent of any random off-
diagonal elements of M. According to Gauss’s law of
electrostatics, the charge distribution on an equipotential
surface generates, in the region of space that is otherwise
without charge, the same electric field that results when
all charges act as if they are concentrated at the origin
of the complex plane.

For a bidiagonal “one-way” matrix M (accessible by
taking an appropriate g →∞ limit in Eq. (3), see below)
with no corner element (i.e. Eq. (3) without periodic
boundary conditions) and hence no cycles, Eq. (14) tells
us that ρ(z) = 0 for |z| > maxj dj [28]. This conclusion
also holds for any non-cyclic bidiagonal matrix, where
the eigenvalues simply take on the values of the diagonal
elements λj = dj .

However, upon imposing periodic boundary condi-
tions, the spectral distribution changes dramatically and
leads to a rich variety of eigenvalue correlations and
eigenvector localization within the spectrum. In the next
subsection, we examine the model in Eq. (3) with self-
interactions ε ≥ 0 and strong (counter-clockwise) direc-
tional bias g → +∞. To have a well-defined limit, we
rescale the matrix M in Eq. (3), and study the proper-
ties of M′ = e−gM in the limit g →∞, setting ε′ = εe−g.
Thus, we shall be interested in the spectra and eigenval-
ues of

M′ =
∑
j

[
s+
j |j + 1〉〈j|+ ε′dj |j〉〈j|

]
, (15)

where ε′ is fixed and
{
s+
j

}
and {dj} are random numbers

drawn from the bimodal probability distributions Pu(s)
and Pv(d) displayed in Fig. 1.

B. Spectral curve confinement: another
electrostatics connection

FIG. 8: When the network in Eq. (3), rescaled as M′

in Eq. 15, has absolute directionality (the limit
g → +∞ in Eq. (3) up to rescalings), the eigenvalue
spectrum collapses onto a 1d curve that corresponds

exactly to an equipotential surface resulting from a set
of charges placed on the complex plane according to the

probability distribution of the diagonal coefficients
Pv(d). The potential V of the spectral curve is

determined by ln ε′ (Eq. (19)). Equipotential curves
with negative potentials V = ln ε′ < 0 expand outwards
away from the two central charges and, in the limit of
ε′ � 1, recovers the radially symmetric eigenvalue

distribution for a zero-diagonal one-way hopping matrix.
As the random self-interactions start to dominate over

hopping disorder (ε′ � 1), the eigenvectors of the
spectrum also become more localized, with the most
localized states occurring near the central charges on

the complex plane. (a): The evolution of spectral curves
(left) and their eigenvector IPRs (right) when the

diagonal coefficients follow the random sign
distribution, corresponding to the equipotential surfaces
resulting from two like charges placed at ±1 on the real

line. (b): The evolution of spectral curves (left) and
eigenvector IPRs (right) when the distribution of the
diagonal coefficients corresponds to the placement of

four like charges at ±1 and ±0.5 on the real line. The
IPRs of each spectral curve is averaged over 20

realizations of matrices with rank N = 300.

As shown in Fig. 8, upon imposing absolute direction-
ality onto the network in Eq. (3), the spectrum becomes
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confined to a one-dimensional locus in the 2d complex
plane. Spectral curves of one-way non-Hermitian ran-
dom matrices with onsite disorder were studied previ-
ously in Ref. [50]. We repeat these calculations here to
elucidate the shape of the spectral curves studied in this
section; in particular, we show that curves such as those
in Fig. 8 correspond exactly to equipotential surfaces re-
sulting from a charge distribution placed in the complex
plane according to the probability distribution of the di-
agonal elements Pu(d), with the potential determined by
the log-mean of ratio of the superdiagonal hopping mag-
nitude s+ to the strength of the rescaled diagonal disor-
der ε′, 〈ln |s+/ε′|〉.

To derive this result, consider the oriented random con-
nectivity matrix M′ defined by Eq. (15) as displayed be-
low,

M′ =



ε′d1 s+
1 0

0 ε′d2 s+
2 0

. . .
. . .

0 ε′dj s+
j+1

. . .
. . .

0 0 ε′dN−1 s+
N−1

s+
N 0 ε′dN


, (16)

and use a cofactor expansion to calculate the character-
istic polynomial for the eigenvalues,

N∏
j=1

(
dj −

λ

ε′

)
= (−1)N−1

N∏
j=1

(
s+
j

ε′

)
. (17)

We first multiply Eq. (17) by its complex conjugate, and
then take the square root and logarithm of both sides.
We then note that, by applying the law of large numbers,

lim
N→∞

1

N

N∑
j=1

ln

∣∣∣∣∣s
+
j

ε′

∣∣∣∣∣ ≡
〈

ln

∣∣∣∣s+

ε′

∣∣∣∣〉 , (18)

as also shown in Ref. [50]. In the continuous limit, rela-

beling dj → d, and rescaling
λ

ε′
→ λ, the spectral curves

of Fig. 8 satisfy∫
dd′ρ(d′) ln

1

|d′ − λ|
= −

〈
ln

∣∣∣∣s+

ε′

∣∣∣∣〉 ≡ V, (19)

where ρ(d′) ≡ Pv(d′) is the probability distribution of the
diagonal random variable.

From Eq. (19), an analogy with two-dimensional elec-
trostatics is immediately apparent: ρ(d) is the distribu-
tion of like charges in the complex plane, while the po-
tential V experienced by a test charge on the equipo-
tential surface is given by the log-mean of the abso-
lute value of the hopping variable times the ratio of
the hopping interaction strength and the self-interaction

strength: −
〈

ln
∣∣∣ s+ε′ ∣∣∣〉. In the special case of the bimodal

box distribution Pu(s) with box distributions centered at

±1 for the hopping matrix elements, 〈ln |s+|〉 = 0, and
the potential determining the spectral curve is just ln ε′.

This connection is explicitly illustrated in Fig. 8. For
a random sign diagonal distribution Pv=0(d) and bi-
modal hopping term distribution Pu(s) with equal self-
interactions and hopping strengths ε′ = 1, ρ(d) ≡
Pv=0(d) = 1

2 [δ(d− 1) + δ(d+ 1)] and Pu(s+) = U(−1 −
u,−1+u)+U(1−u, 1+u), where U denotes the bounded
uniform distribution shown in Fig. 3. Eq. (19) for the
eigenvalue distribution then assumes a particularly sim-
ple form,

1

2
(ln |1− λ|+ ln |1 + λ|) = 0, (20)

which explains the infinity-shaped spectral shapes shown
in the top panels of Fig. 8. This relation holds true re-
gardless of the value of the box-width u of bimodal dis-
tribution of the nearest neighbor connections s+, as long
as N is large enough for central limit theorem to apply.
Eq. (20) reveals that the complex eigenvalues must lie on
the V = 0 equipotential surface resulting from two like
charges placed at ±1 on the real line.

On the other hand, if the random self-interaction
strength becomes stronger than the hopping strength
ε′ > 1, then the potential V of the equipotential curve as
indicated on the RHS of Eq. (19) becomes positive. With
increasing ε′, the eigenvalues condense onto equipotential
surfaces ever-closer to the central source charges on the
real line.

When the nearest-neighbor connections instead exceed
the self-interaction strength, ε′ < 1, the potential V of
the equipotential curve decreases to negative values and
the spectral curves expand farther away from the charges
determined by the diagonal elements. In the limit of
ε′ � 1, i.e. V → −∞, the complex eigenvalues are large
enough so that the charge distribution created by the
diagonal disorder appears as a single point charge at the
origin, which recovers the radially symmetric eigenvalue
distribution for a zero-diagonal one-way hopping matrix
[31].

Eq. (19) holds true for any probability dis-
tribution ρ(d) of the diagonal element. The
bottom panels of Fig. 8 show the evolution of
equipotential spectral curves for variable Pu(s)
and with the diagonal probability distribution
ρ(d) = 1

4

[
δ(d− 1) + δ(d− 1

2 ) + δ(d+ 1
2 ) + δ(d+ 1)

]
.

It is important to note, however, that although
Eq. (19) tells us where the eigenvalues are allowed to be—
on an equipotential curve–it does not reveal how they are
distributed on the curve, nor does it reveal how the IPR
behaves on this curve. These issues are addressed in the
next section.



13

FIG. 9: (a) and (b): The evolution of eigenvalue
positions (a) and right eigenvector localization

measured by the IPRR (b), for a fixed set of ±1
self-interacting and ±1 hopping elements (N = 300

matrices drawn from Pv=0(d) and Pu=0(s)), with the
relative strength of the self-interactions ε′ tuned from 0

(green points) to 1 (purple points). (c)–(f): The
eigenfunction localization behavior, quantified by
ln IPRR(λkn), as a function of ε′, following seven

individual eigenvalue trajectories originating from four
distinct wave numbers kn in the ε′ = 0 spectrum. These
images suggest that the ε′ = 0 wavenumbers play a role
in “assigning” localization properties to the eigenvectors

of certain eigenvalues as the nonzero self-interactions
are turned on. The eigenvector of the eigenvalue with
the largest real part localizes drastically. On the other

hand, The eigenvector of the eigenvalue closest to 0
stays delocalized. (g): IPRR(λkn) as ε′ increases from 0
to 1 for four distinct values of kn corresponding to (c–f).

FIG. 10: (a): Comparison of the spectra under open
boundary conditions (OBC) and periodic boundary
conditions (PBC) corresponding to one realization

(N = 300) of the matrix M′ shown in Eq. (15), which
arose from the large g limit of Eq. (3), with equal

strength random hopping and random self-interactions
(ε′ = 1). Breaking a single link of the ring (dashed

arrow in the top left schematic) changes the spectrum
entirely; the spectrum condenses onto two points with

degeneracy N/2 when the cycle is broken. (b):
Amplitudes of the right and left eigenvectors |ψR| and
|ψL| corresponding to an eigenvalue close to 0 in the

PBC spectrum (large blue dot in (a)). (c): Amplitudes
|ψR| and |ψL| corresponding to the eigenvalue with the
largest real part in the PBC spectrum (large red dot in

(a)). The eigenvectors in (b) and (c) show a drastic
difference in their degrees of localization. In addition,
the left and right eigenvectors corresponding to the

same eigenvalue show different centers of localization.

C. Continuous evolution of eigenvector localization
length and eigenvalue correlations along the spectral

curve

It is known that the eigenspectra for the directional
networks, with s+

j = ±1 random hopping but no disorder
on the diagonal, have strongly delocalized eigenvectors
similar to plane waves [31]. Indeed, after making a sim-
ple similarity transformation determined by the paricular
realization of the superdiagonal disorder, eigenvalues and
eigenvectors can be found analytically to be

λkn = eg+ikn (21)

〈x|ψkn〉 =
1√
N
eiknx (22)

where

kn =
2πn

N
, n = 0, 1, 2, · · · , N − 1. (23)

Note that Eq. (21) and (22) imply extended eigenfunc-
tions and a spectrum with an elliptical shape in the com-
plex plane in the limit ε′ → 0.
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Remarkably, however, upon incorporating nonzero self-
interactions with strength ε′ = 1 with a random sign
distribution Pv=0(d), we find that the spectra not only
transforms into the distinct shape of an infinity symbol
(as shown in Fig. 8), but also acquire right eigenstates
with an entire range of localization lengths (see the two
eigenfunctions shown in Fig. 10). The top of Fig. 9 shows,
for a fixed set of ±1 self-interactions and ±1 hopping
elements drawn from Pv=0(d) and Pu=0(s) respectively,
the variation in eigenvalue position (left) and eigenvec-
tor localization (right) as the self interaction strength ε′

is tuned from 0 to 1. The rest of Fig. 9 shows how the lo-
calization indicator ln |IPRR(λkn)| evolves as a function
of ε′ for seven individual trajectories originating from
four distinct wave numbers kn, shown in Eq. (23) for
the ε′ = 0 spectrum. Similar to the winding numbers
studied in Ref. [32], these wavenumbers can be used to
classify localization properties of the eigenvectors in the
presence of nonzero self-interactions. Importantly, when
self-interactions are incorporated into the oriented ring
network, the principal eigenvector (the eigenvector cor-
responding to the eigenvalue with the largest real part),
transforms from being completely delocalized to being
highly localized (see Fig. 10c and Fig. 9). Such eigenvec-
tors dominate long term dynamics of systems linearized
about some equilibrium state (see next section and Ap-
pendix B). As shown for the ring network studied in
Ref. [23], the principal eigenvector of the connectivity
matrix of a neural network dictates the sustained activity
associated with short term memory, and the presence of
a localized principal eigenvector is associated with short
term memory storage of information regarding a specific
spatial direction.

We leave for future work an elucidation of both the
density of states along this family of continued spectral
curves and the intriguing continuous variation of eigen-
vector localization properties. We emphasize again that
both strong directionality and cycle lengths of the order
of the system size appear to be necessary ingredients for
producing these striking spectra.

D. Consequences of nontrivial distinction between
left and right eigenvectors

In this work, we have focused on the localization
properties of the right eigenvectors ψRn (j), which ap-
pear naturally in, say, neural dynamics problems such
as Eq. (2) when the firing rate is expanded according
to rj(t) =

∑
n cnψ

R
n (j)eλnt. In systems with no direc-

tional bias (e.g. the random sign model examined in
Sec. II), we find that the left and right eigenvectors are
identical (see Appendix B). However, when nonzero di-
rectionality bias is present, left and right eigenfunctions
corresponding to the same eigenvalue can differ in both
localization lengths and the positions of their centers of
localization (see Fig. 10). This dichotomy has interesting
consequences, both formally and physically. Formally,

the distinction between left and right eigenvectors means
that one can define an alternative metric of localization
using left-right eigenvector inner products,

IPRLR(λn) =

[(∑
i

∣∣ψLn (i)ψRn (i)
∣∣)2∑

i |ψLn (i)ψRn (i)|2

]−1

, (24)

which yields different results from the IPR defined by
Eq. (6) for systems with nonzero directional bias. Physi-
cally, the spatial separation between left and right eigen-
vectors manifests in a nontrivial distance between the re-
sponse and excitation signals in a neural network. This
can be seen via the signal propagator. For zero in-
put hi(t) in Eq. (2), the propagator takes the following
form [51]

Gij(t) =

N−1∑
n=0

ψRn (i)ψLn (j)eλnt−t/τ . (25)

Upon applying the biorthogonality property of left
and right eigenvectors with proper normalization∑
n ψ

R
n (i)ψLn (j) = δi,j , one can verify that Eq. 25 reduces

to the Kronecker delta function δi,j at t = 0. As seen in
Eq. (25), for a pair of right and left eigenvectors peaked
respectively at i and j, an excitation signal at j triggers a
response at i. When directional bias is nonzero, the right
and left eigenvectors peak at different locations separated
in space. Thus, even when the left and right eigenvectors
are individually localized, they can communicate over a
large spatial region. Various aspects of the left and right
eigenvectors are further explored in Appendix B.

VI. DISCUSSION AND OUTLOOK

A. Implications for more complicated networks

Knowledge of the spectral properties of sparse non-
Hermitian random matrices is critical for determining the
behavior of real-world networks and also necessary for de-
vising practical methods for understanding network data.
In this paper, we briefly highlighted the implications of
our results for the dynamics of a ring neural network.
However, spectral properties of eigenvalues and eigenvec-
tors can be key for analyzing other types of networks, in-
cluding those with a percolation threshold and networks
where the relative importance (centrality) of nodes plays
a key role [4].

Focusing on a simple one-dimensional network al-
lowed us to identify important network ingredients, such
as random nearest neighbor connections, random self-
interactions, large loop structure, and strong directional
bias. Ideas and results from this paper may shed light,
on different levels, on more general networks with higher
node degrees (dimensionality) and structure types, as
summarized below.
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1. Eigenvalue repulsion and eigenvector localization

The phenomena of eigenvalue repulsion arising only for
more extended eigenstates (Sec. III) might conceivably
be a property of all non-Hermitian random matrices, re-
gardless of their degree of sparsity and underlying spatial
structure. Although the numerical evidence in this pa-
per is consistent with this conjecture, new mathematical
tools may be necessary to prove this connection convinc-
ingly. Note that although the inverse participation ratio
(IPR) may no longer be precisely the inverse of a physi-
cal localization length outside of strictly one-dimensional
networks, it can still be used as a measure of the inverse
cluster size for eigenmodes in more general sparse net-
works.

2. Properties of random 1d systems

In Sec. III and Sec. IV, we studied how nonzero random
self-interactions and a spreading distribution in nearest
neighbor connection strengths lead to eigenvector local-
ization and eigenvalue decorrelation for one-dimensional
models. When randomness in the self-interactions is
strong enough, all eigenvectors become highly localized
and there are negligible correlations among the eigenval-
ues in the spectra, though strong directional bias (large
g in Eq. (3)) makes the system more resistant to this
outcome.

Unlike the more general conjectures in the section im-
mediately above, our computations focused on a one-
dimensional network represented by a tridiagonal random
matrix, with corner matrix elements used to implement
periodic boundary conditions. Random graphs with this
structure can arise in the analysis of certain complex sys-
tems, which contains spatial scales where spatially-local
couplings are prevalent. Examples include biological net-
works such as the ring attractor neural network [30], ma-
trices that describe DNA single-nucleotide polymorphism
data [52], and even complex systems in economics, which
can sometimes be approximated by decomposable matri-
ces [53–55]. An alternative set of unidimensional systems
also arise naturally in the temporal ordering of time series
data [56]. In these areas, eigenvector localization prop-
erties are critical to the functioning of different spectral
algorithms used for detecting network boundaries and
temporal patterns [55, 57–59].

3. Extendibility to low-dimensional graphs

It would be interesting to explore whether the results of
the one-dimensional models studied in this paper are ex-
tendible to similarly-structured networks with more de-
grees of freedom associated with each node, similar to
the 3 sites per node model studied in Ref. [31]. More
generally, we can ask: What is the effect of compet-
ing self-interaction disorder and connectivity disorder on

eigenvector localization and eigenvalue repulsion in low-
dimensional graphs?

Low-dimensional graphs are ubiquitous in nature and
appear often in the form of planar networks, such as leaf
vasculature and water networks [60]. Both diffusion be-
tween nodes (analogous to the hopping terms in Eq. (3))
and directed motion (controlled by the parameter g for
Eq. (3)) appear naturally in these models. The higher-
dimensional connectivity embodied in the branching net-
works, however, raises interesting questions, such as dif-
ferent ways of distributing the connection number per
node within a connected space.

B. Challenges in mathematics

Rigorous results for sparse non-Hermitian matrices are
difficult to obtain since it is challenging to apply standard
random matrix theory tools, and proofs of convergence
for eigenvalues and eigenvectors in the thermodynamic
limit of large rank matrices remain elusive [28].

In this work, we explored properties of sparse non-
Hermitian random matrices, predominantly through nu-
merical random matrix experiments that highlight the
need for more precise mathematical descriptions.

One question is: How can we derive a mathematical
description of the relation between complex eigenvalue
repulsion and eigenstate delocalization? Eigenvalue re-
pulsion and eigenstate delocalization with interactions
in sparse Hermitian systems are currently of interest in
quantum many-body systems [61, 62]; it would be inter-
esting to see if methods developed for quantum systems
could be carried over to non-Hermitian systems.

Another question is, what is the effect of large cycles
on the spectral properties of sparse random matrices?
An important technique used for calculating the spec-
tral density of sparse non-Hermitian random matrices
is the cavity method [7], which has been successful in
determining the spectral gap and distribution of outlier
eigenvalues and eigenvectors. The presence of large cy-
cles, however, breaks the method’s assumption of a local
tree-like structure. Another potential analytical relation
is the non-Hermitian generalization of the Thouless re-
lation relating the localization length and the density of
states [42], which also exploits an electrostatics analogy
(in terms of the Lyapunov exponent) for random one-
dimensional systems [49]. However, it may be challeng-
ing to apply this method in the combined presence of
periodic boundary conditions and delocalized eigenfunc-
tions. Many works have examined the effects of small
cycles (cycles with constant number of nodes that do not
grow with system size) [63–66]. Nevertheless, as shown
in this paper, the presence of a single large cycle on a
sparse graph can drastically change the system’s spec-
tral correlation and localization behavior, making large
cycles a worthwhile problem for future studies.
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Appendix A: Pair correlation function g(r)
calculation for eigenfluids

In this section, we describe in detail our numerical ex-
traction of pair correlation functions. We first review the
pair correlation function for a homogeneous fluid, appro-
priate for the Ginibre random matrix “eigenliquid”, and
then generalize the procedure for inhomogeneous eigen-
value distributions.

1. Pair correlation function of the homogeneous
eigenliquid generated by the Ginibre ensemble

For an isotropic homogeneous fluid, g(r) is the prob-
ability of finding a particle distance r away from a ref-
erence particle at the origin in one realization of the en-
semble,

g(r) =
1

ρ̄

1

N

∑
i 6=j

δ (r − |~ri − ~rj |) , (A1)

where ρ̄ = N
A is the particle density averaged over a re-

gion of area A. The number of particles in a shell of
width dr at distance r away from the central particle is
then given by

dn(r) ≈ ρ̄g(r)2πrdr. (A2)

For N total particles in the realization, the number of
particle pairs that are separated by distances between r
and r + dr, which we denote G(r, dr), is then given by

G(r, dr) =
N

2
dn(r) =

N

2
ρ̄g(r)2πrdr. (A3)

Thus, the pair correlation function (or radial distribu-
tion function) g(r) is given by [40],

g(r) =
G(r, dr)

Nρ̄πrdr
, (A4)

where we found G(r, dr) numerically using a binary
search tree (CKD Tree python package). We tested this
procedure for the Ginibre ensemble, for which the scaled
eigenvalues are contained in a disk of radius 1, and the

eigenvalue density is ρ̄ = N/π everywhere inside this unit
disk. Then, Eq. A4 leads to a radial distribution function
for the Ginibre ensemble gG(r) given by

gG(r) =
GG(r, dr)

N2rdr
, (A5)

which we used to obtain the pair correlation function
shown in Fig. 3.

2. Pair correlation function of inhomogeneous
eigenfluids

For an inhomogeneous, anisotropic fluid in two dimen-
sions, the correlation function does not depend only on
the distance r between two particles but more generally
on the positions of both particles g(r) → g(~r1, ~r2). The
number of particles in a box of area d2r centered at ~r2,
provided that there is a particle at ~r1, is then given by

dn(~r2) ≈ ρ̄~r2g(~r1, ~r2)d2r, (A6)

where the average particle density ρ̄~r ≡ 〈
∑
j δ(~r − ~rj)〉

now depends on the location in space that we perform
the ensemble average over. Note that if the particles
are uncorrelated g(~r1, ~r2) = 1, then Eq. (A6) reduces to
dn(~r2) ≈ ρ̄~r2d

2r. Upon implementing a change of coor-

dinates from (~r1, ~r2) to (~r = ~r2 − ~r1, ~R = (~r1 + ~r2)/2),
where ~r is the separation vector between the two par-

ticles and ~R is the mean location of particle pair, we

consider eigenvalue correlations in a small area about ~R,
over which the eigenvalue density is appropriately con-
stant. Following the same procedure as in the previous
section, for sufficiently isotropic correlations where the
angular dependence can be neglected (see Sec. A 3 be-
low), we arrive at

g(r, ~R) =
G(r, dr, ~R)

Nρ̄~R+~r
2
πrdr

, (A7)

where the local pair correlation function g(r, ~R) deter-
mines the probability of finding two particles distance r

apart given that their mean location is ~R, G(r, dr, ~R) is
the number of particle pairs with separation distance r

and mean pair location ~R, and N is the number of eigen-
values in the reference area.

To properly examine the local correlation function av-

eraged over a small grid in space, g(r, ~R)∆R, the box size
∆R should be much larger than the average particle spac-
ing but small enough such that the fluid contained in the
box is approximately homogeneous. In this case, we can
apply Eq. (A4) and obtain,

G(r, dr, ~R)∆R ≈
N2
~R,∆R

∆R2
πrdr × g(~r, ~R)∆R, (A8)

where NR,∆R is the number of particles in the box of

size ∆R centered at ~R, and G(r, dr, ~R)∆R is the total
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number of particle pairs separated by distances between
r and r + dr, averaged over mean locations inside the
reference box.

Partitioning of the eigenfluid into smaller, approxi-
mately homogeneous boxes requires averaging over many
realizations of the ensemble (diagonalization of many ma-
trices) in order to achieve an adequate amount of statis-
tics. Then, obtaining the proper normalization via com-
parison to an uncorrelated eigenfluid,

G0(r, dr, ~R)∆R =
1

M

∑M
j=1(N

(j)
R,∆R)2

2∆R2
2πrdr, (A9)

where M is the total number of realizations, the local
pair correlation function is

g(r, ~R)∆R ≡
G(r, dr, ~R)∆R

G0(r, dr, ~R)∆R

. (A10)

To calculate g(r, ~R)∆R, the probability of finding parti-
cles with separation distances ∈ [r, r+dr) given that the
mean locations of the particle pairs are within a box of

size ∆R centered at ~R, we thus find the numerator nu-
merically via binary search trees, and calculate the de-
nominator from Eq. (A9).

For this method to work, we require that g(r, ~R)∆R

does not change significantly with the box size ∆R. If
∆R is too large, we average over areas with significantly
different correlations (or eigenvalue densities), and the
homogeneity assumption fails. We also avoid applying
this method near the fractal edges of the random sign
spectrum (see Fig. 2), where the density of states change
abruptly, and there are fine, singular density spikes in
the spectrum.

3. Angular dependence of the pair correlation
function

In deriving Eq. (A7), we assumed that the angular de-

pendence of the local pair correlation function g(~r, ~R) =

g(r, θ, ~R) ≈ g(r, ~R) can be neglected, thus improving our
statistics by counting all particle pairs separated by dis-
tance r regardless of the direction of their separation vec-
tor. More generally, however, there could exist eigenflu-
ids where correlations between particles can have signif-
icant dependence on the direction. Here, we explore an-
gular dependence of the pair correlation function for the
random sign model studied in Sec. II, and show that the
angular dependence of the correlations is weak, justifying
the approximation leading to Eq. (A7).

To test for directional variation of the two-point eigen-
value correlations, we again examine correlations of
eigenvalue pairs within the 9 (0.05 × 0.05) square grids
closest to the origin in the first quadrant, examined pre-
viously in Fig. 5. The top left spectrum of Fig. 11 shows
these regions enclosed by a magenta box. We bin eigen-
value pairs in these regions, based on the angle θ charac-

terizing each of their separation vectors ~r, into four an-
gular sectors (see top right of Fig. 11). Since eigenvalue
correlations should be symmetric under θ ↔ −θ, we only
study θ spanning a range of π. In the bottom plots,
the color of each line then corresponds to the pair cor-
relation function derived from counting eigenvalue pairs
within that angular range, normalized as in Eq. (A10)
and multiplied by 4 (since we are binning into four angu-
lar sectors). The black smooth line is the fitting function
gs(r) used in Fig. 5, i.e. the rotationally averaged pair
correlation function, obtained by counting all eigenvalue
pairs of separation r regardless of direction. Although the
colored angular counts are noisier due to the reduction in
sample size, we find no significant angular dependence.
Finding and examining spectra for which the two-point
eigenvalue correlations do exhibit nontrivial angular de-
pendence would be an interesting topic for future inves-
tigations.

Appendix B: Eigenstate localization for nonidentical
left and right eigenvectors

1. Left and right eigenvectors with directional bias
but no diagonal disorder

For a non-Hermitian matrix, the left and right eigen-
vectors are in general not identical. There then exist
three distinct ways to measure localization for an eigen-
state, by using the magnitude of the right eigenvector
(Eq. (6)), by using the magnitude of the left eigenvector,

IPRL(λn) =


(∑

i

∣∣ψLn (i)
∣∣2)2

∑
i |ψLn (i)|4


−1

, (B1)

or by using the product of the left and right eigenvec-
tors [51],

IPRLR(λn) =

[(∑
i

∣∣ψLi ψRi ∣∣)2∑
i

∣∣ψLi ψRi ∣∣2
]−1

, (B2)

where i labels the i-th site of the left or right eigenvector.
In the one-dimensional systems that we study using

Eq. (3), the left and right eigenvectors can be related
through the equation,

ψL(g) = ψR(−g)SST, (B3)

where S is a diagonal matrix with elements Sjj =∏j−1
i

√
s−i
s+i

, responsible for transforming M into a sym-

metric matrix [31]. When there is no directional bias in
Eq. (3) (i.e. g = 0), and the hopping probability dis-
tribution is narrow, the left and right eigenvectors are
identical up to sign flips at each site,

ψLn (i) = ±ψRn (i), (B4)
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FIG. 11: Directional variation of the pair correlation
function in the first quadrant of the random sign model,
obtained from counting eigenvalue pairs centered in the

9 (0.05× 0.05) square grids closest to the origin,
enclosed by the magenta box in the top left spectra.
The top right schematic shows four different angular
sectors (centered at 0, π/4, π/2, and 3π/4) within

which the angle of an eigenvalue pair separation θ can
be binned. In the bottom plots, the color of each line
corresponds to the pair correlation function derived
from counting eigenvalue pairs within that angular

range. The smooth black line is the fit of the functional
form gs(r) shown in Fig. 5, i.e. angular-averaged pair

correlation function. Since the colored lines do not
deviate significant from the black line, isotropy of the

eigenvalue correlations appears to be a reasonable
approximation for the random sign model.

where i labels some site index and the ±1 is determined
by the matrix SST, which in turn depends on the partic-
ular realization of the disorder. Thus, without directional
bias, the left and right eigenvectors with the same eigen-
value have the same magnitude at each site, and hence
share the same localization properties. In this case, all

FIG. 12: Comparison of IPRR and |ψR| and |ψL|
(top), and IPRLR and |ψLψR|1/2 (bottom)

corresponding to the principal eigenvalue for one
realization of the asymmetric random sign model with

no self-interaction disorder, with increasing g. As g
increases from 0, the spectrum exhibits a band gap at
the origin of the complex plane with a rim of weakly
delocalized states, and the right and left eigenvectors

spatially separate and gradually spread out. When g is
sufficiently large such that the spectral rim reaches the

principal eigenvalue, the left and right eigenvectors
experience a jump in separation and the left-right inner

product |ψR| and |ψL| are abruptly delocalized.

three defintions of IPR (Eq. (6), (B1), and (B2)) give the
same result for every eigenvalue in the spectrum. How-
ever, when there is nonzero directional bias (g 6= 0 in
Eq. (3)), the left and right eigenvectors separate spatially,
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FIG. 13: IPRR (a) and IPRLR (b) as a function of the
eigenvalue magnitude (distance away from the origin)

for eigenvalues around the 45◦ line in the complex
plane, as indicated by the colored portions of the

spectrum (left). Data extracted from 150
diagonalizations of the random sign hopping matrix

N = 500 (right) show that IPRR decreases gradually as
the eigenvalue gets closer to the rim, while IPRLR

abruptly drops when the eigenvalue is right at the rim.

and the results change. As shown explicitly in Sec. V D,
the left and right eigenvectors corresponding to the same
eigenvalue can take on entirely different shapes. Fig. 10
shows the spectra of the one way hopping (infinite di-
rectional bias) and random sign self-interaction model,
where the right and left eigenvectors can be separated by
a significant distance on the ring. In these cases, IPRLR

returns significantly different values compared to IPRR

and IPRL.

Fig. 12 compares the magnitude of the left eigenvec-
tor and the right eigenvector, and the square root of the
product of left and right eigenvectors for the asymmet-
ric random sign model with no self-interaction disorder.
The localization properties of this spectrum for just the
right eigenvectors were studied in detail in Ref. [31]. We
show a sequence of spectra with increasing g, focusing
in particular on the eigenvalue with the largest real part
and the three eigenvector quantities associated with it,
|ψL|, |ψR|, and |ψLψR|1/2. When g = 0 (no directional
asymmetry), all three quantities are identically localized.
However, when g becomes nonzero, a hole opens up in
the middle of the spectrum, converting the eigenvalues
originally near the origin of the complex plane into a
band gap with an expanding rim of weakly delocalized
eigenstates. As g increases (counterclockwise hopping
bias), the eigenvalue with the largest real part initially
stays the same, despite the changes in the middle of the
spectrum, but the peaks of the localized right and left
eigenvectors start to separate in opposite directions, and

gradually widen as well. When g reaches a high enough
value such that the rim of the hole envelopes the princi-
pal eigenvalue, the separation between the left and right
eigenvector peaks experiences a sudden jump, while the
peak widths continue to gradually spread out. On the
other hand, the profile of the product of the left and right
eigenvectors (Fig. 12b) does not change at all when g ini-
tially increases from 0, provided that the location of the
principal eigenvalue remains fixed in the complex plane.
However, when the expanding rim reaches the principal
eigenvalue, |ψLψR|1/2 suddenly becomes completely de-
localized.

The behavior of the three eigenvector quantities for
the principal eigenvalue as a function of g, namely the
gradual spreading of |ψL| and |ψR| as g increases, and
the sudden complete delocalization of |ψLψR|1/2 when
the eigenvalue is enveloped by the opening rim, is in fact
experienced by all eigenvalues in the spectrum. A related
phenomenon appears when IPRR, IPRL, and IPRLR are
evaluated for all eigenvalues as a function of their dis-
tance from the expanding rim, at a fixed value of g.
Fig. 13 plots IPRR and IPRLR as a function of the
eigenvalue magnitude (distance away from the origin) for
eigenvalues around the 45o line in the complex plane, as
indicated by the colored portions of the spectrum on the
left. The data is extracted from 150 diagonalizations of
the random sign hopping matrix N = 500. Although
these plots are rather noisy, IPRR decreases gradually
as the eigenvalue gets closer to the rim, while IPRLR

abruptly drops when the eigenvalue is right at the rim.
Insight into these two behaviors follows from approx-

imating the wavefunction magnitudes as wavepackets
exponentially decreasing from their centers of localiza-
tion [45]. Then, using the similarity transformation in
Ref. [31], in a convenient continuum notation, we have,∣∣ψRn (x, g)

∣∣ ∼ e−κn|x−xn|+gx (B5)∣∣ψLn (x, g)
∣∣ ∼ e−κn|x−xn|−gx, (B6)

where n labels the eigenfunction corresponding to the n-
th eigenvalue, xn denotes the center of localization for
g = 0, and κn is the Lyapunov exponent characterizing
the exponential decay of the right and left eigenfunctions
at g = 0. An approximate inverse participation ratio (i.e.
effective Lyaupnov exponent κeff ) can then be calculated
using Eq. (6) and (B2),

IPRR(λn) ≈
∫+∞
−∞ dx|ψRn (x, g)|4(∫+∞
−∞ dx|ψRn (x, g)|2

)2
≡ κeff,Rn (B7)

IPRLR(λn) ≈
∫+∞
−∞ dx|ψRn (x, g)ψLn (x, g)|2(∫+∞
−∞ dx|ψRn (x, g)ψLn (x, g)|

)2
≡ κeff,LRn ,(B8)

with the results

κeff,Rn ∼ κ2
n − g2

κn
(B9)

κeff,LRn ∼ κn. (B10)
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Thus, κeff,Rn vanishes continuously as g → κ−n , while
κeff,LRn appears independent of g. Of course, we must re-
member that the approximate wavefunctions in Eq. (B5)
become unormalizable when g = κn and therefore
κeff,LRn and IPRLR must cease to exist when g = κn.
These rough arguments are consistent with the continu-
ous evolution of IPRR as a function of g and the distance
of the eigenvalue from the spectral rim (Fig. 13a and 13a,
respectively) and the sudden change in IPRLR(g) and
IPRLR(|λ|) (Fig. 13b and 13b). Although the delocal-
ization of the left and right eigenvectors is more gradual
as g → κ−n , they nevertheless mediate the sudden delocal-
ization transition of the left-right inner product IPRLR,
when they leave the Hilbert space of localized states.

2. Consequences of directionality bias on dynamics

In this final section, we comment briefly on the dy-
namics of a signal propagating in the one-dimensional
one-way hopping model (large g limit of Eq. (3)) with
and without disordered self-interactions.

a. Signal current and eigenvalue velocity in the absence of
diagonal disorder

We first study the behavior of the mean and variance
of a signal location in space as it propagates on a ring in
the large-g limit without onsite disorder (Eq. (15) with
ε′ = 0). We study a simple linear model like Eq. (3),
with M replaced by M′ in Eq. (15). A more complete
study would allow for multiple eigenvalues with positive
real parts and include the effects of nonlinearities [23].

For the random sign hopping model studied in Sec. II,
the sub-diagonal terms (clockwise connections) are to
first order negligible in the large-g limit. One can then
“gauge away” the random signs on the counter-clockwise
connections through a similarity transformation, and find
the eigenvalues λn and the strongly delocalized left and
right eigenvectors ψLn and ψRn analytically (see also Sec. V
Eq. (23)) [31],

λn(g) = eikn+g (B11)

ψLn ∼ e−iknj (B12)

ψRn ∼ eiknj , (B13)

where

kn =
2π

N
n, n = 0, 1, · · · , N − 1. (B14)

Let φ0(x) denote a spatially localized signal at time
t = 0. Then, by expanding this initial state in a complex
set of right eigenvectors, and then using the left eigen-
vectors to project out the expansion coefficients, we find
the average position of the wave packet at time t,

〈x〉t ∼
∫ L

0
dx x

∑
n

ψRn (x)eλn(g)t

∫ L

0
dx′ψLn (x

′)φ0(x
′).(B15)

FIG. 14: IPRR and |ψR| and |ψL| (top), and IPRLR

and |ψRψL|1/2 (bottom) corresponding to the principal
eigenvalue of one realization of the one-way hopping
model and random sign connections (Eq. (15)) with

decreasing ε′, the ratio between the disordered
self-interaction strength and the strength of the

one-way connection disorder. At large ε′, the spatially
separated left and right eigenvectors are fairly localized,

spreading out more as ε′ decreases. Meanwhile, the
left-right inner product is delocalized at all values of ε′

for the one-way model.

Since the integral over x′ does not depend on x, we denote

fn ≡
∫ L

0

dx′ ψLn (x′)φ0(x′) (B16)

in all subsequent equations. Normalizing Eq. (B15) then
gives the following,

〈x〉t =

∫ L
0
dx x

∑N−1
n=0 ψRn (x)eλn(g)tfn∫ L

0
dx

∑N−1
n=0 ψRn (x)eλn(g)tfn

. (B17)
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Upon integrating by parts, we find

〈x〉t − 〈x〉0 = −λ0(g)t = −egt = −tdλ0

dg
, (B18)

where λ0 denotes the “ground state” eigenvalue corre-
sponding to the lowest wave number k0, which for this
problem is the eigenvalue with the largest real part. The
minus sign is present in Eq. (B18) because the hopping
is biased in the counterclockwise direction.

The time evolution of the second moment associated
with this initial condition is found from

〈x2〉t =

∫ L
0
dx x2

∑N−1
n=0 ψRn (x)eλn(g)tfn∫ L

0
dx

∑N−1
n=0 ψRn (x)eλn(g)tfn

, (B19)

which leads to

〈x2〉t − 〈x2〉0 = tλ0(g) (1 + λ0(g)t) . (B20)

After incorporating Eq. (B18), we find that the variance
describing the spreading of this wave packet grows lin-
early in time

(
〈x2〉t − 〈x〉2t

)
−
(
〈x2〉0 − 〈x〉20

)
= t

dλ0

dg
. (B21)

One can also obtain the same behavior by directly calcu-
lating the signal at time t, φt(x), starting with a Gaussian
initial condition φ0(x) ∼ exp(−x2/2a) at t = 0 .

To summarize, a signal propagating on the ring with
one-way random sign hopping and no onsite disorder
travels with a constant speed eg, and has a standard de-
viation that increases as

√
teg/2. In the long time limit,

the signal stops spreading when it covers the entire ring
and converges to a flat stationary state, given by ψR0 in
Eq. (B13).

b. Localized response mediated by spatially separated left
and right eigenvectors with diagonal disorder

In the previous section, we saw that regardless of the
initial condition (excitation signal), the one-way hopping
model without onsite disorder allows a signal to propa-
gate and spread out on a ring of connections as a function
of time, eventually converging to a stationary delocalized
state. However, this behavior is dominated by delocalized
eigenvectors. When self-interaction disorder is incorpo-
rated, the dynamics is quite different, because a large
portion of the spectrum exhibits localized eigenvectors
in the presence of onsite disorder, even for models with
one-way connections.

In addition to localization effects, the response of hop-
ping models with directional bias has an additional inter-
esting property that is not present in non-biased hopping
models. Because of the separation of the left and right
eigenvectors when there is nonzero directional bias, a lo-
calized response (at the peak of the right eigenvector) can
be triggered at a considerable distance away from the lo-
cation of the excitation signal (at the peak of the left
eigenvector) via the propagator of the dynamical models
associated with matrices M′ studied in Sec. V,

G(x, x′, t) =

N−1∑
n=0

ψRn (x)ψLn (x′)eλnt. (B22)

Fig. 14a shows the left and right eigenvectors corre-
sponding to the principal eigenvalue, for one realization
of the random sign one-way hopping model (Eq. (15)).
Here, the tuning parameter is ε′, the ratio between the
disordered self-interaction strength and the strength of
the one-way connection disorder. Even at large ε′, al-
though the onsite disorder essentially pins down the sig-
nal such that it does not travel or spread, the system
can nevertheless sense the excitation signal and respond
at distances on the order of the system size. Interest-
ingly, as shown in Fig. 14b, the product of the left and
right eigenvector |ψRψL|1/2 is completely delocalized for
all eigenvalues in the spectra at all values of ε′.
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