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Many networks must maintain synchrony despite the fact that they operate in noisy environments.
Important examples are stochastic inertial oscillators, which are known to exhibit fluctuations with
broad tails in many applications, including electric power networks with renewable energy sources.
Such non-Gaussian fluctuations can result in rare network desynchronization. Here we build a
general theory for inertial oscillator network desynchronization by non-Gaussian noise. We compute
the rate of desynchronization and show that higher-moments of noise enter at specific powers of
coupling: either speeding up or slowing down the rate exponentially depending on how noise statistics
match the statistics of a network’s slowest mode. Finally, we use our theory to introduce a technique
that drastically reduces the effective description of network desynchronization. Most interestingly,
when instability is associated with a single edge, the reduction is to one stochastic oscillator.

I. INTRODUCTION

Networks of coupled oscillators form the basis for com-
plex physical, biological and technological systems[1],
such as smart grids[2], Josephson junction arrays[3, 4],
optical networks[5], biological networks[6–10], and cou-
pled mechanical devices[11, 12]. From a deterministic
viewpoint, most networks operate in stable attractor
regimes, such as synchronized oscillations. However, in
reality uncertainties and noise produce fluctuations from
an attractor, which over long time scales may bring a
network into dynamically unstable states and result in
large deviations. Consequently, much recent attention
has been given to the effects of noise on networked oscilla-
tors, e.g., stochastic escape[14–18], noise cancellation[13],
noise propagation[19–21], and synchronization[22, 23].

A motivating application for stochastic networked os-
cillators is that of fluctuating power grids driven by re-
newable energy sources, such as wind and solar. Such
fluctuations are highly non-Gaussian[24–26], and may
significantly impact power-grid stability[33–36]. Non-
Gaussian noise is understood to exponentially alter
the rates for large, rare fluctuations in simple oscilla-
tor systems, including Josephson junctions and micro-
mechanical oscillators[27–32]. Yet, predicting escape
from synchrony in complex oscillator networks, subjected
to general noise patterns, remains an outstanding prob-
lem.

This work takes a first step in this direction by analyz-
ing desynchronization in networks of inertial oscillators
driven by broadly distributed Poisson noise. Our ap-
proach is the first to connect desynchronization events
to general noise statistics and network modes and sub-
graphs. We explicitly show how higher fluctuation mo-
ments control desynchronization rates near bifurcation
points, both speeding up and slowing down rates depend-
ing on whether noise and network statistics are aligned.
Our analytical methods allow us to predict desynchro-
nization rates from power-fluctuation data, and explain
how general noise tends to effectively desynchronize only

certain network subgraphs.
Consider a model for N coupled phase oscillators with

inertia. We assume that the acceleration of the ith oscil-
lator’s phase, φi, is determined by the velocity vi ≡ φ̇i,
natural frequencies (input-power) Pi, and coupling be-
tween oscillators

∑
jKij sin(φj − φi). The oscillator dy-

namics satisfy the second-order differential equation,

Mv̇i + γvi = Pi +
∑
j

Kij sin(φj − φi), (1)

where M and γ are inertial and damping constants[37].
Eq. (1) gives an approximation to the swing equations
describing the transient dynamics of high-voltage electric
power grids [38, 39], which we discuss as an illustration.
In what follows we take Kij = KAij , where Aij is a
symmetric adjacency matrix[14].

In order to study the effects of non-Gaussian fluctua-
tions on Eq.(1), we take the input power to be

Pi(t) = P̄i + pi(t), (2)

where the fluctuation pi(t) has over-damped dynamics

ṗi = −αpi + ξi(t), (3)

with a damping rate α and stochastic drive ξi(t)[13, 14,
16, 18, 40]. Without loss of generality, we take the aver-
age natural frequency to vanish,

∑
iP̄i = 0. For electric

power grids this reflects a balance between production
and consumption.

In modeling the noisy drive ξi(t) we are interested in
cases where pi(t) exhibits large intermittent fluctuations,
as seen in the output from wind and solar sources[24–
26, 35]. The non-Gaussian features of such sources can
be captured by tracking the change in pi(t) (or power
increments) over fixed time-intervals, τ [25]. In practice,
τ may be set by the time resolution of data. For example,
in Fig.1(a) we show a histogram of power increments,
g(τ)≡p(t+ τ)− p(t), from 12 wind turbines in northern
Germany as in[21]. The probability distribution, pr(g),
is highly non-Gaussian, e.g., the fourth moment is much
larger than for a Gaussian with the same variance.
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FIG. 1. Non-Gaussian power fluctuations. (a) Wind turbine
power-increment distribution (solid-blue)[21]; Gaussian dis-
tribution with the same variance (dashed-black). (b) Fluctu-
ation time series (seconds) given independent and identically
distributed Poisson fluctuations for a 30-node network. Am-
plitudes and rates for Eq.(4) are taken from (a). Power fluc-
tuations for two oscillators are shown in blue and red (top).
Phase-difference, ∆φ, between the oscillators (lower)[42].

In order to build a flexible noise model that approx-
imates the measured increment distribution, we assign
an independent Poisson pulse for every bin, b, in the
histogram. Each Poisson pulse has an amplitude, gb,
which is equal to the bin average, and an occurrence rate
νb=pr(gb)/τ . Given this choice, a pulse occurs on aver-
age every τ units of time. More generally, let there be
M arbitrary power increments such that the amplitude
for the bth increment on the ith oscillator is gib, where
b∈{1, 2, ...,M}. By denoting the time at which the nth
such increment occurs as tib[n], the stochastic drive ξi(t)
can be represented by a sum of Dirac delta functions[41]

ξi(t) =
∑
bn

gibδ(t− tib[n]). (4)

Because the noise ξi(t) is built from Poisson pulses, each
tib[n + 1] − tib[n] is a stochastic variable with an expo-
nential distribution whose rate is νib. For simplicity, we
take the time average of the power fluctuations for each
oscillator to be zero, i.e.,

∑
b gibνib=0. An example time

series given our model is shown in Fig.1(b).

II. LARGE FLUCTUATION PICTURE OF
DESYNCHRONIZATION

When the coupling constant K is sufficiently large
a synchronized state is a stable fixed point of Eq.(1).
This stable phase-locked state (PLS) depends on net-
work topology and the distribution of P̄i [37]. In gen-
eral, the PLS emerges through a saddle-node bifurcation
as K is increased[43, 44], implying the existence of un-
stable, saddle phase-locked states. Noise on Eq.(1) can
cause networks to fluctuate to these saddles [14, 16, 18].
Once a saddle is reached the network can desynchronize
by either undergoing a large phase slip upon returning
to the PLS modulo 2π, or exiting its basin of attrac-
tion altogether. An example is shown in Fig.1(b)(lower).

Such noise-induced desynchronization whereby fluctua-
tions drive oscillator networks to saddle points, are exam-
ples of the general phenomenon of basin-escape[45, 46].

Given the non-Gaussian noise discussed in Sec.I, our
strategy is to construct the most-likely (optimal) path of
noise and network dynamics that maximizes the prob-
ability of reaching a saddle. When desynchronization is
rare, the optimal path is describable using analytical me-
chanics tools[45–47]. Our approach is a generalization of
Kramer’s theory for escape, and is valid as long as typ-
ical fluctuations are small compared to the distances to
saddles[45].

We begin our analysis with the network probability
distribution, ρ(φ,v,p, t). It’s dynamics satisfy a gener-
alized master equation

∂ρ

∂t
=
∑
i

[
− ∂

∂φi

[
viρ
]

+
∂

∂pi

[
αpiρ

]
(5)

− ∂

∂vi

[(
− γvi
M

+
1

M

(
Pi +

∑
j

Kij sin(φj − φi)
))
ρ
]

+
∑
b

νib

[
ρ(φ,v,p− gib1i)− ρ(φ,v,p)

]]
,

where the vector 1i = 〈0 1, 0 2, .., 1 i, .., 0 N 〉 [48]. Note
that Eq.(5) is similar to a Fokker-Planck equation, except
that, instead of the typical diffusive term, there is a sum
over discrete increments to p, given in the last line of
Eq.(5), as in a master equation for Poisson processes.

To analyze rare events encoded in the exponen-
tial tail of ρ(φ,v,p, t), we substitute a WKB ansatz,
ρ(φ,v,p, t)∼=B exp{−S(φ,v,p, t)}, into Eq.(5), assum-
ing S(φ,v,p, t)� 1, and keep the leading order terms in
∂φS, ∂vS, and ∂pS [48, 49]. This approximation converts
Eq.(5) to a Hamilton-Jacobi equation (HJE) for the prob-
ability exponent, S(φ,v,p, t), called the action, in terms
of φ, v, p, and their conjugate momenta: λφ ≡ ∂φS,
λv ≡ ∂vS, and λp ≡ ∂pS. The network Hamiltonian is

H(φ,v,p,λφ,λv,λp) =
∑
i

[
λφi vi − αpiλ

p
i

+
∑
b

νib

(
exp{gibλpi } − 1

)
+

λvi
M

(
− γvi + P̄i + pi +

∑
j

Kij sin(φj − φi)
)]
. (6)

For the given function H(φ,v,p,λφ,λv,λp), the
optimal-path dynamics satisfy Hamilton’s equations[50].
Once Hamilton’s equations are solved, the action can be
calculated as

S(φ,v,p) =
∑
i

[∫
λφi dφi +

∫
λvi dvi +

∫
λpi dpi

]
. (7)

In general, solutions are computable numerically subject
to boundary conditions[51]. Once the action is known,
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so is the expected waiting time (or inverse rate) for
desynchronization[16, 45, 46, 52]

ln〈T 〉 ≈ S(φs,0,0) + constant. (8)

A. Optimal paths near bifurcation

Using our desynchronization mechanics, let us first
consider the optimal path (OP) from PLS, φ∗, to sad-
dles, φs, near the saddle-node bifurcation (SN). We de-
note the critical coupling KSN, where K = KSN[1 + κ].
When κ�1, the dynamics slows onto a one-dimensional
manifold with universal properties. As we will show, sta-
tistical moments of the noise first contribute to the action
at specific powers of κ, from which we can calculate their
effects on desynchronization rates. In order to simplify
the analysis, we assume that the noise for all nodes is
independent and identically distributed. Hence, we drop
the subscript i in ν, g and µ from now on.

First, we construct the lowest-order solution and
thereby demonstrate our natural expansion in κ1/2.
Higher order terms and further calculation details are
given in Apps.C-D. From the fixed-point boundary con-
ditions we expand φ∗ and φs around the SN value, φSN ,
in powers of κ. At the saddle-node bifurcation, the
Fiedler mode[53] of the network Laplacian, Lij(φ

∗) =
Aij cos(φ∗j−φ∗i )−δij

∑
k Aik cos(φ∗k−φ∗i ), has zero eigen-

value. In general, the Fiedler mode is the slowest mode
of Lij(φ

∗), and we denote its components ri. The nor-
malized Fiedler mode is defined up to an overall sign,
and we choose the convention ri > 0 if φsi −φ∗i > 0, so
that r points from φ∗ to φs. Quite remarkably, the fixed
points close to bifurcation can be expressed in terms of
ri, φ

∗
i =φSNi −Cκ1/2ri and φsi =φSNi +Cκ1/2ri, where:

C =

√√√√ 2
∣∣∑

ij Aij sin(φSNj −φSNi )ri
∣∣∣∣∑

ij Aij sin(φSNj −φSNi )[rj− ri]2ri
∣∣ . (9)

Because the sums in Eq.(9) appear when considering the

noise moments, we write C≡
√

2R0/R2. Next, we write
the phases emerging from the SN in terms of a coordinate
x(t), φi(t) =φSNi +Cκ1/2rix(t), where x∈ [−1, 1], which
is valid near bifurcation[54]. Substituting this form into
Hamilton’s equations, and collecting terms at order κ, we
find:

vi
ri

=
KSNκR0[1−x2]

γ
,

pi
ri

= 2KSNκR0[1−x2],

λφi
ri

=
2KSNκR0γα

2[1−x2]

µ2
,
λvi
ri

=
2KSNκR0Mα2[1−x2]

µ2
,

λpi
ri

=
2KSNκR0α[1−x2]

µ2
, ẋ =

KSNκ
1/2
√

2R0R2[1−x2]

2γ
,

(10)

where µ2≡
∑
b νbg

2
b is the noise variance. From Eqs.(7)
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FIG. 2. Effect of non-Gaussian noise on desynchronization
times. Points denote Monte-Carlo simulations and solid lines
denote least-action computations, Eq.(7). Fluctuations follow
the color scheme: Gaussian (red), positively skewed (green),
and symmetric wind turbine (blue)– all with the same vari-
ance. Dashed lines are predictions from Eq.(12). (a) network
with a negatively skewed Fiedler mode. (b) network with a
positively skewed Fiedler mode.

and (10), we get

S(φs,0,0) ≈ 8
√

2KSNκ
3/2γα2R

3/2
0

3R
1/2
2 µ2

. (11)

The structure of Eq.(11) is interesting. The action at
lowest order in κ is proportional to the damping rate
for power-fluctuations squared, implying that doubling
the rate, increases the time-scale for desynchronization
as 〈T 〉→〈T 〉4. What’s more, each node’s contribution is
proportional to µ −1

2 , and hence noise distributions with
the same variance produce the same rate of desynchro-
nization at lowest order. Therefore, the effects of higher
fluctuation moments must appear at (and be suppressed
by) higher powers of κ.

Continuing the OP construction at higher-powers in
κ, we notice that the lowest-order contribution to the
action from the nth moment of the noise, µn≡

∑
b νbg

n
b , is

determined by energy-conservation for large fluctuations,
H(φ,v,p,λφ,λv,λp) = 0, at O(κn) [50]. Interestingly,
such contributions, ∆(n)S, only depend on Eq.(10) and
can be calculated (see App.D for derivation):

∆(n)S =−
µn[
∑
i ri

n]

µn2
· κn− 1

2Kn−1
SN · (12)

2n+ 1
2 γαnR

n− 1
2

0

∫ 1

−1
(1− x2)n−1dx

R
1/2
2 n!

.

Equation (12) is very useful for comparing non-
Gaussian and Gaussian white noise (GWN) effects. In
the latter, the stochastic drive in Eq.(3) is replaced by
a Gaussian process with time-correlation 〈ξi(t)ξj(t′)〉 =
µ2δijδ(t−t′) ∀{i, j}, and Eq.(5) becomes a Fokker-Planck
equation. Simple GWN is considered in most works on
stochastic oscillators[14, 18, 22]. Because the action for
GWN is equivalent to keeping only the variance in the
Hamiltonian, Eq.(12) represents the correction to the
GWN action from fluctuations with a first non-zero mo-
ment µn (n>2).
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Interestingly, we see that desynchronization rates ex-
hibit a critical behavior characterized by a spectrum of
exponents n − 1

2 depending on the nth moment of the
noise distribution. Most importantly, the sign of the
first non-Gaussian correction in Eq.(12) is given by the
product of the nth noise moment times the nth moment
of the Fiedler components. In the particular case when
n = 3, the sign of ∆S is determined by the product of
the skewness of the Fiedler components with that of the
noise. When the two skewnesses are aligned, ∆S(3)< 0,
and desynchronization occurs at an exponentially faster
rate. When they have opposite signs, ∆S(3) > 0, and
desynchronization occurs at an exponentially slower rate.
Generally speaking, the Fiedler modes in high voltage
power grids mostly reside on peripheral nodes - but not
all peripheral nodes[55]. Hence, such networks are highly
skewed, by our definition, and will show exponential sen-
sitivity in desynchronization rates to noise skewness.

Two examples are shown in Fig.2, where we com-
pare desynchronization times for GWN (red), positively
skewed µ3 > 0 (green), and wind turbine (blue) fluc-
tuations. All power fluctuations have the same vari-
ance. The skewed noise distribution is a simple two-pulse
model. Solid lines denote Eq.(7) computations, while
points indicate Monte-Carlo simulations. The dashed
lines in green and blue denote the action for GWN plus
Eq.(12), which is in good agreement (in most cases hard
to distinguish). The networks are drawn in each sub-
panel. Nodes are blue if ri > 0 and red if ri < 0; sizes
are proportional to |ri|. In Fig.2(a), the network has
a negatively skewed Fiedler mode,

∑
iri

3 < 0, and hence
desynchronization occurs at an exponentially slower rate,
just as predicted. In contrast in Fig.2(b) the network has
a positively skewed Fiedler mode, and therefore desyn-
chronization occurs at an exponentially faster rate. Note
that for both networks, blue lines are always under the
red, meaning symmetric noise (µ3 ≈ 0) produces an in-
crease in desynchronization rates.

III. SYNCHRONIZED SUBGRAPH
APPROXIMATION

Since we have shown that rare desynchronization oc-
curs along the Fiedler mode near bifurcation, we expect
that nodes that are topologically nearby in the network
and have similar Fiedler-mode values, do not tend to
desynchronize during a large fluctuation – as a first ap-
proximation for general coupling strengths. Partitioning
the network according to the Fiedler mode[53] at bifur-
cation is a useful approximation for finding much lower-
dimensional desynchronization pathways, which we call
the synchronized subgraph approximation (SSA). An al-
gorithm for constructing Hamilton’s equations for a SSA
is given in the App.E.

First, the SSA can be made exact for networks
where the SN corresponds to a single (overloaded) edge
with a phase-difference π/2. This condition is satis-
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FIG. 3. Desynchronization times predicted assuming syn-
chronized subgraphs; (a) UK grid with one overloaded edge
(green), a 50-node tree (red), a 100-node tree (blue), a block
network (cyan), and the UK grid without symmetry at bi-
furcation (magenta). Solid lines denote computations, while
points correspond to Monte-Carlo. (b) Synchronized sub-
graphs for the UK grid (top), and the block network (bottom).
Subgraphs are drawn with different colors.

fied for tree topologies and frequently satisfied for sparse
networks[44]. For such single-cut saddle-nodes (SCSN),
we can always construct a SSA where the network splits
into exactly two subgraphs at bifurcation and the nodes
within each remain synchronized on average. If we de-
note the two subgraphs divided by the overloaded edge
S1 and S2, then we can reduce Hamilton’s equations to
a single noisy oscillator system in relative phase-space
coordinates:

V̇ =
1

M

[
− γV + P +

KSNN

|S1||S2|
(
1− (1 + κ) cos{Ψ}

)]
Ṗ = −αP +

∑
m

νmgm

[
egmΛP /|S1|− e−gmΛP /|S2|

]
Λ̇Ψ = −KSN(1 + κ)

M

N

|S1||S2|
ΛV sin{Ψ}, V = Ψ̇

Λ̇V = −ΛΨ +
γ

M
ΛV , Λ̇P = αΛP −

1

M
ΛV (13)

In Eqs.(13) Ψ is the phase difference between the two
subgraphs, V is the difference in their velocities, P is
the difference in the power fluctuations, and the Λ’s
are conjugate momenta. The system is closed since
KSN = |

∑
i∈S1 P̄i| for SCSN [56]. Remarkably, we can

see that the dynamics is parameterized only by κ and
the sizes of the two subgraphs, |S1| and |S2|, but is oth-
erwise independent of topology. The action corresponds
to a single stochastic oscillator:

S(Ψ, V, P ) =

∫
ΛΨdΨ +

∫
ΛV dV +

∫
ΛP dP. (14)

Comparisons between desynchronization times and
SSA predictions are shown in Fig.3(a) for three net-
works with a SCSN: red, blue, and green. In each case
N ∼O(100). In particular, the UK power grid is shown
in green, and its two subgraphs are drawn in the top
of Fig.3(b); the red and blue examples in Fig.3(a) cor-
respond to two randomly generated 100-node trees with
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power-law degree distributions, and an exponent equal to
three. Theory computations are shown with solid lines
(Eq.14) and Monte-Carlo simulations with points. Ex-
amples show quantitative agreement despite two-orders
of magnitude reduction in the effective dynamics. More-
over, in App.F we show that Eqs. (12) and (14) are
accurate even in networks with significant variation in
M , γ, and α.

Similarly, the SSA can be applied to networks with-
out a SCSN, but where there is an exact symmetry in
the Fiedler mode at bifurcation. An example is shown
in Fig.3(a) in cyan for a block network. In this case
the network splits into exactly four subgraphs at bifurca-
tion. The Fiedler-mode has only four unique component
values– one for each subgraph. The subgraphs are drawn
in the lower panel of Fig.3(b). As a consequence, the
SSA consists of four effectively coupled oscillators.

Lastly, the SSA can be applied to networks whose
Fiedler modes do not have exact symmetry at bifurca-
tion, by partitioning the network into subgraphs with
approximately uniform Fiedler-mode values. An exam-
ple is shown in Fig.3(a) (magenta), again for the UK
power grid, but with a different distribution of P̄i. In
this case, there is no symmetry at bifurcation and each
node has a unique Fiedler component value. The solid
line represents a SSA assuming 20 subgraphs.

IV. CONCLUSION

In this work, we analyzed desynchronization in com-
plex oscillator networks by non-Gaussian noise. It is of-
ten thought that broad-tailed fluctuations perturb dy-
namical systems more strongly. However, we found that
such noise does not always increase the rate of network
desynchronization; the latter depends on whether higher-
moments of fluctuations and a network’s slowest mode
have the same sign, and is therefore a topological as well
as a noise effect. Our approach was based on arbitrarily
distributed Poisson fluctuations, which we fit to power-
increment data from renewable energy sources. In addi-
tion, we developed a reduction technique for predicting
desynchronization, based on the Fiedler mode at bifurca-
tion, and the observation that noise tends to effectively
desynchronize only certain network subgraphs. Such a re-
duction should be valuable for studying rare processes in
high-dimensional oscillator networks more broadly, where
predicting rare events is both analytically and computa-
tionally difficult.

Lastly, our approach revealed a spectrum of scaling
exponents that determine at what powers in the cou-
pling the nth moment of noise contributes to desyn-
chronization rates. Our results are general for escape
through a saddle. However, our methods can be fur-
ther generalized to rare events induced by non-Gaussian
noise in other dynamical processes in networks includ-
ing: extinction[57, 58], switching[59], and more general
oscillator transitions[60, 61].

JH was supported through the U.S Naval Research
Laboratory Karle Fellowship. PJ was supported
by the Swiss National Science Foundation grants
(200020 182050) and (PYAPP2 154275). IBS was sup-
ported by the U.S. Naval Research Laboratory funding
(N0001419WX00055) and the Office of Naval Research
(N0001419WX01166) and (N0001419WX01322).

V. APPENDIX

A. Computing optimal paths

Optimal paths for rare desynchronization satisfy
Hamilton’s equations:

φ̇i = vi, (A1)

Mv̇i =− γvi + pi + P̄i +K
∑
j

Aij sin(φj − φi), (A2)

ṗi =− αpi +
∑
b

νibgib exp{gibλpi }, (A3)

λ̇φi =− K

M

∑
j

Aij cos(φj − φi)[λvj − λvi ], (A4)

λ̇vi =− λφi +
γ

M
λvi , (A5)

λ̇pi =αλpi − λ
v
i /M. (A6)

Numerical solutions of Eqs.(A1-A6) were found using
the Iterative-Action-Minimization-Method (B. S. Lindley
and I. B. Schwartz, Physica D 255, 22 (2013)) with fixed-
point boundary conditions. Example Matlab code can be
found in the supplementary material of (J. Hindes and
I. B. Schwartz, EPL 120, 56004 (2017)), for instance,
and is available upon request. The method requires a
trial solution. For small κ we used Eqs.(10) from the
main text, and then bootstrapped to other regions of
parameter space.

B. Fixed points

The coupling at which the saddle-node occurs, KSN,
can be computed numerically by solving the following
N + 1 equations with a quasi-Newton method:

0 =P̄i +KSN

∑
j

Aij sin(φSNj − φSNi ) ∀i (B1)

0 =z; (B2)

where z is the second smallest (in magnitude) eigen-
value of the Laplacian matrix Lij(φ

SN )= Aij cos(φSNj −
φSNi )− δij

∑
k Aik cos(φSNj − φSNi ).

In order to calculate optimal paths as a function of
the distance to bifurcation κ, where K=KSN[1 + κ], we
first calculate the fixed points of Eq.(1) in powers of κ.
Let us substitute φ∗i =φSNi +κ1/2qi+κwi+... into Eq.(1),
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given v̇i = 0 and vi = 0 ∀i. Note, the sub(super)-script
SN implies evaluation at the saddle-node. Our goal is to
find qi. At O(κ1/2) we find the equation

0i =
∑
j

Aij cos(φSNj −φSNi )[qj − qi], (B3)

which expresses the saddle-node condition that the net-
work Laplacian has a Fiedler mode with eigenvalue zero.
Hence, we may write qi =−Cri, where ri is the Fiedler
mode at bifurcation and C is a constant that we wish to
determine. Continuing to O(κ), gives

0i =
∑
j

Aij cos(φSNj −φSNi )[wj − wi]

+
∑
j

Aij sin(φSNj −φSNi )

− C2

2

∑
j

Aij sin(φSNj −φSNi )[rj − ri]2. (B4)

If we take the product of Eq.(B4) with ri, sum over i,
and solve for C, we get Eq.(9) from the main text. This
is easy to see by expanding wi in the eigenmodes of the
Laplacian. In Eq.(B4), the component parallel to ri van-
ishes from the saddle-node condition, while all other com-
ponents vanish due to orthonormality. Note: there are
two possible solutions for C: a stable phase-locked state
(positive), and a saddle (negative). Given the definitions
in the main text, the Fiedler value can be shown to be

z = −
√

2R0R2κ
1/2, (B5)

by an analogous expansion.

1. Single-cut saddle node

The procedure outlined above can be carried out indef-
initely. Here, we restrict ourselves to a particular class of
saddle-node bifurcations, which we call single-cut saddle-
nodes (SCSN). In this special case, a single edge becomes
overloaded at bifurcation (with a π/2 phase-difference be-
tween the nodes), and is a cut edge of the network spec-
ified by the adjacency matrix, A. The edge partitions
the network into exactly two subgraphs (denoted S1 and
S2), whose nodes only share one edge (the cut edge) in
common. For example, tree networks always have SCSN.

Networks with SCSN have useful properties. For in-
stance, KSN can be determined by summing Eq.(1) over
all nodes in S1 (or S2), given v̇i=0 and vi=0 ∀i:

0 =
∑
i∈S1

Pi +KSN

∑
i∈S1,j

sin(φSNj −φSNi ). (B6)

Only one term survives in the second sum in Eq.(B6):
corresponding to the cut edge connecting S1 and S2– be-
cause sine is an odd function. Moreover the phase differ-
ence for the cut edge is φSNj −φSNi =−π/2. This latter

property can be shown from the saddle-node condition
and the fact that for SCSN ri=

√
|S2|/[N |S1|] if i ∈ S1,

and ri = −
√
|S1|/[N |S2|] if i ∈ S2. Note: the specifi-

cations for S1 and S2 are given by the convention that
the node in S1 connected to S2 along the cut edge has a
larger phase than its counterpart in S2. Therefore,

KSN
SCSN
=

∑
i∈S1

P̄i, (B7)

as first noted for trees in [56].

Using the stated SCSN properties, it is straightforward
to show that

φsi − φ∗i = 2Criκ
1/2

[
1− 5

12
κ+

43

160
κ2 + ...

]
, (B8)

by expanding the fixed-point conditions to higher or-
ders in κ. In Fig.4(a) we plot the mean (blue) and
standard deviation (red) of the error-vector, Errori =
[φsi − φ∗i − 2Criκ

1/2(1− 5
12κ+ 43

160κ
2)]/ri for an example

SCSN shown in Fig.4(b). We can see that the fixed-point
expression Eq.(B8) is accurate to O(κ7/2) and is parallel
to ri. The fixed points were computed numerically with
the choice of zero-average-phase 〈φsi 〉=〈φ∗i 〉=0.

0.0

-0.2

-0.4

-0.6

-0.8

10-3 10-2 10-1

(a)

Error
7/2

(b)

FIG. 4. Error scaling of Eq.(B8) for a SCSN (a) mean (blue)

and standard-deviation (red) of the error divided by κ7/2. (b)
example network.

C. Near bifurcation paths

Using the fixed-point boundaries expressed in powers
of κ, we can construct the optimal paths for sufficiently
small κ. To make the calculation simpler, at this point we
restrict ourselves to iid power fluctuations, and drop the
node-subscript i in the noise moments, µ. As mentioned
in the main text, at lowest order in κ, we substitute the
ansatz φi(t) =φSNi +Cκ1/2rix(t) + ... into Eqs.(A1-A6).
For the other phase-space variables, we have the general
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expansions:

vi =
∑
m

vi,mκ
m
2 , pi =

∑
m

pi,mκ
m
2

λφi =
∑
m

λφi,mκ
m
2 , λvi =

∑
m

λvi,mκ
m
2

λpi =
∑
m

λpi,mκ
m
2 , (C1)

where m = 2, 3, ... When m = 2, we assume that all
variables are parallel to the Fiedler mode according to

vi,2 = av(x)ri, pi,2 = ap(x)ri, λ
φ
i,2 = aφλ(x)ri/µ2 , λvi,2 =

avλ(x)ri/µ2 , and λpi,2 =apλ(x)ri/µ2.

We note that since ẋ=av(x)κ
1
2 /C, time-derivatives for

phase-space variables other than φ are O(κ
3
2 ), and so the

LHS of Eqs.(A2-A6) can be ignored at O(κ). By substi-
tuting the expansion into Eqs.(A2-A3) and Eqs.(A5-A6),
we find the following relations for O(κ):

−γav + ap = −KSN(1− x2)
∑
ij

Aij sin(φSNj −φSNi )ri

(C2)

αap = apλ (C3)

aφλ =
γ

M
avλ (C4)

αapλ =
1

M
avλ. (C5)

One more equation is needed to close the system. We
use the zero-energy condition H(φ,v,p,λφ,λv,λp) = 0,
at O(κ2), which results in

0 = aφλav − αa
p
λap +

[apλ]2

2
. (C6)

Solving for the non-zero solution gives Eqs.(10) from the
main text. Note: we have assumed that the product,∑
ij Aij sin(φSNj −φSNi )ri, is negative in writing Eqs.(10),

given our sign convention. This property appears to
be general for the SN. Hence, R0 = −

∑
ij Aij sin(φSNj −

φSNi )ri= |
∑
ij Aij sin(φSNj −φSNi )ri|.

1. Single-cut saddle node

As with the fixed-point boundaries in Sec.B, we restrict
ourselves to SCSN for higher-order OPs, since the results
are comparatively simple. First, we start with the ansatz
φi(x) = φSNi + Cx(t)riκ

1/2[1 − 5
12κ], from Eq.(B8). The

next order in κ requires substituting this ansatz, as well
as the general expansion Eqs.(C1) into Eqs.(A2-A3) and
Eqs.(A5-A6) and collecting terms of O(κ3/2). As noted
in the previous section, the relevant time derivatives are

at lowest order O(κ3/2):

v̇i
ri

=
κ

3
2

C

dav
dx

av(x),
ṗi
ri

=
κ

3
2

C

dap
dx

av(x),

λ̇φi µ2

ri
=
κ

3
2

C

daφλ
dx

av(x),
λ̇vi µ2

ri
=
κ

3
2

C

davλ
dx

av(x),

λ̇piµ2

ri
=
κ

3
2

C

dapλ
dx

av(x) (C7)

When m = 3, again, all variables are parallel to the
Fiedler mode according to vi,3 = bv(x)ri, pi,3 = bp(x)ri,

λφi,3 = bφλ(x)ri/µ2 , λvi,3 = bvλ(x)ri/µ2 , and λpi,3 =

bpλ(x)ri/µ2. Substituting into Eqs.(C7), Eqs.(A2-A3) and
Eqs.(A5-A6), we find:

av
C

dav
dx

= −γbv + bp, (C8)

av
C

dap
dx

= −αbp + bpλ, (C9)

av
C

davλ
dx

= −bφλ +
γ

M
bvλ, (C10)

av
C

dapλ
dx

= αbpλ −
1

M
bvλ. (C11)

Equation (C8) requires elaboration. For SCSN, the cou-
pling term is∑
j

Aij sin(φj − φi) =
∑
j

Aij sin(φSNj − φSNi )+

Cκ
1
2

[
1− 5

12
κ
]
x
∑
j

Aij cos(φSNj − φSNi )[rj − ri]−

C2

2!
κ
[
1− 5

12
κ
]2
x2
∑
j

Aij sin(φSNj − φSNi )[rj − ri]2−

C3

3!
κ

3
2

[
1− 5

12
κ
]3
x3
∑
j

Aij cos(φSNj − φSNi )[rj − ri]3 + ...

(C12)

Note: all cosine terms vanish, since if i and j are in
the same subgraph, then ri = rj , and if they are not,
then |φSNj − φSNi | = π

2 . This means, for instance, that

P̄i +KSN[1 +κ]
∑
j Aij sin(φj −φi) only contains integer

powers of κ.

To close the system, we again use the zero-energy con-
dition at O(κ5/2). The resulting equation is:

∑
i

[
λφi,3vi,2 + λφi,2vi,3 +

1

M
λvi,2(−γvi,3 + pi,3)

− αpi,3λpi,2 − αpi,2λ
p
i,3 + µ2λ

p
i,2λ

p
i,3

]
. (C13)

Substituting Eqs.(C2-C6) into Eqs.(C8-C11) and
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Eq.(C13)

bv = −2
1
2M

γ3
K2

SNR
3
2
0 R

1
2
2 x[1− x2] (C14)

bp = −2
3
2M

γ2
K2

SNR
3
2
0 R

1
2
2 x[1− x2] (C15)

bφλ = 0, (C16)

bvλ = −2
3
2M2α2

γ2
K2

SNR
3
2
0 R

1
2
2 x[1− x2], (C17)

bpλ = −2
3
2

γ

[
1 +

Mα

γ

]
K2

SNR
3
2
0 R

1
2
2 x[1− x2]. (C18)

In order to calculate the action at next order, O(κ5/2),

we need to know λφi,4. This can be achieved using

Eqs.(C14-C18) and the zero-energy condition at O(κ3).

If we assume λφi,4 ∼ ri, then the calculation only requires
a fair bit of algebra. The result is:

λφi,4
ri

=−
4R2

0γα
3K2

SNµ3[1− x2]2
∑
i r

3
i

3µ3
2

− 4R2
0R2K

3
SNx

2[1− x2]

γµ2

− γα2KSNR
1
2
2 x

2[1− x2]

3R
1
2
0 µ2

. (C19)

Note, that all constants in Eq.(C19) can be given a
closed-form expression for SCSN, and depend only on
|S1| and |S2|. In Fig.5 we show the accuracy of our ex-
pansion for the UK grid with a SCSN, Fig.3(b)(top). In
Fig.5 panel (a), solutions of Eqs.(13) are shown in blue
for κ=0.001, and the O(κ) solution, Eqs.(10), is shown in
red. In panel (b), we plot the difference between the two
curves in panel (a) in blue, and compare to the O(κ2) so-
lution Eq.(C19) shown in red. The agreement is excellent
at both orders of κ.

-1.5 -1 -0.5 0 0.5

x
-1.0

-1.0 0.0 1.0

(a)

1.0

3.0

5.0

7.0

λφ

x
-7.0

-1.0 0.0 1.0

(b)

Error
2

-5.0

-3.0

-1.0

 1.0

FIG. 5. Near bifurcation comparison for SCSN. Computed
paths are shown in blue from Eqs.(13). (a) O(κ) solution,
(red) Eqs.(10). (b) O(κ2) solution (red) Eq.(C19).

Integrating our expressions for the phase-space vari-

ables to O(κ2) in λφi and O(κ
3
2 ) for all others, according

to Eq.(7), gives the action for SCSN at O(κ
5
2 ).

D. Non-Gaussian effects

We would like to know how the higher-moments of the
noise distribution contribute to the action in general. As
in the main text, we restrict ourselves to iid power fluctu-
ations. A clue comes from our solution for the OP at low-
est order in κ. Recall from Sec.C, that λφi,2 is determined

by the zero-energy condition at O(κ2) – where the noise
variance µ2 first appears in H(φ,v,p,λφ,λv,λp). The
general pattern is the following: the contribution propor-

tional to µn in λφi,2(n−1) is determined by the zero-energy

condition at O(κn). First, we can check that this pattern
holds for µ3, by looking at H(φ,v,p,λφ,λv,λp) = 0 at
O(κ3). Using our general expansion, we get an equation:

0 =
∑
i

[
λφi,4vi,2 + λφi,3vi,3 + λφi,2vi,4 +

1

M
λvi,4Ti,2+

1

M
λvi,3Ti,3 +

1

M
λvi,2Ti,4 − αλ

p
i,4pi,2 − αλ

p
i,3pi,3−

αλpi,2pi,4 + µ2λ
p
i,2λ

p
i,4 +

µ2

2
[λpi,3]2 +

µ3

3!
[λpi,2]3

]
.

(D1)

Note, we have introduced the notation Ti≡−γvi + pi +
P̄i +K

∑
j Aij sin(φj − φi) and Ti=

∑
m Ti,mκ

m
2 .

It is important to realize a few properties of the phase-
space coordinates. First, only the conjugate momenta,
(the λ’s), depend explicitly on the noise statistics. Sec-
ond, since O(κn) is the lowest order at which µn enters

the Hamiltonian, λφi,2(n−1)−j , λ
v
i,2(n−1)−j , and λpi,2(n−1)−j

∀j ∈ {1, 2, ..., 2(n − 2)} depend on µn−1, µn−2,... µ2,
but not on µn. Therefore, if λvi,4 and λpi,4 vanish from

Eq.(D1), then only two terms depend on µ3, i.e., λφi,4vi,2
and µ3

3! [λpi,2]3, and we can solve explicitly for the contri-

bution to λφi,4 from µ3.

Luckily, the terms proportional to λvi,4 and λpi,4 in

Eq.(D1) depend on the lowest order solution, which we
have explicit expressions for. In fact, Ti,2 = 0 and
−αpi,2 + µ2λ

p
i,2 = 0. Finally, we add an additional as-

sumption that λφi,4 ∼ ri, as with the SCSN, Eq.(C19).

With this assumption, the lowest-order (in κ) contri-

bution to λφi from µ3, denoted ∆(3)λφi is found from
Eq.(D1):

∆(3)λφi
ri

= −
µ3

∑
j [λ

p
j,2]3

3!
∑
j rjvj,2

. (D2)

Exactly the same argument can be used to calculate

∆(4)λφi , etc. The general expression is

∆(n)λφi
ri

= −
µn
∑
j [λ

p
j,2]n

n!
∑
j rjvj,2

. (D3)

Finally, the lowest-order contribution to the action
from µn is found from Eq.(7) – namely, integrating
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∆(n)λφi (x) over x. The result is Eq.(12) in the main text.
Note: the integral contributions from λvi and λpi can be
ignored, since vi and pi are at lowest order O(κ), while
φsi − φ∗i is O(κ1/2).

Furthermore, Eq. (12) can be used to compare the ac-
tions of two increment distributions that differ in the nth
moment. For instance, the difference in the action be-
tween a symmetric increment distribution (µ3 =0) and a
non-symmetric distribution (µ3 6=0), each with the same
variance µ2, is given by Eq.(12) with n = 3. Moreover,
as noted in the main text, if the power fluctuations are
assumed to be Gaussian white noise with a variance µ2,
then Eq. (12) gives the exponential correction to the
rate of desynchronization for non-symmetric (n = 3),
and symmetric (n = 4) increment distributions. Our ex-
pansion gives very accurate results for desynchronization
rates near bifurcation, as demonstrated in Fig.2.

For completeness, we note that for Gaussian white
noise, Hamilton’s equations are identical, except for
Eq.(A3):

ṗi
Guass
= −αpi + µi,2λ

p
i , (D4)

and the Hamiltonian Eq.(6):

H(φ,v,p,λφ,λv,λp)
Guass
=
∑
i

[
λφi vi − αpiλ

p
i +

µi,2
2

[λpi ]
2

+
λvi
M

(
− γvi + P̄i + pi +

∑
j

Kij sin(φj − φi)
)]
. (D5)

E. Synchronized subgraph approximation

As mentioned in the main text, in many cases the SN
bifurcation occurs with exact symmetry in the Fiedler
mode; namely, the network is partitioned into N sub-
graphs, S1,S2, ...,SN , where two nodes i and j in the
same subgraph Sn have ri=rj = r(n) at bifurcation. As
already noted, SCSN cases have N = 2, including trees.
Larger values of N occur for block-networks (or clique
trees), such as Fig.3(b)–the lower panel.

Since, the Fiedler mode is the weakest stable mode of
the network and the optimal desynchronization path is
parallel to ri over several orders in κ, as demonstrated
in previous sections, we simply assume (as an approxi-
mation) that all nodes within the same subgraph, e.g.,
n, are synchronized: φi − φSNi = Φn, vi = Vn, pi = Pn,

λφi = lφn, λvi = lvn, and λpi = lpn ∀i ∈ Sn. We can find an
approximate set of Hamilton’s equations for such OPs by

simply averaging over all nodes within a subgraph:

Φ̇n =
∑
i∈Sn

φ̇i
|Sn|

, V̇n =
∑
i∈Sn

v̇i
|Sn|

,

Ṗn =
∑
i∈Sn

ṗi
|Sn|

, l̇φn =
∑
i∈Sn

λ̇φi
|Sn|

l̇vn =
∑
i∈Sn

λ̇vi
|Sn|

l̇pn =
∑
i∈Sn

λ̇pi
|Sn|

. (E1)

Performing these averages over the original Eqs.(A1-
A6) results in network coupling terms

Xn =
∑

i∈Sn,j /∈Sn

Aij sin(φj − φi) and (E2)

Yn =
∑

i∈Sn,j /∈Sn

Aij cos(φj − φi)[λvj − λvi ] (E3)

Let us specify an index function which maps the node
number i to its subgraph number n, i.e., F (i)=n. Using
this notation, the coupling terms become:

Xn =
∑

i∈Sn,j /∈Sn

Aij

[
sin(φSNj −φSNi ) cos(ΦF (j) − ΦF (i))

+ cos(φSNj − φSNi ) sin(ΦF (j) − ΦF (i))
]

(E4)

Yn =
∑

i∈Sn,j /∈Sn

Aij

[
cos(φSNj −φSNi )sin(ΦF (j)−ΦF (i))[l

v
F (j)−l

v
F (i)]

− sin(φSNj −φSNi )cos(ΦF (j)−ΦF (i))[l
v
F (j)−l

v
F (i)]

]
.

(E5)

Now, since all phase-space variables are assumed to be
synchronized within subgraphs, we can define the follow-
ing coupling matrices between subgraphs n and n′

Snn′ =
∑

i∈Sn,j∈Sn′

Aij sin(φSNj − φSNi ), (E6)

Cnn′ =
∑

i∈Sn,j∈Sn′

Aij cos(φSNj − φSNi ). (E7)
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Therefore, the synchronized subgraph equations become

Φ̇n = Vn, (E8)

M V̇n = −γVn + Pn+
∑
i∈Sn

P̄i
|Sn|

+

KSN[1 + κ]

|Sn|
∑
n′ 6=n

Snn′ cos(Φn′−Φn)+Cnn′ sin(Φn′−Φn),

(E9)

Ṗn = −αPn +
∑
m

νmgm exp{gmlpn} (E10)

l̇φn = −KSN[1 + κ]

M |Sn|
∑
n′ 6=n

[
Cnn′ cos(Φn′−Φn)[lvn′ − lvn]

− Snn′ sin(Φn′−Φn)[lvn′ − lvn]

]
,

(E11)

l̇vn = −lφn +
γ

M
lvn, (E12)

l̇pn = αlpn − lvn/M. (E13)

In general, the matrices Eqs.(E6-E7) have to be com-
puted numerically at the saddle-node bifurcation in order
to solve Eqs.(E8-E13).

However, for SCSN the results simplify significantly.
In this case n = 1, 2, and C2,1 = C1,2 = 0 and S2,1 =
−S1,2 = 1. In addition, we notice that the effective two-
oscillator system for SCSN can be reduced to one by in-
troducing the relative coordinates: Ψ = Φ1−Φ2, V = Ψ̇,

P =P1−P2, ΛΨ = |S1|lφ1 =−|S2|lφ2 , ΛV = |S1|lv1 =−|S2|lv2 ,
and ΛP = |S1|lp1 =−|S2|lp2. The result is Eqs.(13) in the
main text.

In addition, Eq.(E8-E13) can be used as a coarse-
grained approximation for networks without exact sym-
metry in the Fiedler mode at bifurcation. One simply
groups together nodes in a subgraph if they have similar
Fiedler-mode values, where similar means within some
tolerance ε, e.g.,

∣∣∑
l∈Snrl/|Sn|− ri

∣∣ < ε. An example
is shown in Fig.6, for the UK power-grid example from
Fig.3 without symmetry at bifurcation (magenta). Plot-
ted is the Fiedler mode at bifurcation versus the node
number, i. Blue, magenta, green, and cyan nodes were
placed in the same subgraphs, since node Fiedler-mode
values were within 5% of one another (for similarly col-
ored nodes). Each of the red nodes was treated as a
subgraph (of size one). The total number of subgraphs
was twenty given this partition. The coupling matrices
Eqs.(E6-E7) were computed at bifurcation, and the OPs
were solved from Eqs.(E8-E13) with twenty subgraphs.

F. Parameter heterogeneity

In this section we show that our expansion in κ and
the SSA are robust to parameter variation. Instead
of being homogeneous, we let M , γ, and α be drawn

0.10

0.0

-0.10

0 40

r

80 120
i

i

FIG. 6. Fiedler mode at bifurcation for the UK grid-example
from Fig.3 without symmetry (magenta). Blue, magenta,
green, and cyan nodes were placed in the same subgraphs,
since their values are within 5%. Each of the red nodes was
treated as a subgraph.
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(3)S
(4)S
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FIG. 7. Difference in the action between Gaussian and non-
Gaussian noise for several values of parameter heterogeneity.

from uniform distributions, independently for each node.
Given a heterogeneity scale parameter η, we let Mi =
M0[1.0 + η(Ri,M − 0.5)], γi = γ0[1.0 + η(Ri,γ − 0.5)],
and αi =α0[1.0 + η(Ri,α − 0.5)], where Ri,M , Ri,γ , and
Ri,α are independent, random numbers drawn uniformly
over [0, 1]. In this section , we take M0 = 0.02546s2,
γ0 =0.10053s, and α0 =1s−1.

Figure 8 compares predictions of Eq.(12) with the com-
puted difference in the actions between Gaussian and
non-Gaussian noise. The computed actions were found
by solving Eqs.(A1-A6). Note: in Eqs.(A1-A6) M→Mi,
α→αi and γ→γi. Results are shown for several levels of
the heterogeneity parameter η and are labeled by the av-
erage coefficient of variation, i.e, cv≡

[
σM
〈M〉+

σγ
〈γ〉+

σα
〈α〉
]
/3,

where σq and 〈q〉 denote the standard deviation and av-
erage for parameter q. The underlying network corre-
sponds to Fig.2(b). We see good agreement between
numerics and Eq.(12) despite significant heterogeneity,
particularly for skewed noise distributions.

Similarly, we perform computations using the SSA for
single-cut-saddle-nodes with homogeneous parameters,
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Eqs.(13-14), and compare with heterogeneous parame-
ters. For example, Figure 8 shows such a compare for
the network drawn in Fig.4(b). The computed actions
are shown in blue and the SSA results are shown with
a black-line for skewed noise (see Sec.G). Again, we see
good agreement despite the heterogeneity.

skew, SSA

skew, cv=0.20

skew, cv=0.10

skew, cv=0.04

0.05 0.10
0

10

 S 20

30

40

0.15 0.20

FIG. 8. Action for a network with a single over-loaded edge,
i.e., Fig.4(b), with parameter heterogeneity.

G. Simulations

Monte-Carlo simulations were performed using a com-
bination of Gillespie’s algorithm for power fluctuations,
pi, and Euler’s method for integrating Eqs.(1-3) between
reaction times. For illustration, let us assume that the
noise is independent and identically distributed (iid) for
each node. The stochastic rate for the next reaction is
R =

∑
i,m νim = N

∑
m νm. The next reaction time

is stochastically selected ∆T = −ln(r1)/R, where r1 is
a uniformly distributed random number over the unit
interval. Since the noise is iid, the node which re-
ceives the increment is selected uniformly at random from
the N nodes. Another random number is generated,
P = r2

∑
m νm, where r2 is a uniformly distributed ran-

dom number over the unit interval. The nth increment
is chosen if

∑n−1
m=1 νm < P <

∑n
m=1 νm. Equations (1-3)

are integrated with Euler’s method from t to t+∆T with
time steps dt=4 ∗ 10−5, at which time the selected node,
e.g,. i, has its power incremented: pi→ pi+gn. On the
other hand, for Gaussian noise the Euler-Milstein method
was used with dt=4 ∗ 10−5.

The wind-turbine data was taken from [21]. The data
consists of power measurements at 1-second resolution
for 12 turbines, each rated at 2MW. We averaged over
the available data at each time step and histogrammed
the power increments p(t + 1)−p(t) using 60 uniformly
spaced bins (M= 60). The result is shown Fig.1(a). In
order to make desynchronization less rare, we artificially
increased the occurrence rate for the Poisson pulses, such
that

∑
m νm=10s−1 (not 1s−1). For reference, the noise

variance for iid wind-turbine noise given our model is
µ2 = 5.8317 ∗ 10−4s−1. On the other hand for skewed
noise comparisons, we chose a simple two-pulse model:
νm ∈ {10, 3.33333} and gm ∈ {−0.0038183, 0.0114549},
which has the same variance as the wind-turbine model.

Lastly, each Monte-Carlo point in Figs.2-3 represent
the log of the average of 200 slip times – defined as the
time it takes to see a phase difference greater than 2π
develop between any connected oscillators. Each of the
slips were generated from the phase-locked state initial
conditions and with different random number seeds. All
simulations in Fig.3 were done with skewed noise except
for the block network (cyan), for which we used the wind-
turbine noise.
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[14] B. Schäfer, M. Matthiae, X. Zhang, M. Rohden, M.
Timme, and D. Witthaut, Phys. Rev. E 95, 060203(R)
(2017).

[15] J. Creaser, K. Tsaneva-Atanasova, and P. Ashwin, SIAM
J. Appl. Dyn. Syst. 17, 500 (2018).

[16] J. Hindes and I. B. Schwartz, Chaos 28, 071106 (2018).
[17] L. DeVille, Nonlinearity 25, 1473 (2012).
[18] M. Tyloo, R. Delabays, and P. Jacquod, Phys. Rev. E

99, 062213 (2019).
[19] X. Zhang, S. Hallerberg, M. Matthiae, D. Witthaut, and

M. Timme, Science Advances 5, 7 (2019).
[20] J. Lipinski-Kruszka, J. Stewart-Ornstein, M. W. Cheva-

lier, and H. El-Samad, ACS Synth. Biol. 4, 258 (2015).
[21] H. Haehne, K. Schmietendorf, S. Tamrakar, J. Peinke,



12

and S. Kettemann, Phys. Rev. E 99, 050301(R) (2019).
[22] Y. Kawamura and H. Nakao, Phys. Rev. E 94, 032201

(2016).
[23] Q. Guo and F. Wan, PLOS ONE 12, 12 (2017).
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