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Recent years have witnessed a growing interest in using machine learning to predict and identify
critical dynamical phase transitions in physical systems (e.g., many body quantum systems). The
underlying lattice structures in these applications are generally regular. While machine learning has
been adopted to complex networks, most existing works concern about the structural properties.
To use machine learning to detect phase transitions and accurately identify the critical transition
point associated with dynamical processes on complex networks thus stands out as an open and
significant problem. Here we develop a framework combining supervised and unsupervised learn-
ing, incorporating proper sampling of training data set. In particular, using epidemic spreading
dynamics on complex networks as a paradigmatic setting, we start from supervised learning alone
and identify situations that degrade the performance. To overcome the difficulties leads to the idea
of exploiting confusion scheme, effectively a combination of supervised and unsupervised learning.
We demonstrate that the scheme performs well for identifying phase transitions associated with
spreading dynamics on homogeneous networks, but the performance deteriorates for heterogeneous
networks. To strive to meet this challenge leads to the realization that sampling the training data
set is necessary for heterogeneous networks, and we test two sampling methods: one based on the
hub nodes together with their neighbors and another based on k-core of the network. The end result
is a general machine learning framework for detecting phase transition and accurately identifying
the critical transition point, which is robust, computationally efficient, and universally applicable
to complex networks of arbitrary size and topology. Extensive tests using synthetic and empirical
networks verify the virtues of the articulated framework, opening the door to exploiting machine
learning for understanding, detection, prediction, and control of complex dynamical systems in
general.

I. INTRODUCTION

A research frontier across many disciplines of science
and engineering is machine learning [1]. In physics,
machine learning has attracted a great deal of atten-
tion because of its demonstrated ability to detect, pre-
dict, and uncover various phases of matter in quan-
tum many-body systems [2–13]. Not only can neural-
network based machine learning generate phases or states
of matter that are already known [4, 5, 7, 12] or un-
cover phase transitions [2, 3, 6], it can also predict out-
of-equilibrium phases of matter that have not been pre-
viously known [13]. In most existing works, the paradig-
matic setting where machine learning, supervised or un-
supervised, has been demonstrated to be effective and
powerful is the Ising type of spin dynamics on a lat-
tice. For example, the principal component analysis
(PCA) [14] for dimension reduction of data set was ex-
ploited to uncover phase transitions with unsupervised
learning, where samples with low and high temperatures
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were found to concentrate/distribute in different regions
of the learning space [2]. It was also demonstrated that
the threshold or the critical phase transition point of
the Ising model can be predicted through deep learn-
ing [15], an important class of machine learning, where
feed-forward neural networks or convolutional neural net-
works were employed to extract the necessary structural
information [6, 7]. All these accomplishments benefited
greatly from the regular topology of the underlying Ising
spin lattice.

In the past two decades, researches on complex net-
works have yielded unprecedented insights into the work-
ing of a large variety of natural, social, and engineering
systems [16]. A complex network, by definition, has a
complex topology and, as a natural phenomenon associ-
ated with network dynamics, the emergence of distinct
phases and phase transitions are ubiquitous [17]. The
main question to be addressed in this paper is: can phase
transitions associated with dynamical processes in com-
plex networks be “machine-learned”?

While there were recent efforts in incorporating ma-
chine learning into complex networks [18–22], the stud-
ies were limited to learning the structural information of
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the network. For example, network representation learn-
ing in which a complex network is dimensionally reduced
with most of its structure information intact has found
applications in problems such as link prediction [23], clus-
tering [24], and node classification [25]. Based on random
walk and graph search algorithms, the algorithm named
“node2vec” can embed the network topology into a lower
dimensional space by integrating macroscopic and mi-
croscopic structural information about the network [19].
The algorithm “Deepwalk” finds a way to unite skipgram,
a natural language processing technique, with random
walk sequences on graphs [18], providing a concise solu-
tion to graph embedding. Furthermore, it was proved
that the performances of deep learning models such as
graph convolutional neural networks [20] and structural
deep network embedding [21] can be equivalent to those
of traditional, random-walk based methods. The key as-
pect that distinguishes our present work from the pre-
vious works is that we exploit machine learning to deal
with dynamics responsible for phase transitions on com-
plex networks.

To be concrete, we exploit machine learning to predict
phase transitions associated with a fundamental type of
dynamics on complex networks: epidemic spreading [26–
33]. The dynamical process typically exhibits a second-
order phase transition as in the Ising model, and to accu-
rately identify the threshold or critical point of the phase
transition has been an active research topic. A widely
studied method is the so-called “degree-based mean field”
approach [17, 26], which gives the theoretical threshold
as 〈k〉 /

〈
k2
〉
, where 〈k〉 and

〈
k2
〉

are the first and second
moments of the degree distribution, respectively. Strictly,
the theoretical prediction is valid only in the limit of in-
finite network size, so for any real world networks, there
is always a discrepancy between the predicted and simu-
lated threshold values, where the latter can be obtained,
e.g., by using Monte-Carlo simulations through measures
such as network susceptibility [34], variability [35] or the
average lifetime [36]. The basic idea and working princi-
ple of our machine learning based approach differ funda-
mental from those of the existing methods.

To apply machine learning for predicting the epidemic
threshold, a difficulty must be overcome: a complex net-
work has a hierarchy of structural irregularities and con-
tains rich features such as hubs, k-cores and communi-
ties, making it challenging for machine learning to grasp
the structural and dynamical information. For exam-
ple, the PCA method that is effective for regular lattices
usually fails to exhibit any clustering behavior for com-
plex networks, on which the effectiveness of the learning
algorithm depends. Compounding this difficulty is the
complicated interplay between network structure and dy-
namics. To meet the challenge, we develop a systematic
learning framework. In particular, we adopt and com-
bine two different learning methods: supervised and un-
supervised learning, to identify the relation between the
configuration data of all nodal states and the epidemic
phase of the system. We demonstrate that, while su-

pervised learning works well in ideal cases, there is lack
of robustness in identifying the threshold when some la-
beling information about the training data set is incor-
rect or missing. The unsupervised learning method we
adopt is confusion scheme [6], which can be used to iden-
tify the threshold without requiring any prior knowledge
about the labels. We find that, while this scheme works
well for homogeneous networks, it is largely ineffective
for heterogeneous networks. The origin of this difficulty
can be understood by a physical analysis of the relative
roles of the hub nodes and the small-degree nodes in the
spreading dynamics. Aided by this understanding, we
articulate two distinct sampling methods to render the
confusion scheme applicable to heterogeneous networks:
hub-and-neighbors and max-k-core sampling. We show
that incorporating either sampling method can greatly
improve the performance of deep learning in identify-
ing the epidemic threshold for heterogeneous networks.
For example, with sampling the algorithm underlying the
confusion scheme is robust against noise and asymmetry
of labeling information.

Overall, our deep learning framework is effective for
different types of network topology, is robust, and is com-
putationally efficient and consequently applicable to large
networks. Our work has thus demonstrated that ma-
chine learning can be powerful for identifying the phase
transition associated with epidemic dynamics on complex
networks of any topology. Our framework combining su-
pervised and unsupervised learning as well as incorporat-
ing sampling goes beyond the existing works on learning
based identification of matter phases in regular lattices in
physics and those applicable only to detecting the struc-
tural information of complex networks in computer sci-
ence. In fact, our deep learning framework provides the
base for potential generalization to broad applications
such as predicting the phases for more diverse types of
dynamical processes on complex networks and identify-
ing the matter phases in complex physical materials.

II. EPIDEMIC SPREADING AND DEEP
LEARNING FRAMEWORK

We describe the basics of our machine learning frame-
work for identifying phase transitions on complex net-
works, which include the epidemic spreading model, the
structure of the training set, and the neural network
model underlying deep learning.

A. Epidemic spreading and measure of
susceptibility

We consider the classical SIS process on complex net-
works [16]. During the spreading, each infected node
transmits the disease to its susceptible neighbors at the
infection rate β, and the infected nodes return to the
susceptible state at the recovery rate µ. There are two
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FIG. 1. Illustration of the neural network structure in our deep learning framework. Labeled data set is used as input and
the learning process as illustrated is supervised. There is a hidden layer of 100 neurons and a single-neuron output layer to
generate the probability of the identified phase of the dynamical process on a complex network.

distinct phases associated with SIS dynamics: active and
absorbing, where in the former there are both suscepti-
ble and infected nodes in the network but, for the latter,
there is no longer any infected node. The effective infec-
tion rate is defined as the ratio of the infection rate to
the recovery rate: λ = β/µ, and the critical value of the
effective infection rate is denoted as λc. For λ < λc, the
system approaches the absorbing state after a long time
evolution. In this case, the system is in the absorbing
phase. For λ > λc, asymptotically the system will enter
into an endemic state where the density of the infected
nodes reaches a stable value. In this case, the whole net-
worked dynamical system in the active phase.

We use synchronous updated Monte Carlo method to
simulate epidemic spreading processes in networks. In
the absorbing phase, the nodal states are all identical,
rendering them improper for training. Near the phase
transition point, i.e., when the value of λ is in the vicinity
of λc (|λ− λc| & 0), there is a high probability for the
system to be trapped in the absorbing state. To overcome
this difficulty, we use the quasi-stationary method [37] to
prevent the system from entering the absorbing state.
Especially, whenever the system tends to the absorbing
state, we change its state to that of the previous time
step.

The epidemic threshold of the SIS process can be con-
veniently characterized by the measure of susceptibil-
ity [34] defined as

χ = N

〈
ρ2
〉
− 〈ρ〉2

〈ρ〉
, (1)

where ρ is the density of the infected nodes (i.e., the order

parameter), N is the network size, 〈ρ〉 and 〈ρ〉2 are the
first and second moments of ρ, respectively. The order
parameter associated with the second-order phase transi-
tion typically exhibits a power-law distribution near the
critical point. As a function of the effective infection rate
λ, the susceptibility measure reaches its maximum value
at λχc , the threshold of the epidemic process or the phase
transition point.

B. Training data set

For the underlying neural network to learn the sys-
tem dynamics, proper training data set is needed. To
make it more specific, let us consider that our data set
is basically ordered along a tuning parameter λ, which is
also the control parameter of the phase transition. The
training data with a certain value of λ is represented by
s(λ). And it consists of a set of binary vectors, expressed

as sm×N (λ) = [a1, a2, ..., aN ]
m×1

, where m is the number
of configurations including microcosmic dynamical states
for all nodes at a time for a given λ, and ai is the binary
dynamical state of node i in one configuration. In par-
ticular, ai = 1 means that node i is in the infected state
while ai = 0 indicates that i is susceptible. The system
phase of every training data of configuration is labeled by
function l(λ) = H(λ− λc), where λc is the ground truth
(or fake truth) that is preset in advance and H represents
the unit step function H(x) = d

dxmax{x, 0}, x 6= 0. For
any finite size network, we use label l(λ) = 0 to denote a
system configuration being in absorbing state for λ ≤ λc
and l(λ) = 1 for an active sate with λ > λc.
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In the training procedure, a large data set of differ-
ent s(λ)s and corresponding labels L(λ) are fed into the
neural network F . The output of the neural network
gradually approaches the preset label L(λ) through the
training process called “back propagation” (see appendix
for detailed information). That is to say we try to make
F(s(λ)) → L(λ) by optimizing the parameter set of the
neural network PF through “back propagation” to mini-
mize a cost function C(F(s(λ)),L(λ)). The cost function
is used to describe the mismatch between the network’s
judgment and the real answer quantitatively. It can
be minimized by a lot of optimization methods such as
stochastic gradient descent (SGD) [38] and ADAM [39].
Actually the neural network is thought to be a high-level
mapping function that takes data s(λ) to infer the prob-
ability distribution F(s(λ)) = p0, where p0 (1− p0) rep-
resents the inferred probability that s(λ) is in the phase
of absorbing (active) state.

C. Neural network architecture

The gist of our deep learning framework is binary clas-
sification in machine learning, adapted to dynamical pro-
cesses on complex networks. The training data set is like
a set of feature-label pairs (s1, l1), (s2, l2), . . . , (sm, lm)
where si is the feature vector and li is the correspond-
ing ground truth (either 0 or 1 to represent two classes)
and is called label. A classifier F is supposed to be con-
structed by learning the hidden information in the data
set, and is used to classify the new unlabeled data sm+1,
which is also called “test data set”.

The learning process is carried out by a feed forward
neural network (FFNN) that receives a set of labeled
training data and passes the data from one layer to the
next - a forward propagation process. The output layer
generates results that can be compared with the given
labels of the training set, triggering a back propagation
process to minimize the cost function which enables the
weights (and biases) of each layer to be updated. More
specifically, we construct our learning model with Ten-
sorFlow [40]. As illustrated in Fig. 1, the neural network
consists of three dense layers. The input layer contains
N neurons, where N is exactly the size of the complex
network on which the epidemic dynamical process occurs.
As the input goes in, the value in each input neuron is the
epidemic state of a node (either 0 or 1). The hidden layer
has 100 neurons, each being fully connected with the in-
put layer. We impose the ReLU activation function on
the hidden layer to achieve a nonlinear mapping of the
input data to the layer [41, 42]. The general advantage of
ReLU is that it can prevent the detrimental phenomenon
of gradient vanishing in learning and expedite the con-
vergent process as compared with the sigmoid function.
We use L2 regularization method to avoid over-fitting.
The output layer has only one neuron whose output is
constrained between zero and one by the sigmoid func-
tion, which represents the probability that the original

FIG. 2. Identifying phase transition on a random regular net-
work through supervised learning. (a) The output of the neural
network averaged over a test set versus the effective infection
rate λ for different preset threshold values of the SIS spread-
ing dynamics. For relatively smaller (larger) value of λ than
the preset threshold value as marked by a vertical dashed line,
the corresponding label will be zero (one). (b) The relation-
ship between the identified and preset threshold values. The
neural network’s prediction depends on the preset threshold
value. The structural parameters of the random regular net-
work are N = 1000 and 〈k〉 = 10.

complex networked system is in a certain phase. Specif-
ically, if the output is 0 (1), the neural network regards
the state of the input data as belonging to the absorb-
ing (active) phase with probability one. We use Adam
optimizer [43] to improve the learning efficiency. Some
hyper- parameters for the neural network are: batch size
Nb = 128, learning rate α = 0.001, and regularization
parameter l2 = 0.01 (see Appendix for details).

III. IDENTIFYING THRESHOLD THROUGH
SUPERVISED LEARNING AND ISSUES

The principle to identify the threshold value through
supervised learning can be described, as follows. Sup-
pose a training data set in the matrix form as described
in Sec. II B is available, where each row records the states
of all nodes in the network at a given time (i.e., a given
configuration). Suppose further that the corresponding
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FIG. 3. Identification of phase transition through supervised
learning with truncated training data set on a random regu-
lar network. (a) Threshold of phase transition identified via
supervised learning with truncated data sets. Data points in
the yellow area are artificially removed from the training set
and the neural network makes the judgment only by learning
the data in the blue area. The three curves show that the out-
put shifts when the center λ value of the training set changes
from 0.1 to 0.1095. (b) Robustness against asymmetry of data
set. Shown is the relationship between the predicted thresh-
old value and the center of the training set. When the range
of the training set is shifted while keeping the number of data
points in the training set unchanged, the identified threshold
will change.

label vector characterizing the state of each network con-
figuration is available, as illustrated in Fig. 1. The aim
of supervised learning is to identify the relation between
data and labels. In particular, the training set is fed
into the neural network in Fig. 1 to reveal some hidden
patterns in the data. For λ � λc, after multiple times
of training, the neural network can correctly classify the
test set even without the labels. In this case, there is little
confusion for the neural network to recognize the phase
associated with the dynamical process on the complex
network, which can then be correctly recognized. For
λ = λc, the average output of the last layer will be about
0.5, meaning that only half of the data are correctly clas-
sified. This corresponds to the case where the maximum
amount of confusion arises, providing a criterion for the
neural network to identify the threshold.

To gain insights, we test supervised learning on ran-
dom regular networks. Figure 2(a) shows that, when the
output of the neural network reaches the value of 0.5, the
corresponding value of λ is quite close to the threshold
value λχc . Note that the identified threshold value de-
pends on the label information in a given training data
set. In an actual situation, we may not know all the
label information of a training set, especially when the
state of the underlying dynamical network is near the
threshold. To simulate this situation, we deliberately
change the boundary (i.e., a preset threshold) between
the labels zero and one so as to make incorrect the label
information of the training data between the preset and
the true threshold values. For example, there are wrong
labels for the training data between the green and blue
dot-dashed lines in Fig. 2(a), where the preset threshold
is 0.1025 while the true threshold is about 0.1050. As
shown in Fig. 2(b), the identified threshold value via su-
pervised learning deviates from the true threshold and
increases with the preset threshold value. This means
that wrong labeling information near the threshold can
render supervised learning ineffective at identifying the
threshold.

To overcome the difficulty associated with missing la-
bels and/or the network spreading dynamics being near
the threshold, we truncate the training data set. In par-
ticular, we remove the data points near the critical area
and retain only those far away from the threshold value
whose labels are much less confused. We find that the
neural network can still infer the information pertinent
to missing data points by learning the retained data and
identifying the threshold, as shown by the middle curve
in Fig. 3(a). Another issue that may arise with data set in
real applications is the asymmetry of the truncated data
set. To study how the asymmetry affects the effectiveness
of supervised learning, we shift the data set so that the
threshold is no longer the center of the truncated area.
Figure 3(b) shows that the identified threshold deviates
markedly from the true value, indicating that supervised
learning is sensitive to the asymmetry of the truncated
data set.

Is identification of phase transition through supervised
learning robust against noise? To address this issue, we
deliberately invert a proportion of the labels for the train-
ing data set and investigate whether the “artificial” noise
can affect the predicted threshold value. Figures 4(a)
and 4(b) demonstrate that the performance of supervised
learning is robust against noise. Especially, as the label-
ing error rate increases, the output of the neural network
oscillates but within a relatively small range.

The results in Figs. 2-4 indicate that supervised learn-
ing for identifying phase transition on random regular
networks works well but only when the data set near the
threshold are removed. The resulting inevitable asymme-
try in the truncated data set is detrimental, but noise has
little effect on the performance of supervised learning.
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FIG. 4. Robustness of threshold identification via supervised
learning against noise. For a random regular network, (a)
the output curve (output of the neural network versus the
effective infection rate) under different noisy inputs: noise
has little effect on the curve. (b) The relationship between the
identified threshold and the error rate of the training labels.
The predicted value oscillates about the output value with
zero noise and exhibits a slightly upward trend as the labeling
error rate is increased.

IV. LEARNING BY CONFUSION SCHEME
AND THE NECESSITY OF INCORPORATING

SAMPLING

As demonstrated in Sec. III, the main deficiency of su-
pervised learning is that it requires information about the
labels to be accurate and complete and the training data
set be symmetric with respect to the true threshold. To
overcome these difficulties, we propose a general frame-
work combining both supervised and unsupervised learn-
ing for accurate and efficient identification of dynamical
phase transition in complex networks. We exploit the
method of confusion scheme that can make precise pre-
diction without any prior knowledge about the labels [6].
The confusion scheme is a supervised learning method
utilizing some thoughts of unsupervised learning. The
only difference between confusion scheme and original su-
pervised learning is that the labels of confusion scheme
method are man-made guesses instead of ground truths.

As our data are indexed by parameter λ, we can avoid
using any prior knowledge by making a “good guess” of
the true critical point, and the number of candidates in
total is merely M+ 1 where M is the number of differ-
ent λs existing in our data set. It’s affordable to perform
a “brute force”-like guess because the data set has been
sorted, and the result can thus be inferred by the output
accuracy of our neural network.

Suppose we have a set of unlabeled network configu-
ration data ranging from λmin to λmax. Let λc be the
unknown true threshold value, where λmin ≤ λc ≤ λmax.
We assign tentative labels to the data set by assuming
that the threshold is λ′c, where λmin ≤ λ′c ≤ λmax. Espe-
cially, we assign label zero to all configurations for λ ≤ λ′c
and label one to those with λ > λ′c. We then choose a
number of closely spaced values of λ′c. For each value
of λ′c, we conduct the training and obtain the classifica-
tion accuracy. Ideally, we expect the accuracy to exhibit
a W -shape kind of behavior versus λ′c, as schematically
illustrated in Fig. 5, which can be argued, as follows.
For λc

′ = λmin, every row of the training set is labeled
as one, so the neural network regards the data of every
pattern as in the activation phase, giving rise to 100%
accuracy of prediction. Similar result is expected for
λ′c = λmax. For λc

′ = λc, the method reduces to be-
ing supervised learning because the tentative or “fake”
labels happen to be correct under the circumstance. As
described in Sec. III, the neural network can yield a high
classification accuracy in this case. For λmin < λc

′ < λc
or λc < λc

′ < λmax, the neural network will be “con-
fused” for some data whose labels are exactly opposite
to the true values, thereby leading to a decrease in the
accuracy. Overall, a W shape of the dependence of the
accuracy on the value of λ′c arises, where the location
of the peak in the middle corresponds to the identified
threshold. If there is no phase transition in the threshold
range [λmin, λmax], the accuracy versus λ′c would exhibit
a universal U shape. The emergence of a W -shape curve
is thus unequivocal indication that there is phase tran-
sition in the system and the correct transition point (or
threshold) can be identified accordingly without requir-
ing any prior knowledge about the labels.

We test the confusion scheme on both homogeneous
and heterogeneous complex networks. Figure 6(a) shows
that the scheme can successfully identify the threshold
on random regular networks. For this network topology
and parameters, direct simulation of the SIS dynamics
reveals a second-order phase transition at λ ≈ 0.1050.
When the “fake” threshold value λ′c is varied in a range
that contains the transition point, e.g., [0.096, 0.116], the
confusion scheme indeed yields an overall W -shape type
of behavior and the position of the middle peak occurs at
λ′c ≈ 0.1067, which is indistinguishable from the actual
threshold value. In general, the scheme is quite effective
for detecting phase transition with an accurate identifi-
cation of the transition point for homogeneous networks.

For heterogeneous networks such as scale-free net-
works, a direct application of the confusion scheme turns
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FIG. 5. Schematic illustration of the working of confusion
scheme to detect phase transition and to identify the transition
point. For a range of tentatively assigned threshold values, the
curve of classification accuracy of supervised learning versus
the threshold value will exhibit a W -shape, if there is a phase
transition associated with epidemic dynamics on the network.
The location of the middle peak gives an accurate prediction
of the true threshold value. If the network dynamics do not
exhibit a phase transition, the curve would exhibit a U shape
(see text for a detailed reasoning).

out not to be effective. As demonstrated in Fig. 6(b), the
accuracy curve does not exhibit an apparent W shape
in the chosen threshold range, whereas an actual phase
transition occurs at λ ≈ 0.0885. A possible reason is
that, in a typical heterogeneous network, nodes of rel-
atively large degrees are more prone to infection. Near
the epidemic threshold, there are many nodes of small
degrees which can hardly be infected. These nodes make
the data set sparse by assuming the zero value most of
the time and force the neural network to learn with an
unbalanced data set. This will affect the learning process
and prevent it from making the right decision.

To enhance the applicability of the confusion scheme
for heterogeneous networks, we articulate to incorporate
some proper, nodal importance based sampling proce-
dure into the scheme. Specifically, we aim to extract the
state information of the important nodes and disregard
that from the less important nodes. In the context of epi-
demic spreading, a straightforward criterion to determine
the nodal importance can be obtained by addressing the
key question: who are the major spreaders? Intuitively,
nodes with large degrees are relatively more important
in the spreading process [44]. To provide a physical rea-
soning, we consider the hub node with the largest degree
in the network. If it is infected, all of its neighbors are
likely to be infected subsequently. However, importance
of this sort will be greatly reduced if the hub node is
located at the periphery of the network, implying that
the hub nodes in the central area or core of the net-
work would have greater importance [45, 46], where the
max k-core [47] can be used to define the core of the net-

work. We henceforth propose two sampling methods: (1)
to extract the state information of the hub node with a
maximum degree and its neighbors - hub-and-neighbors
sampling and (2) to extract the information of the max
k-core sub-graph - max-k-core sampling. As shown in
Fig. 6(c), when the hub-and-neighbors sampling proce-
dure is applied to the same scale-free network in Fig. 6(b),
the neural network can detect the phase transition and
identify the transition point. For the scale-free network,
there are 314 nodes in the star graph that consists of the
hub node and its neighbors. The peak value of suscepti-
bility is about 0.0635 and the middle peak of the accuracy
curve in Fig. 6(c) as generated by the confusion scheme
is about 0.0642, which is the predicted transition point
λc. In fact, after incorporating the sampling procedure,
the learning results from the scale-free network are bet-
ter than those for the homogeneous network as shown in
Fig. 6(a).

To compare the performances of the two sampling
methods, we generate an ensemble of scale-free networks
using the uncorrelated configuration algorithm [16] whose
degree exponent ranges from 2.0 to 3.0. As shown in
Fig. 6(d), both sampling methods perform well, making
the neural network powerful at identifying the epidemic
threshold accurately. As both sampling methods give es-
sentially the same performance, it suffices to focus on
the sampling size (i.e., size of the sub-graph) to reduce
the cost of computation time, which is desired for large
networks.

To address the issue of asymmetric labels associated
with supervised learning, we carry out a symmetry anal-
ysis of the confusion scheme. As shown in Figs. 7(a) and
7(b), the middle peak of the accuracy curve remains un-
changed when the range of the training data set is shifted,
indicating that introducing sampling into the confusion
scheme can overcome the difficulty associated with asym-
metry arising when no sampling is performed. Insofar
as there is a phase transition in the given range, the
threshold can be accurately identified. Figures 7(c) and
7(d) demonstrate the robustness of the confusion scheme
against noise or mislabeling. As the proportion of the
erroneous labels increases from 2% to 20%, the accuracy
curve exhibits only small fluctuations, and the location
of the middle peak does not change and can still be un-
equivocally identified.

V. APPLICATIONS TO REAL WORLD
NETWORKS

We test the performance of our framework combin-
ing supervised learning and the unsupervised confusion
scheme on a number of real world networks. Figures 8(a)
and 8(b) illustrate the outputs of the neural network un-
der supervised learning with two real world data set in-
corporating the two sampling methods. (From a compu-
tational standpoint, max-k-core sampling is often pre-
ferred because the hub-and-neighbors sampling method
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FIG. 6. Learning phase transition by confusion scheme on homogeneous and heterogeneous networks. (a) For a random regular
network of size N = 1000 and average degree 〈k〉 = 10, the confusion scheme generates an overall W -shape curve of the
classification accuracy versus the assumed threshold value. The peak of susceptibility is at 0.105, as indicated by the green
vertical line (the same legend holds below). (b) For a scale-free network of size N = 1000 and structural parameter m = m0 = 3
generated by the preferential attachment rule, the neural network fails to yield a W -shape accuracy curve: the accuracy has a
U -shape. (c) For a scale-free network of parameters N = 10000 and m = m0 = 3, the accuracy curve obtained by incorporating
a hub sampling procedure into the confusion scheme. In this case, the accuracy curve exhibits a W -shape, rendering detectable
the phase transition. The transition point can also be identified accurately. (d) For scale-free networks generated by the
uncorrelated configuration model of size N = 10000 with the value of the power law exponent in the range γ ∈ [2.0, 3.0], output
of the confusion scheme, where the solid circles correspond to the maximum susceptibility, the triangles and crosses indicate the
predictions given by neural network incorporating two sampling methods: hub-and-neighbors and max-k-core, respectively.

relies on the hub-and-neighbors star graphs whose sizes
are typically much greater than the max k-core.) Fig-
ures 8(c) and 8(d) demonstrate the accuracy of the con-
fusion scheme on the same networks. The accuracies re-
sulting from the two sampling methods are essentially the
same. Performances of our framework on nine real world
networks are summarized in Table I. The results with
real world networks thus confirm that our deep learning
framework based on combined supervised and unsuper-
vised learning and incorporating proper sampling is fully
capable of ascertaining phase transition and identifying
the transition point associated with spreading dynamics
on complex networks with high accuracy and fidelity.

VI. DISCUSSION

To summarize, we have developed a deep learning
framework to detect phase transition and to accurately
identify the critical (transition or threshold) point as-
sociated with epidemic spreading dynamics on complex
networks. The main motivations are two-fold. First, in
recent years there has been a great deal of attention in
the physics community to exploiting machine learning for
detecting phase transitions in many body quantum sys-
tems, but the lattice structures underlying all existing
works in this area are regular [2–13], raising the ques-
tion of whether deep learning can be effective for iden-
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FIG. 7. Performance analysis of the confusion scheme for spreading dynamics on heterogeneous networks. The network is
scale-free with the degree exponent γ = 2.2. Symmetry analysis of accuracy incorporating (a) hub-and-neighbors and (b)
max-k-core sampling methods. Different markers indicate different ranges of the training set. (c,d) Robustness analysis of the
two sampling methods. Solid circles, crosses and triangles represent the results for error rates of 2%, 10% and 20%, respectively.

TABLE I. Summary of performance results with nine
real-world networks. The sampling method used is Max-
k-core and the star * indicates the threshold determined by
this method.

Network Size Suscept.* Supervised* Confusion*
CAIDA 26475 0.0180 0.0183 0.0185

Brightkite 58228 0.0120 0.0118 0.0120
Astro-Ph 18771 0.0115 0.0117 0.0120

PGP 10680 0.0180 0.0318 0.0315
RV 6474 0.0180 0.0310 0.0310

Facebook 4039 0.0070 0.0070 0.0070
Gnutella4 10876 0.0635 0.0643 0.0645
Gnutella5 8846 0.0485 0.0497 0.0495
Gnutella6 8717 0.0530 0.0534 0.0540

tifying phase transitions in complex networks. Second,
while deep learning has been introduced into the field
of complex networks [18–22], the existing works dealt

exclusively with the structural properties. Physically,
phase transitions in complex networks are often associ-
ated with certain dynamical processes. To apply machine
learning to probe dynamical phase transitions in complex
networks in terms of detection, prediction, and identifi-
cation was then an unexplored territory, yet the problem
is significant and challenging especially from a physical
point of view. Our work represents an initial effort in
addressing this problem.

From the standpoint of methodological development,
the innovative aspect of our framework is a combina-
tion of supervised and unsupervised learning, coupled
with sampling methods tailored to complex networks.
For a concrete dynamical process on complex networks,
we focus on epidemic spreading. A straightforward ap-
plication of supervised learning can be quite successful
in detecting phase transition and predicting the criti-
cal threshold, provided that the labeling information is
complete. When there is missing information about the
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FIG. 8. Test on two representative real-world networks. (a,b) Output of the neural network under supervised learning in-
corporating max-k-core sampling for the CAIDA and Brightkite data set, respectively. Circles and triangles correspond to
the results with max-k-core and hub-and-neighbors sampling, respectively. (c,d) Accuracy curves of executing the confusion
scheme for the CAIDA and Brightkite data set, respectively. For the CAIDA (Brightkite) network, the size of the sub-graph
sampled is 2628 (1135) with hub-and-neighbors sampling and 64 (154) with max-k-core sampling. Both sampling methods
give essentially the same accuracy result.

labels, the performance of supervised learning tends to
deteriorate, often significantly. Truncating the data set
to remove those near the critical point helps to certain
extent, but then the inevitable asymmetry in the data
set can make the prediction unstable. To overcome these
difficulties with supervised learning, we exploit the con-
fusion scheme, a type of unsupervised learning, by which
no prior knowledge about the labels is required. Op-
erated on a systematically chosen set of threshold val-
ues, the confusion scheme constitutes essentially a series
of supervised learning with different assumed knowledge
and aims to locate the threshold value that leads to the
maximum amount of “confusion.” This combination of
supervised and unsupervised learning performs well and
is robust against data asymmetry and noise, but only
for homogeneous networks. For heterogeneous complex
networks, the confusion scheme tends to fail due to the
bias in the data set caused by the intrinsic structure of
the network. We find that this difficulty can be overcome

by incorporating proper sampling schemes to prevent the
training data set from being unbalanced. Two sampling
methods have been tested: one based on hub nodes and
their neighbors and another based on k-core - both be-
ing quite effective at mitigating the problem of biased
data set for heterogeneous networks. Because the size of
the sampled data set is typically much smaller than the
original data size, sampling has the additional benefit of
significantly reducing the computational load while main-
taining the desired accuracy. Through extensive tests on
both synthetic and empirical networks, we conclude that
our deep learning framework is capable of faithfully de-
tecting phase transitions and accurately pinning down
the critical transition point for epidemic spreading dy-
namics on complex networks.

Supervised method is a simple, computationally effi-
cient and powerful solution for identifying critical point.
It does need precisely correct label to support, otherwise
its performance might deteriorate. Nevertheless, it’s still
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useful because supervised method can classify an one-line
input data, i.e., a snapshot of the nodal dynamical states
vector in one time step, into two phases, which is im-
possible when using confusion scheme. To overcome the
drawbacks of supervised method, we can use truncated
data set or we can simply let confusion scheme method
generate the good labels first, and the classification prob-
lem would be handled nicely.

Although the susceptibility measure is simple, pre-
cise and universally applicable in identifying the critical
point, a large number of dynamical configurations are re-
quired to calculate the first and second order moments of
ρ, especially near the critical point. Provided that there
are no enough simulations, the peak of the susceptibility
curve will be vague, and thus the critical point can not
be identified accurately. As shown in Fig. 9, the suscep-
tibility curve becomes volatile when the data is not suf-
ficient, while the confusion scheme remains a relatively
stable shape no matter how small the data set is. Ac-
tually, the confusion scheme outperforms the susceptibil-
ity measure almost in every round of comparison due to
it’s great learning ability. The confusion scheme requires
multiple cycles of supervised learning process, with ev-
ery output value in the accuracy curve being independent
from one to another. It is obvious that this multi-round
deep learning performs better than the single-round sta-
tistical result, especially when faced with small data set.
When dealing with experiments in real physical system,
there are imperfections that not every labeling informa-
tion of a physical system is correct or existing, and thus a
deterministic identifying algorithm such as susceptibility
may lose its efficacy. In this case, some machine learning
algorithms can automatically adapt to these errors. Fur-
thermore, our work opens a new direction to use machine
learning techniques in the field of epidemic dynamics in
networks.

Comparing with the traditional methods for identify-
ing phase transitions in complex networks (e.g., numer-
ical approaches based on susceptibility and other mea-
sures), our methods can not only identify the correct
transition point, but classify the given input into dif-
ferent phases as well. Many open questions remain. For
example, can the effect of asymmetrical training data
set on supervised learning be mathematically analyzed?
Can certain optimization methods be developed to in-
crease the accuracy and reduce the computations in the
execution of the confusion scheme? Can our framework
of combining supervised and unsupervised learning be
scaled to very large complex networks? Can a theory
be developed to guide the sampling procedure for het-
erogeneous networks? Is it possible to develop machine
learning methods to deal with phase transitions in time
varying complex networks? etc. We hope our work will
stimulate further efforts in exploiting machine learning
for detecting, decoding, predicting, and even controlling
a variety of dynamical processes on complex networks.

FIG. 9. Performance analysis with small data set. (a)
Barabasi-Albert model with N = 1000 and m = m0 = 3.
(b) US power grid network with 4941 nodes. In each panel,
dotted, dashed and dash-dot curves respectively represent the
susceptibility values of data set with 10, 50, 100 realizations
for each λ, and blue circles, orange crosses and green triangles
respectively represent output values of data set with 10, 50,
100 configurations for each λ by using confusion scheme.
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APPENDIX

Here we list a number of basic notions, concepts, and
methods in deep learning and complex networks, as well
as a description of the real world networks used in our
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study.
Feed-forward neural network, also known as multi-layer

perceptron (MLP), is a basic and powerful deep learning
model. The neural network is structurally dense because
each node of the preceding layer is connected to all nodes
in the next layer. The initial layer transmits information
to the next layer through forward propagation, and the
process continues until the output layer. The weights
and biases of the whole network are updated backwards
based on descending the cost function along the gradient
to find its global optimum - back propagation. Forward
and backward propagation is executed iteratively until
the network finds a global minimum of the cost function.
At this point, the network has successfully learned the
information hidden in the training data set [48, 49].

What a FFNN does is try to minimize the cost func-
tion which is used to describe the mismatch between the
output and the preset label. Let wljk be the weight on
the edge from the kth neuron in layer l − 1 to the jth
neuron in layer l and blj be the bias on the jth neuron in
layer l. Thus the input value of the jth neuron in layer l
is zlj =

∑
k w

l
jka

l−1
k + blj and its corresponding output is

alj = σ(zlj) where activation function σ is non-linear and
differentiable. There’s a lot of choices for the cost func-
tion such as quadratic cost C = 1

2n

∑
x(y(x) − aL(x))2

where x, y, aL and L represent input data, ground truth
labels, output data and maximum number of layers of
the FFNN, respectively. After the optimization target
(i.e., cost function) is builded, we use gradient descend
method to minimize it till it reaches the global minimum.
Let δlj be the error generated by the jth neuron in layer
l, which means the deviation between the actual and pre-
dicted value. The error in the last layer can be inferred
by the following equations:

δLj =
∂C

∂zLj
=

∂C

∂aLj
·
∂aLj
∂zLj

(2)

or

δL =
∂C

∂aL
� ∂aL

∂zL
= ∇aC � σ′(zL), (3)

where � represents Hadamard product which is an
element-wise matrix product. As the error in the last
layer is calculated, errors in other layers can be obtained
recursively as

δlj =
∂C

∂zlj
=
∑
k

∂C

∂zl+1
k

·
∂zl+1
k

∂alj
·
∂alj
∂zlj

=
∑
k

δl+1
k

∂(wl+1
kj a

l
j + bl+1

k )

∂alj
· σ′(zlj)

=
∑
k

δl+1
k · wl+1

kj · σ
′(zlj)

(4)

or

δl = ((wl+1)T δl+1)� σ′(zl). (5)

Hence, the gradient of weight w and bias b can be resolved
and the gradient descend method is used to minimize the
overall cost function as

∂C

∂wljk
=
∂C

∂zlj
·
∂zlj
∂wljk

= δlj ·
∂(wljka

l−1k + blj)

∂wljk

= al−1k δlj

(6)

and

∂C

∂blj
=
∂C

∂zlj
·
∂zlj
∂blj

= δlj
∂(wljka

l−1
k + blj)

∂blj
= δlj . (7)

L2 Regularization. When training a deep learning
model, it is essential to prevent the model from over-
fitting the training set. An over-fitted model has no
practical usage because of lack of generalizability. There
are different ways to deal with the problem such as
data augmentation and regularization. For L2 regular-
ization, a regularization term is added to the cost func-
tion: C = C0 + [λ/(2n)]

∑
ω ω

2, where C0 is the original
cost function, [λ/(2n)]

∑
ω ω

2 is the regularization term,
and ω’s are the weights. We can keep the weights small
during the training process to prevent over-fitting.

Learning Rate - an important hyperparameter that
controls the speed at which the weights of the neural
network are adjusted based on the loss gradient. It is a
generic parameter in most optimization algorithms such
as SGD, and Adam. The learning rate directly affects
how fast the neural network can converge to a global
minimum with the highest possible accuracy. In general,
the greater the learning rate, the faster the neural net-
work learns. If the learning rate is too small, the network
is likely to fall into some local optimum. However, if the
rate is too large and exceeds some threshold value, the
loss of the cost function will oscillate and stop decreasing.

Batch size. If it is not possible to pass data through the
neural network at once, it is necessary to divide the data
set into several batches. Batch size is a hyper-parameter
that will affect the training time, which is essential to
finding an optimal value.

Uncorrelated Configuration Model (UCM) is a model
for generating complex networks of arbitrary degree dis-
tributions [50]. In our work, UCM is used to gener-
ate random uncorrelated scale-free networks with a pre-
specified degree distribution exponent. The algorithm
consists of two steps. The first step is to assign to each
vertex i in a set of N initially disconnected vertices a
degree ki, extracted from the probability distribution
P (k)∼k−γ and subject to the constraints m ≤ ki ≤ N1/2

and
∑
i ki even. The second step is to construct the net-

work by randomly connecting the vertices with
∑
i ki/2

edges, respecting the preassigned degrees and avoiding
multiple and self-connections.
K-core decomposition. For a given complex network,

K-core is the sub-graph in which all nodes have at least
K neighbors [45, 46, 51]. It characterizes the nodal im-
portance to some extent. To find the K-core of a certain
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value of K, one removes from the network all nodes of
degree less than K. Some of the remaining nodes may
have a degree less than K after the removal, in which case
one keeps removing nodes until no node in the core has
degree less than K. The result, if exists, is the K-core
sub-graph.

Real-world networks:
CAIDA [52]. This is the undirected network of au-

tonomous systems of the Internet from the CAIDA
project, collected in 2007. Nodes are autonomous sys-
tems (AS) and edges represent communication.

Brightkite [53]. This undirected network contains
user-user friendship relations from Brightkite, a former
location-based social network were users share their lo-
cations. A node represents a user and an edge indicates
that a friendship exists between a pair of users.

Astro−Ph [52]. This is the collaboration network of
authors of scientific papers from the arXiv’s Astrophysics
(astro-ph) section. An edge between two authors repre-

sents a joint publication.

PGP (Pretty Good Privacy) [54]. This is the interac-
tion network of users of the Pretty Good Privacy (PGP)
algorithm. The network has only one giant connected
component.

RV (Route Views) [52]. This is an undirected network
of the autonomous system of the Internet.

Facebook [55]. This data set consists of “circles” (or
“friend lists”) from Facebook. Facebook data were col-
lected from survey participants using this Facebook app.
The data set includes nodal features (profiles), circles,
and ego networks.

Gnutella [56]. This is a sequence of snapshots of the
Gnutella peer-to-peer file sharing network from August
2002. There are altogether nine snapshots of Gnutella
network collected in August 2002. Nodes represent hosts
in the Gnutella network and edges are connections be-
tween the hosts.
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