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The long-term dynamics of long-range interacting N-body systems can generically be described by
the Balescu-Lenard kinetic equation. However, for 1D homogeneous systems, this collision operator
exactly vanishes by symmetry. These systems undergo a kinetic blocking, and cannot relax as a
whole under 1/N resonant effects. As a result, these systems can only relax under 1/N2 effects, and
their relaxation is drastically slowed down. In the context of the homogeneous Hamiltonian Mean
Field model, we present a new, closed and explicit kinetic equation describing self-consistently the
very long-term evolution of such systems, in the limit where collective effects can be neglected, i.e.
for dynamically hot initial conditions. We show in particular how that kinetic equation satisfies an
H–Theorem that guarantees the unavoidable relaxation to the Boltzmann equilibrium distribution.
Finally, we illustrate how that kinetic equation quantitatively matches with the measurements from
direct N-body simulations.

I. INTRODUCTION

The evolution of long-range interacting systems [1] is
generically composed of two stages. First, the system
undergoes a rapid (collisionless) violent relaxation [2],
which, owing to strong potential fluctuations, allows for
the system to reach a quasistationary state (i.e. a steady
state of the mean-field dynamics, as described by the
Vlasov equation). Following these drastic orbital rear-
rangements, the system has become dynamically frozen
for the mean-field dynamics. It is then only through
finite-N effects, i.e. Poisson shot noise due to the finite
number of particles, that the system can keep evolving.
Under these effects, the system undergoes a slow (colli-
sional) relaxation that drives it to thermodynamical equi-
librium.

The efficiency of the long-term dynamical relaxation of
a system therefore depends on N , the system’s number
of particles. Such a dynamics is generically accounted
for by constructing the appropriate kinetic equation to
describe the irreversible long-term orbital reshufflings oc-
curring as a result of the finite number of particles. As an
example, in the limit where 1/N effects dominate the dy-
namics, such an evolution can generically be described by
the Balescu-Lenard equation [3, 4], whose generalisation
to inhomogeneous systems is only recent [5, 6]. In that
context, the resonant couplings of shot noise fluctuations
lead to a collision operator of order 1/N , so that the re-
laxation occurs on a timescale scaling like Ntd, with td
the system’s dynamical time1.

∗Hubble Fellow
1 One important exception is 3D self-gravitating systems, where
the relaxation time is of order Ntd/ log(N), owing to the
Coulomb logarithm [7] associated with the divergence of the grav-
itational pairwise interaction for small separations.

However, for 1D homogeneous systems, the Balescu-
Lenard equation exactly vanishes, i.e. two-body resonant
correlation effects are unable to drive an overall relax-
ation of the system, as highlighted in the context of
1D plasmas [8–10], 1D self-gravitating systems [11–18]
the 1D Hamiltonian Mean Field (HMF) model [19–24],
the dynamics of long-range coupled particles on the unit
sphere [25–28], or even the axisymmetric dynamics of 2D
point vortices [29]. All these systems are said to being
undergoing a kinetic blocking, that make them immune
to the long-term dynamics driven by 1/N effects. For
such systems, it is only three-body effects and higher-
order correlations that can drive the system’s relaxation
to thermodynamical equilibrium [30–33], making the re-
laxation time much longer than Ntd.

As it must originate from perturbations to the system’s
dynamics of increasing order in 1/N , it is natural to ex-
pect that the timescale for the collisional relaxation of a
1D homogeneous system would scale like N2td, i.e. the
next order appearing in kinetic expansions. Indeed, such
a scaling of the relaxation time in N2td was already ob-
served for 1D plasmas [8–10], or for long-range coupled
particles on the sphere [27, 28]. In the case of the HMF
model, different scalings proportional to N1.7td [19, 20],
or even eN td [22] were reported. But, in [24], these re-
sults were convincingly interpreted as being side effects
associated with a too small value of N , and a scaling
in N2 was recovered through a careful analysis of sim-
ulations with larger values of N . As argued in [24], for
such homogeneous systems, the relaxation time indeed
scales like N2td. Yet, because Poisson fluctuations can
lead to the destabilisation [23] of homogeneous quasi-
stationary states to inhomogeneous states (which relax
on Ntd timescales), an intermediary scaling [24, 32] of
the relaxation time with N can be effectively measured
in practice. This is especially important in systems with
small values of N , as Poisson fluctuations are stronger



2

therein.

In the present paper, building upon [24], we set out
to study such a very long-term dynamics of the HMF
model in the homogeneous limit. In the limit where col-
lective effects are neglected (i.e. the neglect of the ability
of the mean system to amplify perturbations), we present
a new, closed kinetic equation describing the collisional
relaxation of that system on N2td timescales, as driven
by three-body correlations. We explore the generic prop-
erties of this new collision operator, and quantitatively
compare its predictions to direct N -body simulations of
that system.

The paper is organised as follows. In Section II, we
briefly present the considered HMF model, and the ki-
netic equation describing its relaxation at order 1/N2,
as given by Eq. (4). The detailed procedure followed
to obtain that equation is presented in Appendices A–D,
while the effective analytical calculations were performed
using a computer algebra system [34]. In Section III, we
explore some of the fundamental properties of that ki-
netic equation, in particular its well-posedness, its con-
servation properties, and its H–Theorem that guaran-
tees the relaxation to the homogeneous Boltzmann equi-
librium, provided that it is linearly stable. Finally, in
Section IV, we quantitatively illustrate how this kinetic
equation matches with direct measurements from numer-
ical simulations, for hot enough initial distributions. Fi-
nally, we conclude in Section V.

II. THE KINETIC EQUATION

We are interested in the long-term dynamics of the
HMF model [35]. It is composed of N particles of indi-
vidual mass µ =Mtot/N , with Mtot the system’s total
mass. The canonical phase space coordinates are (θ, v),
and the total Hamiltonian reads

H =
1

2

N∑

i=1

v2i + µ
N∑

i<j

U(θi − θj), (1)

where the pairwise interaction potential is given by

U(θi − θj) = −U0 cos(θi − θj), (2)

with U0 > 0 the amplitude of the pairwise coupling.

In the homogeneous limit, the instantaneous statis-
tical state of the system can be described by the ve-
locity distribution function (DF), F = F (v, t), which,
following Eq. (A7), is taken to be normalised as∫
dθdvF (v, t) =Mtot. Describing the long-term relax-

ation of such a system, then amounts to describing the
long-term evolution of that DF, as driven by a closed
kinetic equation.

When limiting oneself only to 1/N effects, the dynam-
ics of that DF is generically given by the Balescu-Lenard

equation, which in the present context reads [36]

∂F (v1)

∂t
=
π2

2
U2
0µ

∂

∂v1

[∫
dv2

∑

k=±1

1

|εk(kv1)|2

× δD(v1 − v2)

(
∂

∂v1
−

∂

∂v2

)
F (v1)F (v2)

]
, (3)

where, to shorten the notations, we do not write explic-
itly the time-dependence of the DFs. We also introduced
the dielectric coefficient, εk(ω), explicitly spelled out in
Eq. (E3). As already mentioned in Introduction, owing
to the Dirac delta, δD(v1 − v2), such a collision opera-
tor exactly vanishes by symmetry. This vanishing of the
diffusion flux is a consequence of three joint properties:
(i) the homogeneous HMF model has an orbital space,
v, of dimension 1. As a result, in orbital space, reso-
nant locations correspond to isolated points in v-space;
(ii) the orbital frequency of a given orbit is Ω(v) = v,
which is a monotonic function of the orbital coordinate
v. As a consequence, two orbits have the same orbital fre-
quency, if and only if, they are the exact same; (iii) owing
to the symmetries of the pairwise interaction potential,
the HMF model can only support 1 :1 resonances. This
can be seen from the resonance condition δD(v1 − v2),
that does not involve any non-trivial linear combination
of the orbital frequencies. All in all, the combination
of these three contraints imposes that the only resonant
couplings allowed by the dynamics are local resonances,
v2 = v1, which, because of the local cancellation of the
drift and diffusion contributions, are unable to drive any
overall relaxation of the system. As such, the homoge-
neous HMF system undergoes a kinetic blocking, and its
overall relaxation is immune to 1/N correlation effects.
As a result, it is only by being driven by weaker three-

body correlations, associated with 1/N2 effects, that the
present system can relax to its thermodynamical equi-
librium. This is the dynamics of interest in this paper.
Following an approach similar to [24], we present in Ap-
pendices A–D our approach to derive such a closed kinetic
equation accounting for 1/N2 effects.
The main steps of this derivation are as follows. (i) As

detailed in Appendix A, we first derive the usual BBGKY
equations, by obtaining the coupled evolution equations
for the system’s 1-, 2-, and 3-body distribution functions.
(ii) As shown in Appendix B, using the cluster expansion,
these coupled evolution equations are written as coupled
evolution equations for the system’s 1-body DF, F (v),
and the 2-, and 3-body correlation functions. The main
gain of this rewriting is that these equations are now
sorted by increasing order in 1/N corrections. (iii) As
presented in Appendix C, these equations are then trun-
cated at order 1/N2. At this stage, a key simplification
comes from our neglect of the contributions from collec-
tive effects, i.e. the system’s ability to amplify perturba-
tions, as is justified for dynamically hot initial distribu-
tions. (iv) Finally, in Appendix D, we show how this set
of (well-posed) coupled partial differential equations can
be solved, allowing for an explicit and closed expression
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for the collision operator. While not intrinsically chal-
lenging, such calculations are made cumbersome because
of the large number of terms involved. These calcula-
tions were therefore carried out using Mathematica and
are spelled out in detail in [34].
All in all, the final kinetic equation derived in that

fashion reads

∂F (v1)

∂t
=
π3

2
U4
0 µ

2 ∂

∂v1

[
P

∫
dv2

(v1 − v2)4

×

∫
dv3

{
δD(k1 ·v)

(
k1 ·

∂

∂v

)
F (v1)F (v2)F (v3)

+ δD(k2 ·v)

(
k2 ·

∂

∂v

)
F (v1)F (v2)F (v3)

}]
, (4)

where, to shorten the notations, we introduced the veloc-
ity vector v = (v1, v2, v3), as well as the two resonance
vectors

k1 = (2,−1,−1) ; k2 = (1,−2, 1). (5)

In that equation, we also introduced P as the Cauchy
principal value, which acts on the integral

∫
dv2. We

postpone to Section III A the justification of the well-
posedness of such a principal value. Finally, we note that
Eq. (4) is tightly related to the 1/N2 kinetic equation al-
ready put forward in Eq. (23) of [24]. The differences are
some corrections in the overall prefactor, and the sign of
the second resonant term. Compared to [24], in Eq. (4),
we also performed additional rewritings and manipula-
tions, that offer a simpler collision operator, involving
only one principal value, and only up to first-order gra-
dients in the system’s DF, as detailed at the end of Ap-
pendix D.
As usual, it is possible to rewrite Eq. (4) under the

form of a continuity equation, reading

∂F (v1)

∂t
=

∂

∂v1

[
F(v1)

]
, (6)

where the instantaneous flux in velocity space2, F(v1),
follows directly from Eq.(4).
As expected, Eq. (4) is proportional to µ2 ≃ 1/N2, i.e.

it describes a collisional relaxation on N2td timescales.
We also note that the collision operator in the r.h.s. in-
volves the system’s DF three times, highlighting the fact
that this kinetic equation describes a dynamics sourced
by three-body correlations (by contrast, the Boltzmann,
Landau, and Balescu-Lenard equations involve the prod-
uct of only two DFs). These correlations are matched
through two different resonance conditions on the ve-
locities, namely δD(k1/2 ·v). We also note that the
two resonance terms are opposite one to another, pro-
vided one makes the change (v1 ↔ v2) in the last in-
tegrand. This will prove important to ensure some of

2 With such a convention, the flux is opposite to the direction
effectively followed by individual particles during their diffusion.

the equation’s conservation properties, as detailed in Sec-
tion III C. Equation (4) is the main result of this section,
as this closed kinetic equation is the appropriate kinetic
equation to describe the long-term evolution of a dynam-
ically hot 1D homogeneous systems, sourced by 1/N2 ef-
fects, and tailored here to the particular case of the HMF
model. We finally note that Eq. (4) only holds as long
as the system’s mean DF remains linearly stable, see the
end of Section IV for a more detailed discussion.

III. PROPERTIES

In this section, we now explore some of the key prop-
erties of the kinetic Eq. (4).

A. Well-posedness

Given the presence of a high-order resonance denomi-
nator in Eq. (4), it is not obvious that the kinetic equa-
tion is well-defined, i.e. that there are no divergences
when v2 → v1. As a result, let us study the behaviour
of the integrand in the limit v2 → v1. In order to shorten
the notations, we temporarily rewrite Eq. (4) as

∂F (v1)

∂t
=
π3

2
U4
0µ

2 ∂

∂v1

[
P

∫
dv2

(v1 − v2)4
K(v1, v2)

]
, (7)

where the function K(v1, v2) immediately reads from
Eq. (4). Assuming that F (v) is a smooth function, it
is straightforward to perform a limited development of
K(v1, v1 + δv) for δv → 0. One gets

K(v1, v1 + δv) = K3(v1) (δv)
3 +O

(
(δv)4

)
, (8)

where the first non-zero coefficient, K3(v), reads

K3=F
(4)FF − F (3)F ′F + 3F ′′F ′F ′ − 3FF ′′F ′′. (9)

As a consequence, in the vicinity of v2 → v1, the integral
from Eq. (7) takes the form

P

∫
dv2

(v1 − v2)4
K(v1, v2) ∼ P

∫
dδv

K3 (δv)
3 +O

(
(δv)4

)

(δv)4

∼ P

∫
dδv

{
K3

δv
+O(1)

}
, (10)

which is a meaningful and well-posed integral in terms of
a principal value.

B. Boltzmann distribution

The thermodynamical equilibrium states resulting
from the collisional relaxation of a homogeneous N -body
system are expected to be (shifted) homogeneous Boltz-
mann distributions of the form

FB(v) = A e−β(v−v0)
2

, (11)
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where β is the inverse temperature, and A a normalisa-
tion constant. The shift is due to the conservation of the
total momentum.
Owing to the explicit form of the collision operator

from Eq. (4), it is straightforward to check that such DFs
are indeed equilibrium solutions of the kinetic equation.
Indeed, noting that the resonance vectors, k1 and k2,
from Eq. (5) are of zero sum, one has

∂FB(v1)

∂t
∝

{
δD(k1 · v) (k1 · v) + δD(k2 · v) (k2 · v)

}

= 0. (12)

This highlights that the diffusion flux for homogeneous
Boltzmann distributions exactly vanishes, i.e. these DFs
are equilibrium solutions of the 1/N2 kinetic Eq. (4).
In Section IIID, owing to an H–Theorem, we will
strengthen this result by proving that the homogeneous
Boltzmann DFs from Eq. (11) are the only equilibrium
solutions of the present kinetic equation.

C. Conservation laws

The kinetic equation (4) satisfies various conservation
properties, in particular the conservation of the total
mass M(t), the total momentum, P (t), and the total
energy, E(t), as we will now briefly justify. Ignoring nu-
merical prefactors, they are respectively defined as

M(t) =

∫
dv1 F (v1, t),

P (t) =

∫
dv1 v1 F (v1, t),

E(t) =

∫
dv1

1
2v

2
1 F (v1, t), (13)

where the total energy only contains the kinetic energy,
because we assumed that the system remains homoge-
neous on average.
Following the rewriting from Eq. (6), the conservation

of the total mass follows from the absence of any bound-
ary contributions, so that

dM

dt
=

∫
dv1

∂

∂v1

[
F(v1)

]
= 0. (14)

A similar calculation can be pursued for the total mo-
mentum, and one gets

dP

dt
= −

∫
dv1 F(v1) = 0, (15)

using the symmetrisation (v1 ↔ v2) in Eq. (4).
Finally, regarding the conservation of energy, following

an integration by parts of Eq. (13), one writes

dE

dt
= −

∫
dv1 v1 F(v1). (16)

Using the definition of the flux from Eq. (6), this expres-
sion will then involve an integral of the form

∫
dv1dv2dv3,

which allows us to use symmetrisations w.r.t. the inte-
gration variables. First, we symmetrise all the terms
w.r.t. the permutation (v1 ↔ v2). Then, for the subse-
quent expression, we perform two additional symmetri-
sations, namely (i) (v2 ↔ v3) for the terms involving the
resonance condition δD(k1 · v), and (ii) (v1 ↔ v3) for the
terms involving the resonance condition δD(k2 · v). By
doing so, the resonant denominator from Eq. (4) remains
a sole function (v1−v2), and this avoids the creation of
any other type of resonance conditions. All these calcula-
tions are straightforward and carried out in detail in [34].
Forgetting prefactors, one gets

dE

dt
∝

∫
dv1 P

∫
dv2

(v1 − v2)4

∫
dv3

×

{
δD(k1 · v) (k1 · v)

(
k1 ·

∂

∂v

)
F (v1)F (v2)F (v3)

+ δD(k2 · v) (k2 · v)

(
k2 ·

∂

∂v

)
F (v1)F (v2)F (v3)

}

= 0, (17)

which exactly vanishes owing to the resonance conditions.

D. H–Theorem

We define the system’s instantaneous entropy as

S(t) = −

∫
dv1 s(F (v1, t)), (18)

with s(F ) = F ln(F ) the Boltzmann entropy. Starting
from the rewriting of Eq. (6), it is straightforward to
show that the system’s entropy evolves according to

dS

dt
=

∫
dv1

1

F (v1)

∂F (v1)

∂v1
F(v1). (19)

Following Eq. (6), this expression involves an integral of
the form

∫
dv1dv2dv3, allowing for symmetrisations w.r.t.

the integration variables. We perform the exact same
symmetrisations as the ones performed in Eq. (17) to
check for energy conservation. All these calculations are
straightforward, and carried out in detail in [34]. One
gets

dS

dt
=
π3

8
U4
0µ

2

∫
dv1 P

∫
dv2

(v1 − v2)4

∫
dv3 F (v1)F (v2)F (v3)

×

{
δD(k1 · v)

[
k1 ·

(
F ′
1

F1
,
F ′
2

F2
,
F ′
3

F3

)]2

+ δD(k2 · v)

[
k2 ·

(
F ′
1

F1
,
F ′
2

F2
,
F ′
3

F3

)]2}
, (20)

where we used the shortening notation F1 = F (v1), and
F ′
1 = ∂F/∂v1. Given that all the terms involved in this
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integral are positive, the kinetic Eq. (4) satisfies an H–
Theorem, i.e. one has

dS

dt
≥ 0. (21)

The expression of the entropy increase from Eq. (20) al-
lows us then to tackle the question of determining which
DFs are equilibrium states for the diffusion, i.e. which
DFs satisfy dS/dt = 0. Provided that one uses the sym-
metrisation (v1 ↔ v2), the constraints associated with
the two resonance conditions from Eq. (20) are identical,
so that we only need to consider one. Recalling the ex-
pression of the resonance vector k1 from Eq. (5), and in-
troducing the function G(v) = F ′(v)/F (v), we note that
a DF is stationary if it satisfies

∀v, v′ : G

(
v + v′

2

)
=
G(v) +G(v′)

2
. (22)

Because this constraint has to be satisfied for all v and
v′, we can conclude that v 7→ G(v) has to be a line, i.e.
one has

G(v) = −2β(v − v0) with β > 0, (23)

where the constraint β > 0 stems from the fact that∫
dvF (v) =Mtot < +∞, i.e. the DF has to be normalised,

and cannot get infinitely large for v → +∞. Equa-
tion (23) immediately translates to the differential equa-
tion F ′(v)/F (v) = −2β(v − v0), which naturally inte-
grates to the (shifted) homogeneous Boltzmann DF in-
troduced in Eq. (11).
As a conclusion, the only equilibrium DFs of the ki-

netic Eq. (4) are the (shifted) homogeneous Boltzmann
distributions. This is an important result of this sec-
tion. Indeed, while any (stable) DF F (v) was an equi-
librium distribution for the 1/N -dynamics of a homoge-
neous long-range interacting system, only homogeneous
Boltzmann DFs are equilibrium distributions for these
systems’ 1/N2-dynamics.

E. Dimensionless rewriting

In order to have a better grasp at the scalings of
Eq. (4), let us finally rewrite it under a dimensionless
form.
Following the conservation of total energy obtained in

Eq. (17), we introduce the system’s (conserved) velocity
dispersion as

σ2 =
1

Mtot

∫
dθdv v2 F (v). (24)

This typical velocity entices us then to define a dimen-
sionless velocity as u = v/σ, and a dimensionless time as
t = t/td (time) with td = 1/σ the dynamical time. Sim-
ilarly, we define the system’s dimensionless probability
distribution function (PDF) as

F (u) =
2πσ

Mtot
F (uσ), (25)

that satisfies the normalisation condition
∫
duF (u) = 1.

Finally, in order to assess the “dynamical temperature”
of the system and the strength of the associated collective
effects, we introduce the dimensionless stability parame-
ter

Q =
2σ2

U0Mtot
, (26)

following a notation similar to [37]. The larger Q, the
more stable the system, and the weaker the collective
effects. In Appendix E, we motivate the definition of Q,
and directly relate it to the system’s dielectric function.
Using these conventions, one can rewrite Eq. (4) as

∂F (u1)

∂t
=

2π

Q4N2

∂

∂u1

[
P

∫
du2

(u1 − u2)4

×

∫
du3

{
δD(k1 ·u)

(
k1 ·

∂

∂u

)
F (u1)F (u2)F (u3)

+ δD(k2 ·u)

(
k2 ·

∂

∂u

)
F (u1)F (u2)F (u3)

}]
, (27)

where, similarly to Eq. (4), we introduced the veloc-
ity vector u = (u1, u2, u3), and the resonance vectors,
(k1,k2), as given by Eq. (5). Similarly to Eq. (6), we
can rewrite Eq. (27) under the form of a continuity equa-
tion, reading

∂F (u1)

∂t
=

2π

Q4N2

∂

∂u1

[
F(u1)

]
, (28)

where the dimensionless instantaneous flux, F(u1), fol-
lows from Eq. (27).
Equation (27) is the appropriate dimensionless writing

to understand the expected relaxation time of a given sys-
tem. Indeed, assuming that the collision operator within
brackets is of order unity, we find therefore that the re-
laxation time scales like

tr ≃ Q4N2 td. (29)

It is interesting to note that one recovers that dynam-
ically colder systems, i.e. systems with smaller values
of Q, relax faster than hotter systems. However, be-
cause collective effects were neglected in the derivation
of Eq. (27), one has to place oneself in the regime Q≫ 1
for the present kinetic equation to apply. In that dynam-
ically hot regime, collective effects are indeed unimpor-
tant, but, because of the factor Q4 in Eq. (29), relaxation
will only occur on very long timescales.

IV. APPLICATIONS

In order to investigate the validity of the kinetic
Eq. (4), we now set out to explore numerically the long-
term relaxation of such systems, and compare it with the
kinetic prediction.



6

FIG. 1: Illustration of the overall relaxation of a system’s
PDF, F (u, t), for the non-Gaussian PDF from Eq. (F2), for
α = 4 and with the dynamical temperature Q = 8.0. Detailed
parameters for these runs are spelled out in Appendix F. Even
if such a distribution undergoes a kinetic blocking, and cannot
relax under 1/N effects, it is still sensitive to the weaker 1/N2

correlations, allowing it to slowly relax to the homogeneous
Boltzmann thermodynamical equilibrium, provided that it is
linearly stable.

For clarity, all the details of our numerical implemen-
tation are given in Appendix F. The main difficulty with
such a numerical exploration comes from our neglect of
collective effects in the derivation of the kinetic Eq. (4).
As defined in Eq. (26), this asks therefore for the consid-
eration of initial conditions with Q≫ 1, for which, fol-
lowing Eq. (29), the relaxation can only occur on very
late timescales, making the N -body simulations more
challenging. The larger Q, the weaker the collective ef-
fects (e.g., as can be seen in Fig. 4), and therefore the
better should be the match between the kinetic predic-
tion and the N -body measurements.

As a first illustration, we present in Fig. 1, an exam-
ple of a system’s relaxation towards equilibrium, for an
initial condition following the non-Gaussian PDF from
Eq. (F2). As expected, even if any homogeneous DF,
F = F (v), is submitted to a kinetic blocking, and un-
dergoes no relaxation through the 1/N Balescu-Lenard
Eq. (3), it can still relax as a result of higher-order cor-
relation effects, e.g., as captured by the kinetic Eq. (4),
whose detailed predictions we may now compute.

In Fig. 2, we illustrate the initial dimensionless flux,
F(u, t=0), as defined in Eq. (28), using on the one hand
direct measurements fromN -body simulations (following
the method presented in Appendix F), and on the other
hand computing the prediction from the kinetic Eq. (27).
As highlighted, the larger Q, the hotter the system, i.e.
the weaker the collective effects, and therefore the better
the matching between the N -body measurements and the
kinetic prediction. For systems with smaller velocity dis-
persions, Eq. (27) does not apply anymore, and asks to

FIG. 2: Illustration of the dimensionless flux, F(u, t=0), as
defined in Eq. (28) for the non-Gaussian PDF from Eq. (F2)
with α = 4, as measured in N-body simulations (with the as-
sociated errors), for various initial dynamical temperatures Q,
and compared with the prediction from the kinetic Eq. (27).
Detailed parameters for these runs are spelled out in Ap-
pendix F. As expected, the larger Q, the hotter the system,
and therefore the better the matching with the kinetic pre-
diction for which collective effects were neglected.

be generalised in order to account for the contribution of
collective effects to hasten or slow down the system’s re-
laxation. Finally, there are (at least) two possible origins
for the slight mismatch still observed in Fig. 2 between
the measured fluxes and the predicted one: (i) remain-
ing contributions associated with collective effects, that
are expected to slowly fade away as one increases Q; (ii)
some non-vanishing kinetic contributions from the term

in G
(1)
2 ×G

(1)
2 that was neglected in Appendix C, when

deriving the system’s truncated BBGKY evolution equa-
tions. Such generalisations are beyond the scope of this
paper.
As can be noted from the overall prefactor in Eq. (27),

one expects the timescale for the system’s relaxation to
scale like N2td, w.r.t. N the number of particles. This is
investigated in Fig. 3, where we illustrate the dependence
of the system’s relaxation efficiency, E =

∫
du |F(u)|, as a

function of the number of particles. Here, E captures
in one number the overall rapidity of the system’s relax-
ation. Because it is computed using the dimensionless
flux, F(u), as defined in Eq. (28), its kinetic prediction
does not depend on the considered values of N and Q.
In Fig. 3, we observe that the dimensionless relaxation
efficiency is indeed independent of N , so that the scaling
of the relaxation time from Eq. (29) is indeed recovered.
Before concluding, let us finally briefly describe the

system’s possible dynamics depending on the value of
the dynamical temperature Q. As derived in Eq. (E5),
we have shown that the homogeneous system is linearly
stable for Q ≥ Qc and linearly unstable for Q ≤ Qc. This
then leads to the following possible behaviours.
(i) For Q ≤ Qc, the homogeneous system is initially
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FIG. 3: Illustration of the dependence of the system’s di-
mensionless relaxation efficiency, E =

∫
du |F(u)|, with F(u)

the dimensionless flux as defined in Eq. (28), for the same
initial conditions as in Fig. 2, with Q = 24.5 and various val-
ues of N . The black line is the prediction from the kinetic
Eq. (27), while the gray dots are the N-body measurements,
with the associated errors. Detailed parameters for these runs
are spelled out in Appendix F. As expected from the scaling
of Eq. (28), the dimensionless relaxation efficiency is indepen-
dent of N .

linearly unstable, so that it rapidly becomes inhomoge-
neous. For such an inhomogeneous configuration, the
kinetic blocking from Eq. (3) does not hold anymore.
Provided that the system remains inhomogeneous, its dy-
namics is driven by the inhomogeneous Balescu-Lenard
equation, which drives a relaxation whose associated re-
laxation time scales linearly withN [36]. As noted in [23],
an interesting case is given by an initial configuration sat-
isfying 1 < Q < Qc. While such an initial condition is ini-
tially unstable, its final homogeneous Boltzmann equilib-
rium is stable (since 1 < Q). As a consequence, at some
point, the system has to evolve from a inhomogeneous
distribution to a homogeneous one, which accordingly
delays the relaxation.

(ii) For Q & Qc, because it is linearly stable, the sys-
tem remains initially homogeneous, and evolves accord-
ing to a homogeneous kinetic equation in 1/N2. However,
because it is close to the stability threshold, collective ef-
fects, i.e. the system’s ability to amplify perturbations,
have to be taken into account. This asks for a kinetic
equation more general than Eq. (27), where we neglected
collective effects. As noted in [23], an interesting case is
given by an initial configuration such that Qc < Q < 1.
Such a system is initially stable so that it will first re-
main homogeneous and undergo a slow 1/N2 relaxation.
Yet, sinceQ < 1, the associated homogeneous Boltzmann
equilibrium is unstable. As a consequence during its (ho-
mogeneous) relaxation, the system will unavoidably be-
come unstable at some point. This will drive a dynam-
ical phase transition rapidly making it inhomogeneous.
The final stages of the relaxation are then the ones of

an inhomogeneous relaxation, that scales in 1/N . Owing
to this dynamical phase transition, one expects there-
fore the system’s overall relaxation time to have an in-
termediate scaling between N and N2. In particular, as
noted in [24], the precise time of such phase transitions
can strongly vary in systems with small values of N , as
Poisson shot noise is stronger therein. This unavoidably
affects the measurements of the effective scaling of the
relaxation time with N .
(iii) Finally, for Q≫ Qc, one recovers the case con-

sidered in the present paper. Because it is dynamically
so hot, the system will not undergo any instability. It
will therefore remain homogeneous throughout its relax-
ation towards the Boltzmann distribution. On the same
grounds, collective effects are unimportant and can be
neglected. The system’s dynamics is therefore described
by Eq. (27), and leads to a relaxation time scaling like
N2, as illustrated in Fig. 3.

V. CONCLUSION

In the present paper, we focused our attention on the
description of the very long-term dynamics of the HMF
model in the homogeneous limit, one particular example
of a 1D long-range interacting system. As highlighted
in Eq. (3), such systems are generically submitted to a
kinetic blocking that prevents their relaxation as a whole
under 1/N resonant effects. As such, their evolution is
drastically slowed down, and is only made possible by the
cumulative contributions of higher-order 1/N2 effects.
Placing ourselves within the dynamically hot limit, for

which collective effects can be neglected, and following
an approach similar to [24], we showed how one could
explicitly solve the BBGKY hierarchy of equations, trun-
cated at order 1/N2. This led us to Eq. (4), a closed, ex-
plicit, and self-consistent kinetic equation describing the
long-term relaxation of the system’s homogeneous DF as
driven by 1/N2 effects, as long as the mean system re-
mains linearly stable.
We put forward the main properties of that new ki-

netic equation, in particular the fact that it satisfies an
H–Theorem, that guarantees the unavoidable relaxation
of the system towards the homogeneous Boltzmann ther-
modynamical equilibrium (provided that it is linearly
stable). This result highlights the fundamental impor-
tance of Boltzmann’s H–Theorem that keeps being sat-
isfied in the present 1/N2 context where the relaxation
is sourced by the product of three DFs. This therefore
further extends the validity of Boltzmann’s H–Theorem
beyond the traditional kinetic equations such as the col-
lisional Boltzmann, Landau and Balescu-Lenard equa-
tions, which are sourced only by product of two DFs.
In Eq. (29), we subsequently detailed how the

present formalism predicts a relaxation time scaling like
tr ≃ Q4N2td, with td the dynamical time, and Q the sys-
tem’s stability parameter, as defined in Eq. (26). In par-
ticular, this implied a relaxation time scaling like N2
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w.r.t. the number of particles, a scaling already thor-
oughly checked in [24].

Finally, in Section IV, we presented explicit compar-
isons of this new kinetic equation with numerical mea-
surements from direct N -body simulations. We illus-
trated in Fig. 1 how at this 1/N2 order, the system does
not suffer anymore from a kinetic blocking, and can in-
deed relax to the homogeneous Boltzmann equilibrium,
provided that it is linearly stable. We quantitatively
showed in Fig. 2 how the numerically measured diffusion
fluxes converge to the kinetic prediction, as the system is
made hotter so that collective effects become more and
more negligible. We also illustrated in Fig. 3 how the N2

scaling of the relaxation time is also recovered numeri-
cally.

The kinetic equation presented in Eq. (4) is only a
first step towards the detailed characterisation of the
(very) long-term dynamics of long-range interacting sys-
tems. In the present context, calculations were made
more tractable through the following assumptions: (i)
the HMF model contains only one harmonic, k = ±1,
in its pairwise interaction, reducing drastically the al-
lowed resonances; (ii) we neglected contributions associ-
ated with collective effects, which prevented us from hav-
ing to solve and include the linear response theory of the
system; (iii) in the evolution equation for the three-body
correlation function, ∂G3/∂t, we neglected the contribu-

tions from the source term in G
(1)
2 ×G

(1)
2 in Eq. (B8),

that would have led to an additional collision term pro-
portional to F 4, instead to F 3 for the dominant term
included in Eq. (4); (iv) we assumed the system to be
homogeneous. We note that kinetic blockings of 1/N ef-
fects can also occur in 1D inhomogeneous systems (e.g.,
1D self-gravitating systems) when their orbital frequency
profile, that occurs in the resonance condition, is mono-
tonic [see, e.g., 28, 29]. This requires further generali-
sations of the kinetic equation for such inhomogeneous
systems at the order 1/N2. Further work should try to
alleviate these shortcomings, by allowing for more com-
plex resonances, accounting for collective effects to de-
scribe dynamically colder systems that are linearly more
responsive, by accounting for possible contributions from
higher order terms in the system’s DF, as well as by al-
lowing for (monotonic) frequency profiles in inhomoge-
neous systems.

Finally, one should investigate the structure of the col-
lision operators for even higher-order kinetic equations,
e.g., at order 1/N3. However, we note that it is not ob-
vious whether or not there exists dynamical systems un-
dergoing a “double kinetic blocking”, so that they are
immune to both 1/N and 1/N2 effects, making them
sensitive only to even higher-order correlations such as
1/N3 effects. In the present case of the homogeneous
HMF model, such very-very-slow dynamics is not possi-
ble, as highlighted in Eq. (23), where we showed that the
only DF for which the entropy does not increase is the
Boltzmann DF, i.e. the true thermodynamical equilib-
rium. More generally, as recovered in the classical 1/N

Landau and Balescu-Lenard equations, and as recovered
here for the 1/N2 kinetic equation, Boltzmann distribu-
tions are always found, a posteriori, to be equilibrium
states of the collision operator. It would be of interest
to investigate whether or not such a property generically
holds for higher order expansions, and, if so, understand
why.
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Appendix A: The BBGKY hierarchy

In this Appendix, we briefly repeat the derivation of
the BBGKY hierarchy, to describe the dynamics of a
long-range coupled N -body system. Notations and nor-
malisations are inspired from the ones considered in [38].
We assume that the system is composed of N identical

particles of individual mass µ =Mtot/N , with Mtot the
system’s total mass. We introduce the system’s N -body
PDF, PN (w1, ...,wN , t), with w = (θ, v) the phase space
coordinates, normalised so that

∫
dw1...dwNPN = 1. The

dynamics of PN is governed by Liouville’s equation

∂PN

∂t
+

[
PN , HN

]

N

= 0, (A1)

where we introduced the full N -body Hamiltonian

HN (w1, ...,wN ) =
1

2

N∑

i=1

v2i + µ

N∑

i<j

U(θi − θj), (A2)

with U(θi − θj) the considered pairwise interaction. In
Eq. (A1), we also introduced the Poisson bracket over N
particles as

[
PN , HN

]

N

=

N∑

i=1

{
∂PN

∂θi

∂HN

∂vi
−
∂PN

∂vi

∂HN

∂θi

}
. (A3)

We can subsequently define the system’s reduced PDFs
as

Pn(w1, ...,wn, t) =

∫
dwn+1...dwN PN (w1, ...,wN , t).

(A4)
Integrating Eq. (A1) w.r.t. all particles but the n first,
we obtain the BBGKY hierarchy of equations, namely

∂Pn

∂t
+

[
Pn, Hn

]

n

+(N−n)

∫
dwn+1

[
Pn+1, µ δHn+1

]

n

= 0,

(A5)
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where we used the symmetry of PN w.r.t. exchanges of
particles. Similarly to Eq. (A2), the n-body Hamiltonian
Hn (resp. [ · , · ]n the Poisson bracket over n particles)
naturally follows from Eq. (A2) (resp. Eq. (A3)), pro-
vided that one replaces N by n. In Eq. (A5), we also
introduced δHn+1 as the specific interaction energy of
the (n+ 1)th particle with the n first particles. It reads

δHn+1(w1, ...,wn+1) =

n∑

i=1

U(θi − θn+1). (A6)

As usual, we note that the BBGKY hierarchy from
Eq. (A5) is not closed, as the evolution equation for
∂Pn/∂t involves the higher-order PDF, Pn+1.
In order to simplify the combinatorial prefactors ap-

pearing in Eq. (A5), we finally introduce the reduced
DFs, Fn, as

Fn = µn N !

(N − n)!
Pn. (A7)

With such a choice, these DFs scale as Fn ∼ 1, w.r.t. N
the total number of particles. We can then rewrite the
BBGKY hierarchy Eq. (A5) under the simple form

∂Fn

∂t
+

[
Fn, Hn

]

n

+

∫
dwn+1

[
Fn+1, δHn+1

]

n

= 0. (A8)

The three first equations of the BBGKY hierarchy, i.e.
the evolution equations for F1, F2, and F3, will be the
starting point of the derivation of the kinetic equation
presented in Eq. (4).

Appendix B: The cluster expansion

In Appendix A, we briefly rederived the BBGKY hi-
erarchy of evolution equations for the system’s reduced
DFs. In order to be able to perform perturbative devel-
opments w.r.t. N the total number of particles, we now
introduce the cluster representation of the DFs, following
an approach similar to the one presented in [38].

We introduce the system’s 2-body correlation function,
G2(w1,w2), as

F2(1, 2) =F1(1)F1(2) +G2(1, 2), (B1)

where we used the shortened notation F1(1) = F1(w1).
This correlation function characterises how much the
statistics of the distribution of 2 particles differs from
being separable. Similarly, we introduce the system’s 3-
body correlation function, G3(w1,w2,w3), as

F3(1, 2, 3) = F1(1)F1(2)F1(3)

+F1(1)G2(2, 3)+F1(2)G2(1, 3)+F1(3)G2(1, 2)

+G3(1, 2, 3). (B2)

Finally, we introduce the 4-body correlation function,
G4(w1,w2,w3,w4), as

F4(1, 2, 3, 4) = F1(1)F1(2)F1(3)F1(4)

+

{
F1(1)F1(2)G2(3, 4)+F1(1)F1(3)G2(2, 4)

+ F1(1)F1(4)G2(2, 3)+F1(2)F1(3)G2(1, 4)

+ F1(2)F1(4)G2(1, 3)+F1(3)F1(4)G2(1, 2)

}

+G2(1, 2)G2(3, 4)+G2(1, 3)G2(2, 4)+G2(1, 4)G2(2, 3)

+

{
F1(1)G3(2, 3, 4)+F1(2)G3(1, 3, 4)

+ F1(3)G3(1, 2, 4)+F1(4)G3(1, 2, 3)

}

+G4(1, 2, 3, 4). (B3)

The best way to check for the sanity of the previous def-
initions is to compute the normalisation of the correla-
tion functions, and their scaling w.r.t. N . Integrating
Eqs. (B1), (B2) and (B3) w.r.t. their phase space coor-
dinates, one obtains

∫
d1F1(1) = µN ∼ 1,

∫
d1 d2G2(1, 2) = −µ2N ∼

1

N
,

∫
d1 d2 d3G3(1, 2, 3) = 2µ3N ∼

1

N2
,

∫
d1 d2 d3 d4G4(1, 2, 3, 4) = −6µ4N ∼

1

N3
, (B4)

where we used the shortening notation d1 = dw1. Owing
to these scalings, one can therefore use the correlation
functions to perform perturbative expansions w.r.t. the
small parameter 1/N .

The next step of the calculation is now to inject the
previous decompositions into the three first equations of
the BBGKY hierarchy, as given by Eq. (A8), in order to
obtain the evolution equations for ∂F1/∂t, ∂G2/∂t and
∂G3/∂t. Such equations can be cumbersome to derive,
and were obtained using computer algebra in [34]. Writ-
ing the system’s 1-body DF as F = F1, its time evolution
is given by

∂F (1)

∂t

+ v1
∂F (1)

∂θ1

−
∂F (1)

∂v1

∫
d2F (2)U ′(θ1−θ2)

−

∫
d2

∂G2(1, 2)

∂v1
U ′(θ1−θ2)

= 0. (B5)
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The second equation of the hierarchy, for ∂G2/∂t, reads

∂G2(1, 2)

∂t

+

[
v1
∂G2(1, 2)

∂θ1

−
∂G2(1, 2)

∂v1

∫
d3F (3)U ′(θ1−θ3)

−
∂F (1)

∂v1

∫
d3G2(2, 3)U

′(θ1−θ3)

− µ
∂F (1)

∂v1
F (2)U ′(θ1−θ2)

− µ
∂G2(1, 2)

∂v1
U ′(θ1−θ2)

−

∫
d3

∂G3(1, 2, 3)

∂v1
U ′(θ1−θ3)

]

(1,2)

= 0, (B6)

where we introduced the symmetrising notation

[
G(1, 2)

]

(1,2)

= G(1, 2) +G(2, 1). (B7)

Finally, the third equation of the hierarchy, for ∂G3/∂t,
reads

∂G3(1, 2, 3)

∂t

+

[
v1
∂G3(1, 2, 3)

∂θ1

−
∂G3(1, 2, 3)

∂v1

∫
d4F (4)U ′(θ1−θ4)

−
∂F (1)

∂v1

∫
d4G3(2, 3, 4)U

′(θ1−θ4)

− µ
∂F (1)

∂v1
G2(2, 3)

{
U ′(θ1−θ2) + U ′(θ1−θ3)

}

− µ
∂G2(1, 2)

∂v1
F (3)U ′(θ1−θ3)

− µ
∂G2(1, 3)

∂v1
F (2)U ′(θ1−θ2)

−
∂G2(1, 2)

∂v1

∫
d4G2(3, 4)U

′(θ1−θ4)

−
∂G2(1, 3)

∂v1

∫
d4G2(2, 4)U

′(θ1−θ4)

− µ
∂G3(1, 2, 3)

∂v1

{
U ′(θ1−θ2) + U ′(θ1−θ3)

}

−

∫
d4

∂G4(1, 2, 3, 4)

∂v1
U ′(θ1−θ4)

]

(1,2,3)

= 0. (B8)

Here, similarly to Eq. (B7), we introduced the symmetris-

ing notation

[
G(1, 2, 3)

]

(1,2,3)

= G(1, 2, 3)+G(2, 3, 1)+G(3, 1, 2), (B9)

where it is assumed that the function G is symmet-
ric w.r.t. its two last indices, i.e. one should have
G(1, 2, 3) = G(1, 3, 2), as is the case for the term in
Eq. (B8).
Equations (B5), (B6) and (B8) are the starting blocks

to obtain a self-consistent set of coupled evolution equa-
tions describing the system’s entire dynamics up to order
1/N2.

Appendix C: Truncating the BBKGY hierarchy

In this Appendix, we detail how one may truncate
Eqs. (B5), (B6), and (B8) to lay the groundwork to derive
the closed kinetic equation presented in Eq. (4).
The first step of these simplifications is to perform a

truncation at order 1/N2 of these three evolution equa-
tions. In Eq. (B5), we also note that the collision term
for ∂F/∂t only involves G2(1, 2), whose norm scales like
1/N , as given by Eq. (B4). As a consequence, if one
aims at deriving a kinetic equation at order 1/N2, it is
essential to account for the corrections of order 1/N2

that can arise in G2. To perform the truncation at order
1/N2, we therefore introduce explicitly the small param-
eter ε = 1/N . Following the definition µ =Mtot/N , and
the scalings from Eq. (B4), we perform the replacements

µ→ εµ ; G2 → εG
(1)
2 + ε2G

(2)
2

G3 → ε2G3 ; G4 → ε3G4. (C1)

Using this rewriting, we then keep in the evolution equa-
tions only terms up to order ε2. Moreover, owing to the
split of G2 in two components, we can split the associ-
ated evolution Eq. (B6) in two components, namely at
order 1/N (resp. 1/N2) that will govern the dynamics of

∂G
(1)
2 /∂t (resp. ∂G

(2)
2 /∂t).

A subsequent simplification arises from the homogene-
ity assumption, i.e. the assumption that system’s mean
DF remains a function of v only. This allows us to get
rid of the phase mixing term, v1∂F/∂θ1, in Eq. (B5), and
also get rid of all the mean-field potential components,
i.e. terms involving

∫
d2F (2)U ′(θ1−θ2) = 0.

In order to ease the derivations of the kinetic equation,
we also assume that the mean system is sufficiently dy-
namically hot for collective effects to be negligible3. Such
an assumption amounts to neglecting the backreaction
of a correlation function on the perturbating potential in

3 In the context of 1/N dynamics, such an assumption gets the
Balescu-Lenard equation to reduce to the Landau kinetic equa-
tion [5, 6].
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which that same correlation function is evolving. As a
result, we perform the following simplifications4

For
∂G

(1)
2 (1, 2)

∂t
:

∫
d3G

(1)
2 (2, 3)U ′(θ1−θ3) → 0,

For
∂G

(2)
2 (1, 2)

∂t
:

∫
d3G

(2)
2 (2, 3)U ′(θ1−θ3) → 0,

For
∂G3(1, 2, 3)

∂t
:

∫
d4G3(2, 3, 4)U

′(θ1−θ4) → 0. (C2)

Finally, we perform three last approximations: (i) in
the evolution equation for ∂F/∂t, we may neglect the

contribution from G
(1)
2 that is responsible for the usual

1/N Landau equation, which identically vanishes for 1D
homogeneous systems (as highlighted in Eq. (3)); (ii) in

the evolution equation for ∂G
(2)
2 /∂t, we may safely ne-

glect the contributions from the source term proportional

to µ∂G
(1)
2 (1, 2)/∂v1, as one can check that it does not

contribute to the kinetic equation (see [34]); (iii) in the
evolution equation for ∂G3/∂t, we neglect the contribu-

tions from the term proportional to G
(1)
2 ×G

(1)
2 , as it will

lead to a collision operator proportional to F 4, while the
other source terms will lead to a collision operator pro-
portional to F 3, that dominates for sufficiently dynami-
cally hot systems.
Following these various truncations and simplifica-

tions, we now have at our disposal a set of four coupled
evolution equations that jointly describe the long-term
dynamics of the considered system at order 1/N2. The
dynamics of ∂F (1)/∂t reads

∂F (1)

∂t

−

∫
d2

∂G
(2)
2 (1, 2)

∂v1
U ′(θ1−θ2)

= 0. (C3)

The dynamics of ∂G
(1)
2 (1, 2)/∂t is given by

∂G
(1)
2 (1, 2)

∂t

+

[
v1
∂G

(1)
2 (1, 2)

∂θ1

− µ
∂F (1)

∂v1
F (2)U ′(θ1−θ2)

]

(1,2)

= 0, (C4)

while the dynamics of the second-order correction,

4 Such a truncation amounts to assuming that the system is dy-
namically hot, i.e. 1/Q ≪ 1, where Q is introduced in Eq. (26).

∂G
(2)
2 (1, 2)/∂t, takes the form

∂G
(2)
2 (1, 2)

∂t

+

[
v1
∂G

(2)
2 (1, 2)

∂θ1

−

∫
d3

∂G3(1, 2, 3)

∂v1
U ′(θ1−θ3)

]

(1,2)

= 0. (C5)

Finally, the dynamics of the 3-body correlation function,
∂G3(1, 2, 3)/∂t, reads

∂G3(1, 2, 3)

∂t

+

[
v1
∂G3(1, 2, 3)

∂θ1

− µ
∂F (1)

∂v1
G

(1)
2 (2, 3)

{
U ′(θ1−θ2) + U ′(θ1−θ3)

}

− µ
∂G

(1)
2 (1, 2)

∂v1
F (3)U ′(θ1−θ3)

− µ
∂G

(1)
2 (1, 3)

∂v1
F (2)U ′(θ1−θ2)

]

(1,2,3)

= 0. (C6)

All together, Eqs. (C3), (C4), (C5), and (C6) form the
starting point to derive the kinetic Eq. (4), as we describe
in Appendix D.

Appendix D: Deriving the kinetic equation

In this Appendix, we detail the protocol followed to
obtain the 1/N2 kinetic equation put forward in Eq. (4),
following an approach similar to [24]. Here, we only
present the overall approach and the key steps, while the
detailed effective (and cumbsersome) computations were
performed using symbolic calculations in Mathematica,
as detailed in [34]. From the technical point of view, the
main difficulty is to deal, without mistake, with the large
number of terms that appear in the successive resolutions
of the evolution equations, hence the need for a numerical
implementation of this calculation.
Luckily, the four truncated evolution equations,

Eqs. (C3), (C4), (C5), and (C6) form a closed and well-
posed hierarchy of coupled partial differential equations.
In particular, owing to the absence of any collective ef-
fects, that would require for the explicit characterisation
of the system’s linear response, the evolution equations
can easily be solved in sequence. The first step is to

solve for the time evolution of G
(1)
2 (1, 2)(t), as governed

by Eq. (C4). This explicit solution may then be used as
a (time-dependent) source term in Eq. (C6) to obtain the
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time evolution of G3(t). This function can then be used
as a (time-dependent) source term in Eq. (C5) to derive

the time evolution of G
(2)
2 (t).

In each of these three steps, we rely on two main
assumptions: (i) Bogoliubov’s ansatz, so that we
may take F (1, t) = cst. when solving for the time-
evolution of a correlation function; (ii) we neglect
the transients associated with any specific initial con-
ditions in the system’s correlations, i.e. we solve
these differential equations with the initial conditions

G
(1)
2 (t=0)=G3(t=0)=G

(2)
2 (t=0)=0. Moreover, in or-

der to easily deal with phase mixing terms of the form

v1∂G
(1)
2 /∂θ1, we perform Fourier developments of all the

correlation functions w.r.t. their θ-dependence. Similarly,
the interaction potential is also expanded in its Fourier
harmonics. As imposed by Eq. (2), in the present case
of the HMF model, the interaction potential takes the
simple form U(θ)=

∑
k=±1

−U0

2 eikθ, so that only the har-
monics k=±1 can support the interaction, which offers
a drastic reduction in the total number of resonant terms
that can contribute to the system’s dynamics.
Following these three successive resolutions, we now

have at our disposal an explicit solution for the time de-

pendence of G
(2)
2 (t). Owing to Bogoliubov’s ansatz, we

may then consider the limit t→ +∞ of that expression,

in order to obtain the asymptotic behaviour of G
(2)
2 , and

inject it in Eq. (C3) to obtain the closed 1/N2 collision
operator driving the long-term evolution of ∂F/∂t. At
this stage, a typical time integral appearing in the ex-

pression of G
(2)
2 (t) takes the form

∫ t

0

dt1 e
i(t−t1)ω1

∂

∂v1

[∫ t1

0

dt2 e
−i(t1−t2)ω2

×
∂

∂v2

{∫ t2

0

dt3 e
−i(t2−t3)ω3

}]
, (D1)

where the frequencies ω1, ω2, and ω3 are some linear func-
tions of the velocities v1, v2, and v3, i.e. the resonances
involved in the dynamics, while some additional gradients
w.r.t. the velocities can get intertwined with the time in-
tegrals. Now, our goal is to estimate the asymptotic limit
t→ +∞ of that expression in order to estimate the col-
lision operator driving the dynamics of ∂F/∂t. To do so,
we use the asymptotic formula

lim
t→+∞

∫ t

0

dt1 e
−i(t−t1)ω1 = πδD(ω1)− iP

(
1

ω1

)
, (D2)

with δD(ω) the Dirac delta, and P(1/ω) the Cauchy prin-
cipal value (see the expression for δ+(x) in Eq. (6.40)
of [38]). For nested integrals as in Eq. (D1), we apply
consecutively the formula from Eq. (D2)5. Doing so, one

5 One could be concerned by the nested bounds from the
three successive integrals of Eq. (D1). Even if one has

still prevents for now the evalutation of the gradients
w.r.t. the velocities, so that such gradients would only
act on the Dirac deltas and the Cauchy principal values.
Once all the time integrals have been replaced by

their asymptotic behaviours, the derived kinetic equation
takes the form

∂F (v1)

∂t
=
π3

2
U4
0µ

2 ∂

∂v1

[∫
dv2dv3

×

{
δD(2v1 − v2 − v3)

[
P P ′KI + P P ′′KII

]

− (v1 ↔ v2)

}]
, (D3)

where we introduced the shortening notations
P = P( 1

v1−v2
), P ′ = P ′( 1

v1−v2
), and P ′′ = P ′′( 1

v1−v2
).

When making the substitution (v1 ↔ v2) in Eq. (D3), it
is important to note that (P ,P ′,P ′′) → (−P ,P ′,−P ′′).
Finally, in Eq. (D3), we also introduced the differential
operators

KI =

[
2
∂

∂v2

∂

∂v3
− 3

∂

∂v1

∂

∂v3
(D4)

+ 2
∂2

∂v23
+

∂

∂v1

∂

∂v2
− 2

∂2

∂v21

]
F (v1)F (v2)F (v3),

and

KII =

[
∂

∂v3
+

∂

∂v2
− 2

∂

∂v1

]
F (v1)F (v2)F (v3). (D5)

We note that Eq. (D3) is almost identical to the 1/N2

kinetic equation already put forward in Eq. (23) of [24]
for the same physical system. The differences are some
corrections in the overall prefactor, and the overall sign
of the (v1 ↔ v2) term.
Luckily, the result from Eq. (D5) can be significantly

simplified, by using integration by parts, as well as the
parity symmetries of the Dirac deltas, the principal val-
ues and their derivatives, leading to the final result from
Eq. (4). The detailed steps for these calculations can be
found in [34]. We briefly present them below for com-
pleteness.
The key step is to perform an integration by parts in

Eq. (D3) w.r.t. the integration variable v2, using the for-
mula

P P ′′ = −
∂

∂v2

[
P P ′

]
−
(
P ′

)2
. (D6)

At this stage, the derivatives of the Dirac deltas that
appear are subsequently integrated using an integration

∫
t

0
dt1

∫
t1

0
dt2

∫
t2

0
dt3=

1

6

∫
t

0
dt1

∫
t

0
dt2

∫
t

0
dt3, when applying successively

the formula from Eq. (D2), the 1

6
volume prefactor does not have

to be accounted for.



13

by parts w.r.t. the integration variable v3, so that

δ′D(2v1 − v2 − v3) = −
∂

∂v3

[
δD(2v1 − v2 − v3)

]
, (D7)

and similarly for δ′D(2v2 − v1 − v3). Proceeding that way
allows us not to create any higher order derivatives of
the Cauchy principal values. The kinetic equation then
becomes simpler, as it reads

∂F (v1)

∂t
=
π3

2
U4
0µ

2 ∂

∂v1

[∫
dv2dv3

×

{
δD(k1 · v)P P ′MI

+ δD(k1 · v)
(
P ′

)2
MII(k1)

+ δD(k2 · v)
(
P ′

)2
MII(k2)

}]
. (D8)

In that equation, we introduced the differential operators

MI =

[
− 2

∂2

∂v21
+

∂2

∂v22
+

∂2

∂v23
+ 2

∂

∂v2

∂

∂v3

−
∂

∂v1

∂

∂v2
−

∂

∂v1

∂

∂v3

]
F (v1)F (v2)F (v3), (D9)

and

MII(k) =

(
k ·

∂

∂v

)
F (v1)F (v2)F (v3), (D10)

with the resonance vectors k1 and k2 already defined in
Eq. (5).
At this stage, we finally note that the term in PP ′

in Eq. (D8) will not contribute to the dynamics. In-
deed, from Eq. (D9), we note that MI is invariant un-
der the change (v2 ↔ v3). This symmetry can be lever-
aged to get rid of this term, as follows. Owing to
the presence of the double integral

∫
dv2dv3, one can

perform the symmetrisation (v2 ↔ v3) for that term.
This leaves the Dirac delta, δD(k1 · v), invariant. From
that same resonance condition, we note that the argu-
ments of the Cauchy principal values are transformed
as 1

v1−v2
→ 1

v1−v3
=− 1

v1−v2
. Given the parities of P and

P ′, we can therefore conclude that the term in PP ′ in
Eq. (D8) is antisymmetric under the change (v2 ↔ v3) so
that the overall contribution of this term vanishes. The
last step of the calculation is finally to perform the re-

placement
∫
dv2

(
P ′

)2
→P

∫
dv2/(v1−v2)

4. All in all, one
finally obtains the closed kinetic equation spelled out in
Eq. (4).

Appendix E: Linear response theory

As highlighted in Appendix C, in order to obtain the
kinetic Eq. (4), we had to neglect the contributions from
collective effects in the BBGKY evolution equations. As

a consequence, in order to test that kinetic equation, it is
essential to place ourselves in regimes where collective ef-
fects are indeed unimportant. Luckily the strength of the
self-gravitating amplification can be directly estimated
by solving the linear response theory of the system. This
is what we briefly reproduce in that Appendix.

A systematic approach to perform this calculation is to
proceed by analogy starting from the generic result re-
garding the linear stability analysis of (inhomogeneous)
long-range interacting systems. Following Eq. (5.94)
of [7] (similarly Eq. (G3) of [39] and references therein),
a system’s stability is governed by the response matrix

M̂pq(ω)=2π
∑

k

∫
dJ

k ∂F/∂J

ω − kΩ(J)
ψ
(p)∗
k (J)ψ

(q)
k (J), (E1)

where the angle-action coordinates are (θ, J) = (θ, v), the
orbital frequencies are Ω(J) = v.

Here, the response matrix characterises the strength
with which the underlying mean-field system can amplify
perturbations. More precisely, assuming that the sys-
tem is submitted to some external potential perturbation,
δψext, then the system’s instantaneous self-generated re-
sponse, δψself , is given by the joint amplification of the
external perturbation and the system’s self-generated re-

sponse, so that δψ̂self(ω)∝M̂(ω)·[δψ̂self(ω)+δψ̂ext(ω)].
Owing to this loop of amplification, any external per-
turbation is said to be dressed by collective effects,
as the total perturbations in the system are given by

[δψ̂self(ω)+δψ̂ext(ω)]∝ [I−M̂(ω)]−1·δψ̂ext(ω). As such,

the matrix [I− M̂(ω)]−1 plays the role of a susceptibil-
ity, that quantifies the efficiency with which perturba-
tions are boosted. A system is then linearly unstable if
there exists a complex frequency ω = ω0+iη, with η > 0,

such that M̂(ω) has an eigenvalue equal to 1, i.e. if there
exists a frequency for which the self-gravitating dressing
gets infinitely large.

In Eq. (E1), we introduced a biorthogonal set of ba-
sis elements, ψ(p), on which the pairwise interaction is
decomposed, following the so-called matrix method [40].
For the present system, the natural basis elements follow
from the pairwise interaction from Eq. (2), that can be
written under the separable form

U(θ1 − θ2) = −
∑

p=±1

ψ(p)(θ1)ψ
(p)∗(θ2),

ψ(p)(θ) =
√
U0/2 eipθ, (E2)

and it is straightforward to check that (ψ(+), ψ(−)) indeed
form a biorthogonal basis, as defined, e.g., in Eq (G1)
of [39]. Similarly their Fourier transform w.r.t. the angle
can easily be computed. It is independent of the action

v, and reads ψ
(p)
k = δpk

√
U0/2. Owing to this Kronecker

delta, the 2× 2 response matrix from Eq. (E1) is then
diagonal. We may finally introduce the susceptibility

matrix (or dielectric function), ε = I− M̂, that is also
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diagonal with the coefficients

ε±(ω) = 1∓ π U0

∫
dv

∂F/∂v

ω ∓ v
. (E3)

Let us emphasise that the result from Eq. (E3) is identical
to the result presented in Eq. (9) of [41].
Relying on the same de-dimensionalisation as in

Eq. (27), one can rewrite the susceptibility coefficient
from Eq. (E3) under the form

ε±(ω) = 1∓
1

Q

∫
du

∂F/∂u

ω ∓ u
, (E4)

with ω = ωtd a dimensionless frequency. We also recall
that the dimensionless PDF, F (u), and the stability pa-
rameter, Q, were given in Eqs. (25) and (26).
Luckily, it is possible to further precise our characteri-

sation of the system’s stability for the range of DFs that
will be considered in this paper. Following the generic
shape of the test PDF from Eq. (F2), let us therefore
assume that the system’s DF, F (v), is single-humped,
i.e. it possesses a single maximum. We will also assume
that the DF is even, so that this maximum is reached in
v = 0. Owing to this parity, in Eq. (E4), we note that
ε+(ω) = ε−(ω), so that we may limit ourselves to only
studying ε+(ω).
Because the DF is single-humped in v = 0, following

Nyquist’s criterion (see, e.g., Section 2.6 in [41]), such
a DF is linearly stable if, and only if, ε+(0) > 0. As a
consequence, following Eq. (E4), such a DF is linearly
stable if, and only if, one has

Q > Qc = −

∫
du

∂F/∂u

u
. (E5)

Conveniently, it is straightforward to compute these sta-
bility thresholds for the generic test DF from Eq. (F2).
This DF is parametrised by the power index α, such that
α = 2 corresponds to the Gaussian distribution. One
finds

Qc(α = 2) = 1,

Qc(α = 4) =
4Γ[3/4]2

Γ[1/4]2
≃ 0.46. (E6)

A homogeneous Gaussian PDF (i.e. a homogeneous
Boltzmann distribution) is therefore linearly stable if,
and only if, it satisfies Q > 1.
For more generic PDFs, the susceptibility coefficient

from Eq. (E4) cannot always be computed analytically.
One has to resort to numerical evaluations, e.g., following
the method presented in Appendix D of [28]. We illus-
trate this method in Fig. 4 by representing the Nyquist
contours associated with the test PDF from Eq. (F2).
As expected, we recover in Fig. 4 that the larger is Q,
the weaker is the system’s susceptibility, i.e. dynamically
hot systems are less efficient at amplifying perturbations
through collective effects. Figure 4 also illustrates that

FIG. 4: Illustration of the Nyquist contours
ω 7→ det[ε(ω + i×10−6)] for the PDF from Eq. (F2) with
α = 4, and different dynamical temperatures. None of these
contours enclose the origin, indicating that all these systems
are linearly stable. The larger is Q, the closer is the contour
to the point (1, 0), the weaker are collective effects, and the
more one is in the applicability regime of Eq. (4).

the test case considered in Fig. 2 is sufficiently hot for
the system to be linearly stable. In addition, collective
effects should prove sufficiently negligible for the kinetic
Eq. (4) to be in its applicability regime.

Appendix F: Numerical applications

In this Appendix, for completeness, we briefly present
our numerical approach to perform N -body simulations
of the HMF model. Following Eq. (1), the specific Hamil-
tonian of a test particle embedded in that system reads

Ht(θt, vt) =
v2t
2

−Mx(t) cos(θt)−My(t) sin(θt), (F1)

where we introduced the system’s instantaneous mag-

netisations as Mx(t)=U0µ
∑N

i=1 cos(θi(t)), as well as

My(t)=U0µ
∑N

i=1 sin(θi(t)). Two important remarks
should be made w.r.t. Eq. (F1). First, because the pair-
wise interaction does not diverge at zero angular sepa-
ration, the test Hamiltonian from Eq. (F1) and the as-
sociated evolution equations can also be used to obtain
correct evolution equations for each of the system’s par-
ticles, treating the magnetisations as external, i.e. not
taking any derivatives of it. Second, as the magnetisa-
tions involve a sum over the N particles, they should be
interpreted as global and shared quantities, that need to
be computed only once for each timestep. This allows
for the computational complexity of integrating for one
timestep to scale like O(N), rather than O(N2) as in the
usual N -body problem with binary interactions.
To compute the velocity fields at a given time, we pro-

ceed as follows: (i) we compute and store (cos, sin) for all
particles; (ii) we reduce these quantities to compute the
instantaneous magnetisations (Mx,My); (iii) we compute
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the velocity fields dθi/dt and dvi/dt. Owing to the fact
that the Hamiltonian from Eq. (F1) is separable, parti-
cles are then advanced using a fourth-order symplectic
integrator (see Eq. (4.6) in [42]). The numerical simu-
lations presented in Section IV were all performed using
an integration timestep equal to δt = 1/(2σ) that guar-
anteed a relative error in the total energy of the order of
10−7.
Following [43], the initial distribution of the system is

taken to be a generalised Gaussian distribution. For a
given index α and velocity dispersion σ, its PDF reads

P (u) =
α

2

A(α, σ)

Γ(1/α)
exp

[
− (A(α, σ) |u|)α

]
,

A(α, σ) =
1

σ

(
Γ(3/α)

Γ(1/α)

)1/2

. (F2)

This PDF satisfies the normalisation condition∫
duP (u) = 1, is of zero mean and variance σ2. For
α = 2, this corresponds to the Gaussian distribution,
while larger values of α are associated with less peaked
distributions. Luckily, the PDF from Eq. (F2) can also
easily be sampled (see Eq. (9) in [43]).
To measure fluxes, as in Figs. 2 and 3, we proceeded

as follows. For each setup, we perform Nreal realisa-
tions, only changing the initial conditions. The dimen-
sionless velocity space, u ∈ [−3, 3], is truncated in 50
equal size bins. For each realisation, each velocity bin
location, and each timestep, we compute the proportion
of particles left to that location, subsequently averaged
over all the available realisations. For each velocity bin,
the associated time series are then fitted with a linear
time-dependence, whose slope is the local diffusion flux,
F(u, t=0). To estimate the associated measurement er-
rors, we follow the exact same approach for Nboot mea-
surements, except that the sample of Nreal realisations
over which the ensemble average is performed allows for
repetitions, i.e. for the same realisations to be used more
than once. The measurement is then given by the me-
dian value, while the errors are given by the 16% and
84% confidence levels. In Figs. 1 and 2, we used the
values N = 103, Nreal=Nboot=103, and simulated the
systems up to t = 5×108td. With our implementation,
running one such realisation asked for about 18h of com-
putation on a single core. In Fig. 3, we used the val-
ues 0.5×103≤N≤1.7×103, Nreal=Nboot=224, and sim-
ulated the systems up to t = 5×108td.
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