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We describe a simple form of importance sampling designed to bound and compute large-deviation
rate functions for time-extensive dynamical observables in continuous-time Markov chains. We start
with a model, defined by a set of rates, and a time-extensive dynamical observable. We construct a
reference model, a variational ansatz for the behavior of the original model conditioned on atypical
values of the observable. Direct simulation of the reference model provides an upper bound on
the large-deviation rate function associated with the original model, an estimate of the tightness
of the bound, and, if the ansatz is chosen well, the exact rate function. The exact rare behavior
of the original model does not need to be known in advance. We use this method to calculate
rate functions for currents and counting observables in a set of network- and lattice models taken
from the literature. Straightforward ansätze yield bounds that are tighter than bounds obtained
from Level 2.5 of large deviations via approximations that involve uniform scalings of rates. We
show how to correct these bounds in order to recover the rate functions exactly. Our approach
is complementary to more specialized methods, and offers a physically transparent framework for
approximating and calculating the likelihood of dynamical large deviations.

I. INTRODUCTION

Dynamical systems, such as chemical networks [1], bio-
chemical and molecular machines [2–4], and models of
driven [5–8] and glassy [9–11] systems, exhibit fluctua-
tions, departures from typical behavior [12]. Fluctua-
tions of time-extensive observables – which can be work,
entropy production [13, 14], other currents [8, 15, 16], or
dynamical activity [11, 17] – characterize the behavior
of these systems, much as fluctuations of size-extensive
quantities, such as energy or magnetization, characterize
the static behavior of equilibrium systems [18, 19]. The
probability distributions that control dynamical fluctua-
tions satisfy certain requirements, known as fluctuation
relations [3, 13, 14, 20–26], which impose constraints on
their symmetries. The precise form of these distributions,
however, must be obtained by explicit calculation.

Here we focus on calculating probability distributions
ρT (A) for models with a discrete state space, for stochas-
tic dynamical trajectories of elapsed time T and time-
extensive observables A. Time-extensive observables are
those that can be built from a sum of values of individ-
ual pieces of a trajectory. For large values of T these
distributions often adopt the large-deviation form [20–
25, 27, 28]

ρT (A) ≈ e−TJ(a), (1)

in which a = A/T is the time-intensive value of the ob-
servable. J(a) is the large-deviation rate function, which
quantifies the likelihood of observing particular values of
the observable a [29]. The symbol ≈ denotes equality of
the logarithms of both sides of (1), to leading order in T ,
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for all values of a. In the physics literature, most numer-
ical methods for calculating J(a) aim to first compute
its Legendre transform, the scaled cumulant-generating
function (SCGF) [11, 28, 30–35]. It is possible to re-
cover J(a) from the SCGF if the former is convex [36].
A common way to calculate the SCGF is to use cloning
methods [30, 37], which duplicate or eliminate trajecto-
ries according to their time-integrated weights. Often
cloning is supplemented by other importance-sampling
methods [32–34], some of which make use of a modi-
fied dynamics in order to produce trajectories that more
closely resemble the rare dynamics of the original model.

Determining J(a) solely by reweighting trajectories of
a modified dynamics, without prior knowledge of the rare
dynamics of the model of interest, is not widely done
(see, however, Refs. [38–41]). Standard arguments sug-
gest that determining the probability distribution of a
within one dynamics by reweighting against a second dy-
namics requires, in general, the evaluation of random
quantities whose variance is exponential in the trajec-
tory length [42–45] (see Section II F). Such observations
are sometimes taken to mean that trajectory reweight-
ing, without advance knowledge of the rare dynamics to
be sampled, is little better than direct sampling using
the original model [46]. Here we argue that more opti-
mism is warranted, and show that the conditions under
which meaningful results can be extracted from trajec-
tory reweighting are much less restrictive than has been
recognized. Moreover, trajectory reweighting presents
few technical complications beyond the requirement to
simulate the original model with modified rates, and al-
lows the reconstruction of J(a) directly, without first cal-
culating the SCGF.

To compute the large-deviation rate function J(a) for
a given model and dynamical observable a, we use a sim-
ple form of importance sampling [42–44, 47–50]. We be-
gin with a modification of the model dynamics. This
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modified or reference model is a microscopic ansatz for
the original model’s behavior, conditioned on particular
values of the observable a. The ansatz is characterized
by a set of parameters whose values we determine varia-
tionally. In practical terms we simply guess a reference
dynamics that is able to generate more or less of a than
the normal dynamics. Let the typical value of a pro-
duced by original and reference models be a0 and ã0, re-
spectively [51]. Reweighting trajectories of the reference
model produces an upper bound on the rate function J
associated with the original model at the point ã0, an es-
timate of the tightness of the bound, and, if the ansatz is
chosen well, the exact rate function (to within statistical
error). That is, the reference dynamics is a true ansatz,
a guess whose accuracy can be determined by subsequent
calculation. Repeating the calculation for a set of refer-
ence models possessing a set of distinct values {ã0} allows
us to attempt reconstruction of J(a) at the set of points
a ∈ {ã0}. In this respect the procedure is similar to um-
brella sampling of equilibrium systems. We show that
the conditions under which the exact rate function can
be recovered are less restrictive than usually assumed.

Any reference dynamics can be reweighted to produce
some upper bound on J(a), simply by making the desired
value of a typical [52]. Good choices of reference dynam-
ics, leading to tight bounds, render the fluctuations of
the reweighting factor or likelihood ratio (the ratio of
path probability of new and old dynamics) small. We
show here that relatively simple reference-model choices
produce meaningful (i.e. tight) bounds, for a set of mod-
els and observables taken from the literature. We com-
pare the bounds produced by our method with universal
bounds on currents [53, 54] and non-decreasing count-
ing variables [55]. Those bounds can be obtained from
Level 2.5 of large deviations [56, 57], the exact rate func-
tion for the empirical flow (jumps between states) and
measure (state occupation times), via a uniform rescal-
ing of rates. That approach provides important physical
insight into the quantities that constrain fluctuations of
time-integrated observables, and also provides numerical
bounds on rate functions. Our approach, which uses a
microscopic ansatz within the exact path integral for the
dynamics, produces tighter bounds, particularly far into
the tails of rate functions. The extent to which bounds
vary as we change the nature of the ansatz provides phys-
ical insight into how much certain types of microscopic
processes contribute to the rare dynamics of a model.
Microscopic ansätze, even relatively simple ones, are ca-
pable of capturing a wide range of behavior, including
regimes of anomalous fluctuations in which the usual
central-limit theorem breaks down [39]. Computing a
correction to these bounds, by measuring fluctuations of
the likelihood ratio, allows the recovery of the exact rate
function. Importantly, fluctuations of the likelihood ratio
do not need to be zero for J(a) to be calculated

The approach described here is variational, in the
sense that we vary the parameters of the reference model
in order to identify the dynamics that best approximates

the rare dynamics of interest. Variational principles
underpin the study of large deviations, embodied by
the notion that “any large deviation is done in the least
unlikely of all the unlikely ways” [27]. Variational ideas
are central to different representations of rare processes
– see e.g. Section 5 of Ref. [31] – and have been widely
used in analytic and numerical work [33, 35, 58–60].
The aim of this paper is to present a simple, physically-
motivated approach to bounding and calculating rate
functions using a variational principle enacted by (only)
direct simulations, and to present a set of convergence
criteria, adapted from Ref. [61], that reveal when bounds
can be corrected to produce the exact rate function.
We have provided a GitHub script [62] that computes
the correction term automatically, this being the most
involved step of the calculation. These results extend our
previous work [39–41] by a) showing how different forms
of physically-motivated reference dynamics can be used
to treat different models, and b) by providing a set of
criteria that identify when the exact rate function can be
recovered. One point we emphasize is that considerable
progress can be made using physical intuition and basic
knowledge of the properties of a model, without the
application of other forms of importance sampling (such
as cloning or transition-path sampling). Our method
requires only continuous-time Monte Carlo simulation,
and so can be applied to any set of circumstances in
which that method can be used, including to models
with unbounded state spaces [39]. In addition, it
can be used to reconstruct families of large-deviation
rate functions from a single set of simulations, using
the principle that the dynamics of one model can be
reweighted to examine the dynamics of many others [41].
Reference models represent a form of importance
sampling similar in spirit but different in detail to the
umbrella potentials used in equilibrium sampling [63, 64].

In Section II we describe our approach, which
we refer to as VARD (for Variational Ansatz for Rare
Dynamics). In general terms there are many forms of
VARD that have been used in the literature (see above);
we use the term to convey the specific notion of doing
(only) direct simulations of a family of modified models.
In Section III we apply the method to four models taken
from the literature. We have chosen models from the
literature that display a variety of interesting behavior:
two lattice models (the asymmetric simple exclusion
process [6, 65] and the Fredrickson-Andersen model [66])
and two network models, and we sample both currents
and non-decreasing counting variables to show that
the method works the same way for each. In the cases
described in Section III B–Section III E, relatively simple
choices of reference model allow the computation of the
exact rate function, and we gain physical insight into the
nature of the dynamics that contributes to particular
pieces of J(a). We also show, in Section III F, that
bounds that are descriptive in small systems remain so
in larger systems. We conclude in Section IV.
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II. A VARIATIONAL ANSATZ FOR RARE
DYNAMICS

A. Continuous-time Markov chains and large
deviations

Consider a continuous-time dynamics [67] on a set of
discrete states, defined by the master equation

∂tPx(t) =
∑

y 6=x

WyxPy(t)−RxPx(t). (2)

Here Px(t) is the probability that a system resides in
(micro)state x at time t. Wxy is the rate for passing from
state x to state y, and Rx =

∑
y 6=xWxy is the escape

rate from x (Table 1 provides a reference for some of
the more frequently-used symbols in this paper). The
standard algorithm for simulating the dynamics (2) is as
follows [68]. From state x, choose a destination state y
with probability

pxy =
Wxy

Rx
. (3)

The time increment ∆t required to make this move is a
random number drawn from the exponential distribution
with mean 1/Rx,

px(∆t) = Rxe−Rx∆t. (4)

Given an initial state x0, the dynamics defined by (3) and
(4) generates a trajectory ω = x0 → x1 → · · · → xK(ω),
which consists of a sequence of K(ω) jumps xk → xk+1

and associated jump times ∆tk. In this paper we are
concerned with calculating

ρT (A) =
∑

ω

p(ω)δ(T (ω)− T )δ(A(ω)−A), (5)

the probability distribution, taken over all trajectories of
elapsed time T , of a time-extensive dynamical observable

A(ω) =

K(ω)−1∑

k=0

αxkxk+1
. (6)

Here αxy is the change of the observable A upon moving
from x to y, and A(ω) is the sum of these quantities
over a single trajectory ω. We define a(ω) ≡ A(ω)/T (ω)
as the time-intensive version of A. T (ω) is the elapsed
time of trajectory ω, and is equal to T when TK(ω) ≤ T <

TK(ω)+1, where TK(ω) =
∑K(ω)−1
k=0 ∆tk. The symbol p(ω)

is the probability of a trajectory ω. Given an initial state,
this term is equal to a product of factors (3) and (4) for
all jumps of the trajectory, multiplied by the probability
of not exiting state xK(ω) between times TK(ω) and T .

In (5), the delta functions denote the conditions of
fixed A and fixed T that we wish to impose on the trajec-
tory ensemble. This conditioning defines the microcanon-
ical path ensemble [31], of which (5) is the normalization
constant.

TABLE I. Glossary of frequently-used symbols

A = aT path-extensive order parameter
T elapsed time of a trajectory
K number of jumps of a trajectory
αxy change of A upon making the jump x→ y
Wxy “original” model rates for the jump x→ y
Rx “original” model escape rate

∑
y 6=xWxy

a0 typical value of a under the original dynamics
J(a) rate function for a under the original dynamics
J0(a) upper bound on J(a)
J1(a) correction to the bound: J(a) = J0(a) + J1(a)

W̃xy reference-model rates for jumps x→ y

s one parameter of W̃xy: see (8)

βxy remaining parameters of W̃xy: see (8)

R̃x reference-model escape rate
∑
y 6=x W̃xy

λ clock bias: see (9)
ã0 typical value of a under the reference dynamics

J0[{x}] J0(a) determined from a scan of the
reference-model parameter set {x}

We focus on models for which, for large values of T , the
probability distribution (5) adopts the large-deviation
form (1). Our aim is to calculate the rate function J(a)
(sometimes the notation I(a) or ϕ(a) is used to denote
a rate function [28, 55]). This function quantifies the
rate of decay of atypical values of a. For many models
J(a) has a unique minimum at a point a = a0, where
J(a0) = 0. This point defines the typical value of a: the
distribution ρT (A) concentrates on a0 in the long-time
limit, an expression of the law of large numbers [27, 28].
In general, a rate function can have more than one point
at which it is zero, defining multiple typical values of
an observable [28, 39, 69]. Often, the rate function is
quadratic in the neighborhood of its minimum, an ex-
pression of the central-limit theorem [27, 28]. Exceptions
to this norm occur at phase transitions, where the usual
central-limit theorem does not hold [70]. Far from their
minima, rate functions display a variety of behaviors [28].
However, direct simulation of the dynamics (3) and (4)
leads to poor sampling of J(a) anywhere other than in
the neighborhood a ≈ a0.

B. Quantifying rare events

To remedy the sampling problem for values of the ob-
servable a far from a0, we introduce a reference model.
We wish to reweight the trajectories of the reference
model in order to approximate or calculate J(a) for val-
ues of a potentially far from a0. The reference model
must satisfy certain requirements. It needs to be able to
generate all trajectories possible in the original model,
but no trajectories not possible in the original model
(otherwise the reweighting factor, discussed below, can
be infinity or zero). We want the reference model to be
able to generate trajectories possessing values of a that
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FIG. 1. Large deviations from a variational ansatz for rare dynamics (VARD). (a) We aim to bound or calculate the large-
deviation rate function J(a) (black dashed line) for a given model and observable a, under the continuous-time dynamics (3)
and (4). We introduce a reference model (7) and (9), a variational ansatz for the rare dynamics of the original model conditioned

upon a. The reference model has rate function J̃(a) (gray line; we do not aim to compute this function). The typical value
of a generated by the reference model is ã0; this is potentially far from the typical value a0 generated by the original model.
Evaluation of (17) from the sample mean of a single trajectory of the reference model produces one point J0(ã0) on the blue

line, an upper bound on J(a). (b) If we can evaluate the auxiliary rate function J̃(δq, ã0) at the point δq? at which its gradient
is unity, then we can calculate the correction term (18) and determine one point on the green curve in panel (a), the exact
rate function of the original model. If not, then we gain information about the quality of the bound J0(ã0). Variation of the
parameters of the reference model allows reconstruction of the entire blue and (potentially) green curves in panel (a). VARD
thus reduces a single nonlocal problem, the computation of J(a) arbitrarily far from a0, to a series of local problems, each

requiring the evaluation of an auxiliary rate function J̃(δq, ã0) at the point δq? at which its gradient is unity. As we show in
this paper, this procedure can be carried out for models commonly found in the literature using relatively simple choices of
reference model.

are rarely generated by the original model, which is rel-
atively easy to arrange, but we also need to be able to
recover from reference-model trajectories the probabil-
ity with which such trajectories would have been gener-
ated by the original model. This second requirement is
harder to arrange, but not prohibitively so. As we show,
if the reference model generates trajectories possessing
values of a in a manner completely unlike the original
model, then we have to do prohibitively heavy sampling
of reference-model trajectories in order to calculate J(a).
If, however, the reference model generates trajectories
possessing values of a in a manner similar to the original
model, then J(a) can be reconstructed from trajectories
of the reference model with relatively little effort. Im-
portantly, the method tells us when this is so: we do not
need to know in advance the precise nature of the rare
dynamics of the original model in order to recover J(a).

For a trajectory ω of the reference model we want to be
able to influence how much of the dynamical observable
is produced per jump, A(ω)/K(ω), and the number of
jumps per unit time, K(ω)/T . To control the former we
use a reference-model dynamics that selects destination

states with probability

p̃xy =
W̃xy

R̃x
, (7)

where W̃xy is an effective rate, and R̃x =
∑
y 6=x W̃xy.

(The true rates of the reference model are, from (7) and

(9), W̃xy(Rx+λ)/R̃x.) Here we use the parameterization

W̃xy = e−sαxy−βxyWxy, (8)

which is a modification of (3). The factor e−sαxy is cho-
sen in order to guide the jump destination according to
the change of the observable αxy weighted by a param-
eter s. In general such a bias is not sufficient to control
A(ω)/K(ω), and so we also consider an additional arbi-
trary bias, βxy. For the models considered here a simple
and physically-motivated guess for what βxy should be is
sufficient to produce a good reference model. We shall
return to this point.

To control the number of jumps per unit time,
K(ω)/T , we draw times between jumps of the reference
model from the distribution

p̃x(∆t) = (Rx + λ)e−(Rx+λ)∆t, (9)
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where λ > −minxRx serves to make the jump time from
a given state unusually large or small by the reckoning of
the original model. This “clock trick” provides a simple
way of sampling jump times without having those times
appear explicitly in the reweighting factor [41]. (The
parameter βxy can also affect jump times indirectly, if,
for example, it is chosen to be proportional to Ry, the
escape rate from the destination state.)

Next observe that the path weight p(ω) in (5) can
be written p̃(ω)φ(ω), where φ(ω) = p(ω)/p̃(ω) is the
reweighting factor, the ratio of weights of a trajectory ω
in the original and reference models. φ(ω) is also known
as the likelihood ratio or the Radon-Nikodym deriva-
tive [31, 50]. For a jump x→ y in time ∆t, the reweight-
ing factor is the product of (3) and (4), divided by the
product of (7) and (9); for the entire trajectory ω we have

φ(ω) = esA(ω)+λT (ω)+Tq(ω), (10)

where

q(ω) =
1

T

K(ω)−1∑

k=0

(
βxkxk+1

+ ln
R̃xk

Rxk + λ

)
(11)

is the piece of φ that is not fixed by the delta-function
constraints in (5). (The time-dependent piece of (10) pro-
duced by K(ω) jumps is eλTK(ω) ; the contribution from
the final entry in the path weight, the probability of not
jumping between time TK(ω) and T (ω), leads to the fac-

tor of eλT (ω) shown in (10).)
We can then write (5) in the form

ρT (A)

ρ̃T (A)
= esA+λT

∑
ω p̃(ω)eTq(ω)δ(T )δ(A)∑

ω p̃(ω)δ(T )δ(A)
, (12)

where ρ̃T (A) ≈ e−T J̃(a) is the analog of (5) for the ref-
erence model, and we have used the shorthand δ(X) ≡
δ(X(ω)−X). Replacing the sums over trajectories with
an integral over trajectory weights gives

ρT (A)

ρ̃T (A)
= esA+λT

∫
dq p̃T (q|a)eTq, (13)

where p̃T (q|a) is the normalized probability distribution
of q(ω) for trajectories of the reference model that have
specified values of a and T . For large T we assume that
this distribution will obey a large-deviation principle of
its own. If so we can write, using the rules of conditional
probability,

p̃T (q|a) ≈ e−T J̃(q|a) = e−T [J̃(q,a)−J̃(a)], (14)

where J̃(q, a) is the joint rate function for q and a within
the reference model.

We next take the large-T limit in (13), replace all prob-
ability distributions with their large-deviation forms, and
set a = ã0, the value typical of the reference model (such

that J̃(ã0) = 0). The result, upon taking logarithms, is

J(ã0) = −sã0−λ− lim
T→∞

T−1 ln

∫
dq eT [q−J̃(q,ã0)]. (15)

Finally, we introduce δq ≡ q − q̃0, where q̃0 is the value
of q typical of the reference model. This value can be
computed from a single reference-model trajectory (for a
given set of parameters s, λ, βxy). Extracting eT q̃0 from
the exponential in (15) and evaluating the integral using
the saddle-point method yields

J(ã0) = J0(ã0) + J1(ã0), (16)

where

J0(ã0) = −sã0 − λ− q̃0 (17)

and

J1(ã0) = −max
δq

[δq − J̃(δq, ã0)]. (18)

Eqs.(16)–(18) provide an exact representation of the rate
function, if the probability distributions (5) and (14)
adopt large-deviation forms [71]. Fig. 1 illustrates the re-
lationship between Equations (16), (17), and (18), which
are central to the sampling scheme discussed in this pa-
per.

C. We can compute J(a) as the sum of a bound
and a correction

The piece J0(ã0) ≥ J(ã0), Eq. (17), is an upper bound
on the rate function at the point a = ã0, by Jensen’s
inequality applied to (13), and can be obtained from the
sample mean of single trajectory of the reference model.
It is always possible to calculate this term. If J̃(a) is lo-
cally quadratic about ã0, meaning that the usual central-
limit theorem holds [72], then errors in the computation

of ã0 go as
√
〈(a− ã0)2〉 ∼ T−1/2. The same is true for

the computation of q̃0. Thus statistical errors in the com-
putation of the bound can be made negligible simply by
computing (17) for a sufficiently long trajectory.

The term J1(ã0), Eq. (18), is a correction to the bound,
and can be calculated by sampling values of q, Eq. (11),
of trajectories of the reference model that have a = ã0.
It is possible to calculate this term if the reference model
is chosen well, but not if it is chosen badly.

The two terms in (18) describe a competition between
the logarithmic weight δq associated with reference-
model trajectories that have atypical values of q, and
the logarithmic probability J̃(δq, ã0) of observing such

trajectories. When J̃(δq, ã0) is differentiable, (18) can
be written

J1(ã0) = −δq? + J̃(δq?, ã0), (19)

where

∂δqJ̃(δq, ã0)|δq=δq? = 1. (20)

Thus we need to measure the value of J̃(δq, ã0) at the
point δq? at which its gradient is unity, which will be
a unique point when J̃(δq, ã0) is convex. The sampling
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problem is now localized: instead of sampling J(a) ar-
bitrarly far from a0 (using the original model), we need
only sample a specific piece δq? of an auxiliary rate func-
tion, J̃(δq, ã0) (using the reference model). This fact,
summarized in Fig. 1, shows why the present scheme has
the potential to be much more efficient than unbiased
simulation, if the reference model is chosen well.

This sampling problem is still formidable in general.
If the reference model is chosen badly, meaning that its
typical trajectories have very different character to tra-
jectories of the original model that have a = ã0, then
the bound will be slack, meaning that J0(ã0) � J(ã0),

and so J1(ã0) will be large. In this case J̃(δq, ã0) will
be broad around its minimum δq = 0 (the variance of δq
will be large) and unreasonably heavy sampling using the
reference model will be required to determine the point
δq? (because this corresponds to a rare event within the
reference model).

However, for good choices of the reference model the
opposite situation arises: the bound will be tight, mean-
ing that J0(ã0) ≈ J(ã0), and so J1(ã0) will be small. In
this case the latter can be evaluated with reasonable nu-
merical effort (in the examples that follow we can gather
the required statistics of q by sub-sampling a single tra-
jectory of the reference model.) If we can reconstruct

J̃(δq?, ã0) then we can calculate J1(ã0) and we have ob-
tained the exact rate function.

D. Computing the correction

Given a model and an observable a, we construct a
reference model (7) and (9) so as to approximate or cal-
culate J(a). In Section III we provide a set of worked
examples of this procedure. In general terms we simply
guess which rates of the original model can be modified so
as to produce more or less of a than usual, and introduce
a parameter (s, λ, or βxy) able to control the rate in ques-
tion. We do not know in advance which combination of
these modified rates best approximates the way in which
the original model produces rare values of a, but by run-
ning short trajectories of the reference model for different
values of its parameters we can identify how this is done
within the space of possibilities defined by the reference
model. From the sample mean of each reference-model
trajectory we obtain the values ã0 and q̃0; plotting ã0

against −sã0 − λ− q̃0 for a range of values of reference-
model parameters, and identifying the lower envelope of
these points (conveniently calculated using a union of
convex hull constructions), gives the bound J0(a) associ-
ated with that choice of reference model.

This bound is the starting point for our attempt to
calculate the correction J1(a). The correction term can
be interpreted as a measure of how close the typical dy-
namics of the reference model is to the desired rare dy-
namics of the original model. If J1(a) = 0 then typical
trajectories of the reference model correspond exactly to
trajectories of the original model conditioned on the rel-

evant value a of the order parameter. If J1 is small then
(slightly) atypical versions of reference-model trajecto-
ries correspond to the desired rare dynamics; and if J1

is large (or cannot be calculated) then it is the very rare
trajectories of the reference model that correspond to the
desired rare dynamics of the original model.

In previous versions of our sampling method [39–41]
we used a cumulant expansion to evaluate the integral in
(15), giving, in place of (18),

Japprox
1 (ã0) =

T

2
σ2

ref +
T 2

6
κref + · · · . (21)

Here σ2
ref ∝ 1/T is the variance of δq over typical tra-

jectories of the reference model (those having a = ã0),
i.e. σ2

ref = 〈(δq)2〉ref , and κref = 〈(δq)3〉ref ∝ 1/T 2.
Eq. (21) can give accurate results for the rate-function
correction [39–41], but does not provide a self-consistent
way of determining when the correction is accurate. At
best we can determine that the first omitted term in the
expansion (21) is small, but this does not provide a proof
of convergence.

In this paper we present an alternative way to calcu-
late the correction term (18), which builds upon methods
designed to compute rate functions (or their SCGF Leg-
endre duals) empirically [61, 73]. This process is more in-
volved than the computations required to evaluate (21),
but has the advantage of providing a set of clear conver-
gence criteria and statistical error bars. This information
reveals when we have converged (18), and so have the
exact rate function, and when we do not, thus turning
the reference-model guess into a true ansatz. In the re-
mainder of this section we describe the method we use
to compute (18). We have provided a GitHub script [62]
for calculating the correction automatically.

To obtain the correction we first assume that J̃(δq, a)
is differentiable, and so work with (19) instead of (18).
We then introduce the two-dimensional scaled cumulant-
generating function (SCGF),

θ̃(kδq, ka) ≡ lim
T→∞

T−1 ln〈eT (kδqδq+kaa)〉ref , (22)

where the angle brackets denote a trajectory ensemble
average within the reference model. The SCGF (22) is

related to J̃(δq, a) through the double Legendre trans-
form

J̃(δq, a) = kδqδq + kaa− θ̃(kδq, ka) (23)

where kδq and ka are conjugate to δq and a respectively.

As a result, if we want to calculate J̃(δq, a) at a single
point, we can calculate the right-hand side of (23). Doing
so is much more efficient than attempting to reconstruct
J̃(δq, a) directly, for the reasons given in Section II F.

The formula for the correction (19) depends on

J̃(δq?, ã0), which we can get from (23):

J̃(δq?, ã0) = kδq?δq
? + kã0 ã0 − θ̃(kδq? , kã0). (24)
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We can simplify this relationship by combining the im-
plicit definition of kδq in the Legendre transform with
(20) to get

kδq? = ∂δqJ̃(δq, ã0)|δq=δq? = 1. (25)

Inserting (25) into (24) yields

J̃(δq?, ã0) = δq? + kã0 ã0 − θ̃(1, kã0). (26)

The quantity ã0 is the typical value of the observable
in the reference model, and can be obtained from a sin-
gle reference-model trajectory. The three other unknown
quantities on the right-hand side of (26) that are needed

for the correction are δq?, kã0 , and θ̃(1, kã0).
To calculate these quantities we have to compute the

value of the two-dimensional SCGF (22) at various points
(kδq, ka). We can do this using a simple extension of
existing techniques developed to sample points on 1D
SCGFs [61, 73]. Following Ref. [61] we generate a single
long trajectory of the reference model and sub-sample it
into M approximately independent blocks ωi of length
T (ωi) = B. Within each block we record the sample

mean of δq and a, which we write as δqi and ai. θ̃(kδq, ka)
can be calculated from this data set using the estimator

ˆ̃
θ(kδq, ka) =

1

B
ln

(
1

M

M∑

i=1

eB(kδqδqi+kaai)

)
. (27)

Eq. (27) is guaranteed to converge to the exact value of

the SCGF, θ̃(kδq, ka), in the limit M →∞ and B →∞.
The convergence properties of this estimator for finite M
and B will be addressed in the next section, II E. For now
we assume that we can obtain convergence as needed.
Finally, note that by changing the values of kδq and ka
in (27) a single data set consisting of values of ai and δqi,
generated from a single long trajectory, can be used to
recover many points (kδq, ka) on θ̃(kδq, ka).

We now turn to the calculation of the three unknowns
in (26), δq?, kã0 and θ̃(1, kã0). First we use the relation

ã0 = ∂ka θ̃(kδq? = 1, ka)|ka=kã0
(28)

to find kã0 . We do so by calculating the SCGF, θ̃(kδq, ka),
along a 1D slice through its 2D domain using the esti-
mator (27). This slice is defined by fixing kδq = kδq? = 1
and varying ka. We then use the method of finite differ-
ences to get ∂ka θ̃(kδq? = 1, ka) at each point ka, and find
the point that fulfills (28). Once we know the value of

kã0 we can calculate θ̃(1, kã0), again using (27). Finally
we can compute δq? using the analog of (28) for δq,

δq? = ∂kδq θ̃(kδq, kã0)|kδq=1. (29)

Inserting δq?, kã0 , θ̃(1, kã0) and ã0 into (26) yields

J̃(δq?, ã0). The correction to the bound, J1(ã0), then
follows from (19).

E. Convergence of the SCGF Estimator

When used with only a finite number M of blocks of

finite length B, the estimator
ˆ̃
θ(kδq, ka), defined in (27),

can exhibit statistical and systematic errors. In this sec-
tion, we analyze these errors to understand when the es-
timate of J1(ã0) calculated through the SCGF (22) will
be accurate. As in the previous subsection, this analysis
closely follows Ref. [61].

To quantify the statistical error associated with our
calculated value of J1(ã0) we repeat the calculation pro-
cedure using R independent trajectories. Each of these
trajectories is split up into M blocks of length B, and
used to calculate J1(ã0). Our final estimate for the cor-
rection is then

Ĵ1(ã0) =
1

R

R∑

j=1

J
(j)
1 (ã0), (30)

where J
(j)
1 (ã0) is the value of the correction calculated

from the jth trajectory. The statistical error of (30) can
be estimated using

Err[Ĵ1(ã0)] =

√
Var[Ĵ1(ã0)]

R
. (31)

This statistical error is only meaningful if we know that
the systematic error in the calculation is comparatively
small. There are two sources of systematic error that
arise when using (27): correlation error and linearization
error. Correlation error results from the fact that the
derivation of the estimator assumes that the trajectory
blocks are long enough to be approximately independent.
This will be true ifB > Tcorr where Tcorr is the correlation
time of the reference model. If, however, the sub-sampled
blocks of a trajectory are correlated, meaning that B <
Tcorr, then we will not obtain an accurate estimate of
θ̃(kδq, ka) even as M,R→∞.

One way to resolve this correlation issue is to increase
the block time B, but this also increases the magnitude
of the other systematic source of error, linearization er-
ror. Linearization error is a manifestation of the fact
that trajectories that contribute most to the average in
the SCGF (22) for ka, kδq 6= 0 have atypical values of δq
and a. Using larger B creates more self-averaging within
a single trajectory and, as a result, makes sampling these
atypical values more difficult. Linearization error also in-
creases for fixed B with increasing |ka| and |kδq|, because
larger values of these parameters weight rare trajectories’
contributions to the SCGF more heavily. Ref. [61] con-
tains a detailed discussion of these problems. The au-
thors of that work describe a method for checking to see
if linearization error will substantially influence the esti-
mate of the SCGF at a point (kδq, ka) for some fixed B.
We use this check, modified to account for the fact that
our SCGF is two dimensional, as follows.

First, we calculate the SCGF (27) along another 1D
slice through its 2D domain. This slice is defined by fixing
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kδq = 0 and increasing ka, starting from ka = 0 [74]. By
using finite difference along this slice we can calculate
how a varies with ka. To compute the statistical error,
we generate R independent trajectories (usually the same
R trajectories we used to get (31)), split each one into
M blocks of length B, and use each data set to calculate
a(ka) along the slice. Our final estimate for the value of
a at each ka is

â(ka) =
1

R

R∑

j=1

a(j)(ka), (32)

where a(j)(ka) is calculated from the jth trajectory.
We will not end up using the â(ka) values themselves.

Instead, we focus on the associated values of the statis-
tical error, calculated in the same way as the error of
(27),

Err[â(ka)] =

√
Var[â(ka)]

R
. (33)

A plot of Err[â(ka)] as a function of ka will peak at some

point k̂′a(B) and then decline. Again kδq = 0 is fixed
during this entire calculation. As discussed in Ref. [61],

k̂′a(B) is an estimate for the maximum value k′a(B) at
which the calculation of the SCGF will converge without
being overwhelmed by linearization error. k′a(B) is a de-
creasing function of B, because linearization error grows
as B is increased.

Next we note that θ̃(kδq = 0, k′a) corresponds to a point

on the rate function J̃(a′), via the Legendre transform

(23). If we can converge the value of J̃(a′) then we can,

with the same data set, also converge the value of J̃(δq, a)
at any point for which

J̃(δq, a) < J̃(a′). (34)

This statement is intuitive in the context of probabilities
and rate functions. However, it also applies when work-
ing with the SCGF, provided that J̃(δq, a) is convex [36].

Thus the value of a point
ˆ̃
θ(kδq, ka) estimated using (27)

will be unaffected by linearization error if the associated

point on the rate function, ˆ̃J(δq, a), satisfies

ˆ̃J(δq, a) < ξ ˆ̃J(a′), (35)

where ξ < 1 is an empirical constant (we set ξ = 0.8).

The terms ˆ̃J in (35) are averages over R independent data
sets of the corresponding Legendre transform (23). This
formula allows the convergence criteria derived in [61] for
estimating one-dimensional SCGFs and rate functions to
be applied in an arbitrary number of dimensions.

We now discuss the procedure we use to converge the
correction (19) while accounting for correlation and lin-
earization errors. For fixed block time B we first in-
crease M and R until the error bars for Ĵ1(ã0), (33),

are smaller than a desired value. We repeat this pro-
cess for larger and larger B until Ĵ1(ã0) becomes inde-
pendent of B. This is equivalent to increasing B until
it becomes larger than the reference-model correlation
time Tcorr. If this happens while the convergence cri-
terion (35) holds at J̃(δq?, ã0) then the calculation has
succeeded, and we have computed (to within statistical
error) the exact value of the correction J1(ã0).

If, however, the convergence criterion (35) fails to hold
in the regime in which (27) still changes rapidly with B,
then the bound J0(ã0) is too far from the exact answer
for us to effectively sample J1(ã0) using direct simulation
of the reference model. In this case the chosen ansatz is
probably missing a crucial piece of the physics of the
rare trajectories of the original model. On several occa-
sions our failure to converge J1(ã0) based on an initial
guess led us to construct a modified ansatz from which
we could converge the exact correction. In the cases de-
scribed in this paper we were able to reconstruct J(a)
using physically transparent ansätze containing only a
modest number of parameters.

A quick way to estimate the scale of the correction
is to compute the first term in (21), which requires
computing only the variance of δq within the refer-
ence model. By the central limit theorem we will have
J̃(δq, ã0) ≈ (δq)2/(2Tσ2

ref) close enough to the origin,
where σ2

ref ∝ 1/T is the variance of q within the reference
model. If σ2

ref is small (which is the case when the ansatz
is very good) then the correction J1(ã0) ≈ Tσ2

ref/2. Thus
if Tσ2

ref/2 looks small when plotted in the form of Fig. 1
it might be worth attempting to compute the correction
(18). If not, a better reference model ansatz is probably
required.

F. Efficiency of the correction calculation

Standard arguments are often used to suggest that
computing the exact value of J(a) is not possible with-
out knowledge of the exact rare dynamics, or the use
of methods such as cloning or transition-path sampling.
This claim is based on the fact that computing J(a) re-
quires computation of the integral in (15), and assumes
that because the integrand grows exponentially with T ,
the number of trajectories required to converge this ex-
pression as T → ∞ is prohibitively large. While this
latter statement is correct, it does not speak directly to
the task at hand. To compute the integral we do not
need to take T → ∞. Instead, we need T & T ′ where
T ′ is smallest time at which the large deviation principle
applies. Taking T � T ′ makes sampling more difficult
and is unnecessary. It is possible for T ′ to be large, but
if the reference-model dynamics are close enough to the
rare dynamics of the original model then the variance of
the q will be small and it will be possible to converge this
integral term without using an unreasonable number of
trajectories.

Moreover, computing the correction is numerically
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cheaper than inspection of the integral alone might sug-
gest. If we switch to the SCGF representation, (22), we
can instead work with trajectories of length T = Tcorr,
where Tcorr is the correlation time of the reference model
(in practice these trajectories are constructed by sub-
sampling a single longer trajectory). Generally, Tcorr is
much smaller than T ′, the time required for the large-
deviation principle to apply, and so sampling the mod-
erately rare events required to reconstruct the auxiliary
rate function J̃(δq, a) near its minimum is cheaper in
the SCGF representation. This property is ideal for the
present method because we have reduced the problem
of sampling J(a) arbitrarily far from its minimum to

one of sampling J̃(δq, ã0) (potentially) close to its min-
imum. Working with the SCGF also removes the con-
straint a = ã0 present in (18). Finally, we note that we
are calculating the SCGF that is Legendre dual to the
correction term (18), and not the SCGF that is Legendre
dual to the original rate function J(a). Thus our method
can in principle reproduce rate functions J(a) that are
not convex (J0 is not required to be convex).

G. Summary – A variational ansatz for rare
dynamics (VARD)

1. Given a continuous-time dynamics with rates Wxy

and a path-extensive dynamical observable a, we
wish to determine J(a), the large-deviation rate
function for a for trajectories of the model Wxy

of fixed time (assuming that J(a) exists). We use
a reference dynamics to calculate J(a) as the sum
of an upper bound J0(a) and a correction J1(a).
The bound can always be calculated, and the cor-
rection can be calculated if the criteria described
in Section II E hold. If so then we succeed in cal-
culating J(a); if not, then the method returns an
upper bound J0(a) ≥ J(a).

2. Determine a reference-model dynamics (7) and (9)
able to produce more or less of a than the original
model. In this paper we set the arbitrary bias βxy
using physical intuition.

3. Run a set of reference-model trajectories for differ-
ent values of the reference-model parameters (s, λ,
βxy). For each trajectory, evaluate ã0 and q̃0, using
Eqs. (6) and (11), and then use Eq. (17) to plot the
point (ã0, J(ã0)); see Fig. 1(a). The lower envelope
of these points over values of the reference-model
parameter set is the tightest upper bound on J(a)
associated with the ansatz chosen in Step 1.

4. Attempt to calculate the correction J1(a) at points
on the bound by running a few (∼ 5) trajectories
for each reference model. With the data from each
trajectory, calculate J̃(δq?, ã0), Eq. (26), using Eqs.
(27), (28) and (29). Insert the resulting values into

Eq. (19). Calculate the averaged correction Ĵ1(a)

and associated statistical error using Eqs. (30) and
(31).

5. To verify convergence, repeat the calculation of
Step 3 for increasing values of the block time B, un-
til the averaged estimate for the correction Eq. (30)
no longer changes with B, and the convergence cri-
terion (35), with δq = δq? and a = ã0, holds [75].
The accompanying GitHub script [62] performs
steps 4 and 5 automatically.

III. VARD APPLIED TO FOUR EXAMPLES

A. Summary of the section

We now apply the method to four models taken from
the literature. In each case, a simple and physically-
motivated ansatz for the modified dynamics allows com-
putation of the exact rate function J(a). We focus on
models whose state space is small enough that the ex-
act rate function can be computed by standard methods
– Legendre transform of the SCGF calculated using the
largest eigenvalue of the tilted rate matrix [28] – in order
to validate our method (at the end of the section we also
use VARD to compute descriptive rate-function bounds
for two systems too large to solve by matrix diagonal-
ization). In figures, the exact rate function is shown as
a black dashed line. Absent the exact answer we would
apply the method in exactly the same way. For a given
reference model the fluctuations of the quantity q reveal
whether the bound J0(a) is tight, and whether we can
compute J(a) exactly.

B. Entropy production in a 4-state model

We start by sampling entropy production in the 4-state
model of Ref. [54], shown in the inset of Fig. 2(a). This
is a fully-connected network model with transition rates

W12 = 3, W13 = 10, W14 = 9,
W21 = 10, W23 = 1, W24 = 2,
W31 = 6, W32 = 4, W34 = 1,
W41 = 7, W42 = 9, W43 = 5.

(36)

These rates do not satisfy detailed balance, and so the
model produces nonzero entropy on average. To quantify
the fluctuations of entropy production for trajectories of
fixed time we construct a reference model as follows. The
dynamical observable is a = σ = T−1

∑
αxy, where the

sum is taken over all jumps x → y of a trajectory, and
αxy = ln(pxy/pyx), where pxy = Wxy/

∑
yWxy. Our

basic reference-model parameterization is defined by the
parameters s and λ appearing in (7) and (9), together
with any additional set of biases βxy suggested by the
physics of the problem under study. Here we reason that
none is necessary: the bias λ is always required, in order
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FIG. 2. Entropy production rate σ for the 4-state model of Ref. [54], the rates Wxy of which are given by (36). (a) Bounds (17)
for the large-deviation rate function J(σ). Each point on the colored lines results from a reference-model dynamics [Eqns. (7)
and (9)] obtained by scanning the indicated parameters. The black dashed line is the exact answer. (b) Bound (blue line)
resulting from a scan of the parameters s and λ compared with the WLR bound of Ref. [54], Eq. (37). Inset: The sum (green
line) of the bound and the correction (18) equals the exact rate function, arbitrarily far into its tails. The boxed region in panel
(b) indicates the scale of Fig. 2 of Ref. [54]. Error bars for both axes are smaller than the thickness of the lines.

to sample jump times, and the bias s is sufficient to influ-
ence the entropy produced per jump, A/K (a fact that
is easy to guess, and to confirm with some short simula-
tions). We therefore impose no additional bias, and set
βxy = 0.

We ran trajectories for a fixed number K = 1.5 × 108

of events, roughly equivalent to a time of T = 107 in
the unbiased model. We simulate in the constant-event
ensemble for convenience, because there all simulations,
regardless of the value of λ, take approximately the same
amount of processor time. The equations of Section II
then allow us to compute the rate function for the original
model in the constant-time ensemble (see Ref. [76] for
more on the relationship between the constant-event and
constant-time ensembles).

The bounds J0(a) resulting from a scan of s, for three
values of λ, are shown as colored lines in Fig. 2(a). In
figures we use the compact notation J0[x] to indicate the
bound J0(a) swept out by scanning the set of parame-
ters {x}. We also show the exact rate function (black
dashed line), obtained by matrix diagonalization. Differ-
ent combinations of s and λ produce the best (lowest)
bound at different values of a, so indicating the “least
unlikely way” of realizing each value of a within the man-
ifold of dynamics accessible to the reference model. The
bound produced by the scan λ = 0 provides the best
bound close to the typical value a0, but not far from it,
indicating that very rare values of a are produced by the
original model using a combination of rare jump types
(s 6= 0) and rare jump times (λ 6= 0).

The bound swept out by scanning both s and λ is

shown in blue in Fig. 2(b). We used 201 equally spaced s
values on the interval [−5, 5], and 51 equally spaced λ val-
ues on [0, 50]. This bound lies close to the exact answer,
even far into the tails of the rate function. For com-
parison we show the weakened linear response (WLR)
universal current bound of Ref. [54] (gray dashed line);
the dotted box in the center of the figure indicates the
scale of Fig. 2 of that paper. The WLR bound is

J [WLR] =
σ0

4c20
(c− c0)2, (37)

where c is a current, c0 is its typical value (in the original
model), and σ0 is the typical value of the rate of entropy
production. c0 and σ0 must be determined by running a
single trajectory of the original model, and (37) then pro-
vides a bound on the probability of observing an atypical
value of c. The bound is tightest in the case c ∝ σ.

The WLR bound can be derived from Level 2.5 of large
deviations [56, 57] using a mean-field ansatz that assumes
all currents scale with time in the same way (for both for-
ward and time-reversed versions of the model). By con-
trast, the (s, λ)-bound results from a microscopic ansatz,
(7) and (9), inserted into the exact result (5) for the dy-
namical partition sum, and does not assume that all cur-
rents scale in the same way. Inspection of the tails of the
bounds reveals that the microscopic ansatz captures the
rare behavior of the model more accurately than does
the homogeneous ansatz. Thus we learn that the rare
behavior of even this very simple model does not simply
resemble a speeded-up or slowed-down version of its typ-
ical behavior. The bound (37) is a universal statement
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about the physics that constrain fluctuations, and is not
designed to be a means of accurate numerical sampling.
Nonetheless, it is meaningful and instructive to compare
the bounds produced by different types of ansätze.

For each of the reference models that lie on the bound
J0[s, λ] we calculate the correction (18) using the proce-
dure described in Section II D. For all points we obtain
convergence of the correction. The result, J0(a) + J1(a),
is shown as a green line in the inset of Fig. 2(b), and
matches the exact answer (black), obtained by matrix
diagonalization, as it should. We used 104 blocks, each
of length of 50Tevent, where Tevent is the time per event
for each reference model. The average correction (30)
and statistical error are obtained from 10 independent
data sets. Error bars on the rate function are calculated
by combining the error from the correction and the error
from the bound according to

Err[Ĵ(ã0)] =

√
(Err[Ĵ0(ã0)])2 + (Err[Ĵ1(ã0)])2. (38)

The error in the bound is estimated by running 10 addi-
tional trajectories at each point and calculating the stan-
dard deviation of J0(ã0). The standard deviation of ã0,
calculated in the same way, yields error bars for the hor-
izontal axis.

From this example it is clear that VARD is numerically
much more efficient than direct simulation (of the origi-
nal model): accurate calculation of the rate function at
values of order 100 indicates accurate calculation of prob-
abilities of order e−100T , where T is the elapsed time of
the trajectory. We do not know in advance which values
of reference-model parameters constitute good choices,
for particular values of a, but it is a simple matter to
scan parameters and pick the smallest value of J0 given
a. Additional sampling then allows us to determine if we
can calculate the correction (18), and therefore the exact
rate function. We were able to do this here with little
additional numerical effort. In this example, the state
space of the model is small enough that its dynamics can
be solved by matrix diagonalization, and so we possess
the exact answer in advance. We made this choice be-
cause we wish to benchmark the method. However, our
procedure would be identical if we did not know the exact
answer ahead of time: define the reference model, pick
the best bound, and attempt to calculate the correction
term. The results of the latter calculation tell us if we
have the exact answer, or, if not, roughly how close we
are to obtaining it. If we are not close at all then we need
a better reference-model guess. Inspection of the bounds
produced by different reference models is also physically
instructive, indicating the extent to which certain dy-
namical mechanisms contribute to the rate function at
particular values of the order parameter.

C. Current in the ASEP

We next sample current in the asymmetric simple ex-
clusion process (ASEP), a model of hard particles that

hop between lattice sites [6, 65] (an interesting alterna-
tive would be to consider the symmetric simple exclusion
process, which has fewer parameters but also shows com-
plex scaling behavior [77]). We consider the version of
the model studied in Fig. 3 of [54], shown in Fig. 3, with
open boundaries and a lattice of L = 15 sites. The rate
constants are α = 1.25, β = 0.5, γ = 0.5, δ = 1.5, p =
1, q = 0.5, placing the model in the high-density region
of the ASEP phase diagram [78, 79]. The dynamical ob-
servable is a = c = T−1

∑
αxy, where the sum is taken

over all jumps x → y of a trajectory, and αxy = ±1 if
the jump x→ y sees a particle move to the right (upper
sign) or left (lower sign).

In Fig. 3(a) we show the bound swept out by our de-
fault (s, λ) reference-model parameterization (dark blue),
which provides a meaningful numerical bound on the ex-
act rate function (black) even far into the tails. We ran
trajectories for K = 5 × 105 events, roughly equivalent
to a time T = 105 in the unbiased model. We scanned
81 equally spaced s values on the interval [−2, 2], and
41 equally spaced λ values on [0, 10]. Also shown is the
WLR universal current bound [53, 54] (gray). The WLR
bound describes accurately the moderately rare behav-
ior of the model, but not the very rare behavior, which
is quantified by the tails of the rate function. Compar-
ison of bounds indicates, as in the previous subsection,
that very rare currents are generated by trajectories that
do not resemble speeded-up or slowed-down versions of
the forward- or backward-running typical dynamics: the
configurations visited in the tails of the rate function are
different to those visited near the center.

While the (s, λ)-bound is already meaningful, it is pos-
sible to produce tighter numerical bounds by guessing ad-
ditional ways in which the very rare high- or low-current
behavior might be achieved. Inspection of the way in
which s couples to the rate constants (here any rate in-
volving a hop to the right is multiplied by e−s and any
rate involving a hop to the left is multiplied by es) re-
veals that varying s moves the reference model around
the ASEP phase diagram [78, 79]. The original model
sits in the high-density region of phase space, but the
reference model need not. Inspection of the phase di-
agram indicates that the end rates α, β, γ, δ, separate
from the bulk rates p and q, play a key role in deter-
mining the ASEP’s typical behavior: if particles are fed
in relatively quickly or slowly then we reside in the high-
or low-density region of phase space, respectively, and if
input- and output rates are balanced then we can access
the maximum-current region. Returning to (8) we intro-
duce a set of parameters βxy that couple to the end rates,
such that the rate α in the original model becomes e−uαα
in the reference model (uα being a parameter), and simi-
larly for the three other end rates. We also include a con-
tribution to βxy that biases trajectories toward or away
from creating particle-particle contacts (i.e. particles on
adjacent sites), reasoning that controlling such contacts
can help control the escape rate of visited configurations,
so helping cause or prevent traffic jams. A simple way
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FIG. 3. Large-deviation rate function J(c) of particle current, c, for the version of the ASEP studied in Ref. [54]; rate constants
are given in the text. (a) We show the exact answer (black), the WLR universal current bound [53, 54] (gray), and the bound
produced using our default (s, λ) reference-model parameterization (dark blue). (b) With additional physical insight used to
refine the reference model it is possible to tighten the bound (compare dark blue and light blue lines). The green line in (a) is
the corrected version of the 6D bound. The boxed region in panel (a) indicates the scale of Fig. 3 of Ref. [54] (not the scale of
Fig. 3(b)). Error bars for both axes are smaller than the thickness of the lines.

to do this is to add to βxy a bias −µ∆xy, where µ is
a parameter and ∆xy is the change in the number of
particle-particle contacts when moving from x to y.

With the new bias determined we can generate an im-
proved bound for the ASEP. We split the calculation into
two parts and focus separately on the piece of the rate
function for values of the observable greater than the
mean, a > a0, and less than the mean, a < a0. Since the
dynamics in these two different regimes are qualitatively
different, generating an effective set of reference models
for each requires scanning over different regions of the
ansatz parameter space. For a < a0 we scanned s, λ, uγ
and µ. For a > a0 we scanned s, λ, uα, uβ and µ, mak-
ing 6 parameters in total. Combining these calculations
produces the 6D bound shown in light blue in Fig. 3(b).
This bound is tighter than the default (s, λ)-bound. The
6-parameter scan can be carried out with reasonable nu-
merical effort: for a given set of parameters we need only
a short single trajectory to compute the averages required
for the bound, and there is no requirement for commu-
nication between the calculations. On the left side we
scanned 11 equally spaced s values on the interval [0, 2];
21 equally spaced λ values on the interval [−0.6, 0], and
17 more on the interval [0, 8]; 29 uγ values so that γ takes
on equally spaced values on the interval [0.1, 1.5]; and 31
equally spaced µ values on the interval [−1, 0.5]. On the
right side we scanned 11 equally spaced s values on the
interval [−2, 0]; 17 equally spaced λ values on the interval
[0, 8]; 21 uα values and 21 uβ values so that α and β each
take on values equally spaced on the interval [0.5, 1.25];

and 11 equally spaced µ values on the interval [0, 0.5].
The lower envelope of the values of (17) constitutes the
improved bound.

Correcting the 6D bound by calculating the correction
J1 at points along the bound gives the green line shown
in Fig. 3(a), which agrees with the exact rate function
even far into the tails. For this calculation we used 104

blocks of length 100Tevent, where Tevent is the time per
event in each reference model. Errors are computed as
in Section III B.

D. Activity in a 3-state model

We consider the three-state model of Fig. 3 of Ref. [55],
shown in Fig. 4. The rate constants are γ = 1 and κ =
1/2. Our chosen dynamical observable, a, is the number
of jumps from states 1→ 0 per unit time. The parameter
s in our default (s, λ) reference-model parameterization
(8) has no role to play here: s controls the probability of
the 1 → 0 process, but once in state 1 there is nowhere
to go but state 0. Thus s cannot influence the number of
counted events per jump, A/K, and so we set s = 0.

At this point we need to apply our physical intuition in
order to create a reference-model ansatz able to control
A/K. Inspection of the network reveals that controlling
the jump destination from state 0 is sufficient for this pur-
pose: if we jump 0→ 1 then we must subsequently jump
1→ 0, whereas if we jump 0→ 2 we will return to 0 with-
out making the counted jump. In Eq. (8) we therefore set
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ã
0

(1
0)

a (1)

W̃xy = e�s↵xyŴxy (2)
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FIG. 4. Large-deviation rate function J(a) for the number
of jumps 1 → 0 per unit time, a, for the 3-state model of
Ref. [55]. We compare with the exact answer (black) the
bounds produced by reference models in which we control
jump times (blue), or jump times and jumps from 0 → 1
(green). Error bars for both axes are smaller than the thick-
ness of the lines. Also shown is the CMP universal activity
bound [55], Eq. (39) (gray).

β01 = η (a parameter) such that the reference-model rate

for the process 0 → 1 is W̃01 = e−ηγ. We set all other
βxy = 0. Scanning η and λ (our usual jump-time bias)
produces the bound shown in green in Fig. 4. Bounds
were calculated using 11 equally spaced λ values on the
interval [−0.5, 0] and 101 values on the interval [0, 25],
and 51 equally spaced η values on the interval [−5, 5].
All trajectories were run for K = 107 events, roughly
equivalent to a time of T = 107 in the unbiased model.
Error bars are computed as in Section III B.

The (η, λ)-bound is effectively exact, as we can deduce
by measuring the fluctuations of q (which here are nonex-
istent). In this case the model is simple enough that each
reference model used to compute the bound enacts the
exact rare dynamics of the original model, conditioned on
a particular value of a. As a result, the correction term
J1 vanishes, and the bound J0 is exact. (This exactness
is reasonable on account of the fact that the system has
relatively few ways of realizing values of A/K and K/T ,
but it is not obvious in advance that the chosen parame-
terization would require no additional correction.) Recall
that the correction term can be interpreted as a measure
of how close the typical dynamics of the reference model
is to the desired rare dynamics of the original model; here,
typical trajectories of the reference model correspond ex-
actly to trajectories of the original model conditioned on
the relevant value of the order parameter.

The chosen observable is a non-decreasing counting
variable, not a current, and so the universal bound of
Refs. [53, 54] does not apply. One that does apply is the
Conway-Maxwell-Poisson (CMP) bound of Ref. [55],

J [CMP] =
k0

a0

(
a ln

a

a0
+ a0 − a

)
, (39)

where a is the dynamical observable, a0 is its typical value
(in the original model), and k0 is the typical dynamical
activity (the total number of events per unit time) of the
original model (note that there is an a missing in front
of the logarithm in Eq. (17) of [55]).

The CMP bound is shown in gray in Fig. 4. Similar to
the universal current bound, the CMP bound is derived
from Level 2.5 of large deviations using an ansatz that as-
sumes the rare behavior of the system to be a speeded-up
or slowed-down version of its typical behavior. It there-
fore has similar properties to our λ-bound, shown in blue
in Fig. 4 (the λ bound is constructed from the pieces of
the (η, λ)-bound with η = 0). Comparison of this bound
and the (λ, η)-bound shows the extent to which the very
rare behavior of this model is dominated by trajectories
comprising rare jump times and an atypical propensity
to jump left from state 0. Analogous to its current coun-
terpart, the CMP bound is a general statement about
the physics controlling the fluctuations of counting vari-
ables, and is not intended to be a means of numerical
sampling. Nonetheless, comparison of its properties with
bounds obtained by the microscopic ansatz used here is
instructive, and addresses the point raised in Ref. [55]:
“It would be interesting to find alternative yet simple
variational ansatzes that can capture [the] strong fluctu-
ation behavior [of the 3-state model]”.

E. Activity in the FA model

We consider the one-dimensional Fredrickson-
Andersen (FA) model with periodic boundary con-
ditions [66]. This is a lattice model with simple
thermodynamics and with dynamical rules that give
rise to slow relaxation and complex spatiotemporal
behavior [80]. On each site of a lattice (here of length
L = 15) lives a spin, which can be up or down. Up-spins
(resp. down-spins) can flip down (resp. up) with rate
1− c (resp. c) if at least one of their neighboring spins is
up; if not, then they cannot flip (the rate c here should
not be confused with the symbol for current in previous
sections). In Fig. 5(a), top, we show an example FA
model configuration, with periodic boundary conditions;
the spins in red cannot flip. Our chosen dynamical
observable, a = k = T−1

∑
αxy, is the number of jumps

per unit time, where αxy = 1 for all jumps x → y. The
large-deviation properties of k have been studied in de-
tail, and give rise, in certain limits, to singular behavior
in the SCGF that is Legendre dual to J(k) [10, 11].

In Fig. 5(a) we show the CMP universal activity
bound [55] on J(k) and the bound produced by our
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FIG. 5. Large-deviation rate function J(k) for the number of jumps per unit time, k, for the one-dimensional Fredrickson-
Andersen model. (a) We compare with the exact answer (black) the bounds produced by reference models in which we control
jump times (dark blue) or jump times and the mean up-spin fraction (light blue). Also shown is the CMP universal activity
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FIG. 6. Large-deviation rate function J(k) for the number of jumps per unit time, k, for the Fredrickson-Andersen model of
Ref. [81] with c = 0.1. Lattice sizes are (a) L = 40 sites and (b) L = 100 sites. We compare the matrix product state (MPS)
calculation of Ref. [81] (black) with the three-parameter VARD bound of Fig. 5 (blue). Also shown is the CMP universal
activity bound [55], Eq. (39) (gray).

reference-model λ-scan. These are of similar character,
because they assume that the rare behavior of the model
is a speeded-up or slowed-down version of its typical be-
havior. All trajectories were run for K = 3× 105 events,
roughly equivalent to a time of T = 105 in the unbiased
model. We used 61 equally spaced λ values on the inter-

val [−0.6, 0], and 61 more on the interval [0, 12]. To pro-
duce a tighter bound we need to assume that the config-
urations visited by rare trajectories are different to those
visited by typical ones (the CMP bound assumes that
they are the same). The parameter s in our default (s, λ)
reference-model parameterization (8) again has no role to
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play, because biasing all jumps equally is equivalent to
biasing none. A simple alternative is to choose the bias
βxy so that the reference model can generate a larger or
smaller number of up-spins than is typical in the orig-
inal model. We choose the parameters βxy so that the
parameter c in the original model becomes e−ηc in the
reference model, with η being a parameter. A (λ, η)-scan
of the reference model produces the bound J0[λ, c] shown
in light blue in Fig. 5(a). This bound provides a reason-
able approximation of the exact answer over the whole
range of k, indicating that much of the physics of rare
activity fluctuations of the FA model can be accounted
for by considering the typical behavior of versions of the
model with different values of the parameter c. Here we
chose η so that c takes on 100 equally spaced values on
the interval [0.02, 2].

It is possible to tighten this bound by reasoning that
there must exist spatial correlations between up-spins if
we condition trajectories upon activity per unit time k.
For instance, given an up-spin fraction of exactly 1/2,
the escape rate (the sum of rates leading out of a given
state, a quantity relevant to the number of jumps per unit
time) is maximized by having pairs of up-spins separated
by pairs of down-spins, and minimized by having up-
spins and down-spins alternate. We induce these types
of spatial correlations using the same µ-bias used for the
ASEP in Section III C, favoring more or fewer contacts
between up spins. Scanning c, η, and µ produces a bound
slightly tighter than J0[λ, η] (not shown). We used 41
equally spaced µ values on the interval [−1, 1]. From
this bound we compute the correction J1, and the sum
of the bound and correction matches the exact answer:
see Fig. 5(b). We computed the correction by splitting
the calculation into two pieces, one on either side of the
mean value a = a0. For a < a0 we used 104 blocks
of length 50Tevent, where Tevent is the average time per
event in each reference model. For a > a0 we used 105

blocks of length 600Tevent. The different block lengths
generated by the convergence procedure (see Section II E)
for a < a0 and a > a0 signal that the correlations present
in the dynamics are qualitatively different in each of these
regimes. Understanding the nature of these correlations
is of physical interest [11, 80]. Errors are calculated as in
Section III B.

F. Toward large-scale calculations

In this paper we have demonstrated proof-of-principle
of VARD using network systems or lattice models whose
state space is small enough that their rate functions can
be obtained by matrix diagonalization, so providing a
benchmark for the method. VARD can also be applied
to systems too large for matrix diagonalization to be fea-
sible, in order to produce bounds or (if the ansatz is good
enough and convergence of the correction is obtained) ex-
act rate functions. An active line of research is to study
large versions of certain lattice models in order to de-

termine how their large-deviation properties change with
system size [11, 34, 81]. In these regimes, specialized
techniques are necessary. For instance, in Ref. [34], a
cloning procedure combined with feedback control was
used to calculate large-deviation functions for an FA
model of L = 36 sites. In Ref. [81], a matrix product state
(MPS) calculation was used to compute large-deviation
functions for an FA model of sizes of order L = 100 sites
(these results show some differences with the results of
Ref. [34], indicating that this is a technically challeng-
ing regime). Note that the FA model of Ref. [81] has
open boundaries and slightly different facilitation rules
than used in the previous section: spins facilitated by
two spins flip at twice the rate of spins facilitated by one
spin.

In Fig. 6 we compare the MPS calculation of Ref. [81]
with the three-parameter VARD bound used in Fig. 5
for two lattice sizes that are considered large by current
standards (the parameter c = 0.1). In both cases the
VARD bound is descriptive, capturing the main features
and the trends with k of the MPS result. The bound
is less tight for the larger system size, suggesting that
more terms in the ansatz are required as the system be-
comes larger. However, the bound quality, even using
an ansatz containing only 3 parameters, remains reason-
able. As for the ASEP, the natural next step is to include
additional parameters in the ansatz in order to tighten
the bound and calculate the correction (compare dark
blue and light blue lines in Fig. 3(b)). A natural way to
develop improved bounds is to use Monte Carlo learning
procedures in order to optimize reference models contain-
ing a potentially large number of parameters [82].

IV. CONCLUSIONS

We have described how direct simulation of a vari-
ational ansatz for rare dynamics (VARD) can be used
to compute bounds for large-deviation rate functions in
continuous-time Markov chains [83]. This approach re-
quires only direct simulation of versions of the original
model with modified rates, and so is technically simple
and easy to implement. It is also physically instructive,
in the sense that the quality of the bounds produced by
different physical ansätze reveal the extent to which dif-
ferent types of dynamical processes contribute to the rare
behavior of the model of interest.

If the ansatz is chosen well then bounds can be cor-
rected to produce the exact rate function, arbitrarily far
into its tails; in the literature it is often assumed or stated
that such precision is not accessible via direct reweight-
ing of trajectories, and requires the use of specialized nu-
merical techniques such as cloning or path sampling. For
the models studied in Figs. 2–5, two network models and
two lattice models taken from the literature, it is possi-
ble to calculate the exact rate function using only simple
and approximate guesses about the nature of the rare
dynamics. Although this rare behavior can be complex,
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we are rarely working in the dark: the model itself can
exhibit different behavior in different parameter regions,
and often its rare behavior at one point in parameter
space is similar to its typical behavior at another point
in parameter space. For example, we have studied the
ASEP in its high-density region, where (typically) the
lattice is crowded and particles move slowly. The ansatz
we used to calculate its current rate function is equiva-
lent to guessing that the rare, high-current behavior in
the high-density region is similar to the typical behav-
ior in the maximum-current region, where particles move
quickly and possess spatial anticorrelations. Similarly,
the FA model is complex, but the likelihood of its rare
behavior at one value of the parameter c can be well ap-
proximated by looking at the typical behavior of models
at different values of c. We have also shown that bounds
that are descriptive in small systems remain so in sys-
tems too large to solve by matrix diagonalization; we
will discuss this regime further in forthcoming work.

VARD is similar to classical umbrella sampling [63, 64]

in the sense that the rate function J̃(a) of the reference
model can be regarded as a nonequilibrium umbrella po-
tential, concentrating sampling at a desired point: see
Fig. 1. It is different, however, in that VARD does not
require overlapping sampling windows – reference mod-
els are used independently – and we compute an absolute
rate-function value J(a), as opposed to a free-energy dif-
ference. This latter distinction results from the fact that
the path weight appearing in (5) is known exactly, and
at the sampling point ã0 we know that the rate function
of the reference model vanishes; by contrast, in the equi-
librium case we know the probability of visiting a certain
state only up to a normalization constant, and we do
not know the absolute free energy of the reference model
(unless it is particularly simple [84]).

VARD provides insight into the approaches used to
produce universal rate-function bounds from Level 2.5
of large deviations, via homogeneous ansätze [53–55],
by showing how relaxing such assumptions leads to the
tightening of bounds in different sectors of parameter
space. It is also complementary to numerical large-
deviation methods that use path-sampling, cloning, or
adaptive methods to calculate the SCGF [85] that is Leg-
endre dual to J(a) [11, 28, 30–35]. Sometimes path sam-

pling or cloning are used in isolation, and sometimes they
are combined with a modified dynamics. VARD lies at
the other extreme of the methods spectrum in the sense
that it uses only a modified dynamics. The bounds that
result provide a natural starting point for those special-
ized methods, because the set of reference models that
live on the bounds already resemble the rare dynamics of
interest. Indeed, direct sampling of those reference mod-
els is, in the cases described in Figs. 2–5, sufficient to
recover the statistics (the constituent configurations and
jump times) required to compute J(a) exactly.

There are several possible variants of the present
method. The λ-scan accesses roughly the same infor-
mation as the universal bounds of Refs. [53–55], and one
possible numerical simplification would be to eliminate
the λ-scan in favor of the universal bounds (37) or (39).
We have also simply scanned parameters in order to iden-
tify the best bounds associated with a given ansatz, but
as the complexity of an ansatz grows it is be natural to
replace the scan with an evolutionary Monte Carlo pro-
cedure [82]. For instance, consider a set of reference mod-
els having N parameters, and construct an initial (s, λ)-
bound. Take models at various points on this bound,
and define a window ∆a for the observable. For each
model, perturb the N parameters, generate a short tra-
jectory, and calculate Eq. (17). If this value is less than
the current bound (and a lies within the designated win-
dow) accept the new reference model; otherwise, retain
the original.
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Err[â(ka)], Eq. (33), while starting at the point (kδq =
0, ka = 0) on the SCGF and scanning outwards by in-
creasing ka.

[76] A. A. Budini, R. M. Turner, and J. P. Garrahan, Journal
of Statistical Mechanics: Theory and Experiment 2014,
P03012 (2014).

[77] B. Derrida, J. Lebowitz, and E. Speer, Journal of statis-
tical physics 107, 599 (2002).

[78] A. B. Kolomeisky, G. M. Schütz, E. B. Kolomeisky, and
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