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Abstract

We consider the finite-time performance of a quantum Otto engine working between a hot

squeezed and a cold thermal bath at inverse temperatures βh and βc(> βh) with (kB ≡ 1) β = 1/T .

We derive the analytical expressions for work, efficiency, power, and power fluctuations, in which

the squeezing parameter is involved. By optimizing the power output with respect to two frequen-

cies, we derive the efficiency at maximum power as ηmp = (ηgenC )2/[ηgenC − (1 − ηgenC ) ln(1 − ηgenC )],

where the generalized Carnot efficiency ηgenC in the high-temperature or small squeezing limit sim-

plifies to an analytic function of squeezing parameter γ: ηgenC = 1 − βh/[βc cosh(2γ)]. Within the

context of irreversible thermodynamics, we demonstrate that the expression of efficiency at max-

imum power satisfies a general form derived from nonlinear steady state heat engines. We show

that, the power fluctuations are considerably increased, although the engine efficiency is enhanced

by squeezing.
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I. INTRODUCTION

An intense effort has been devoted to study on quantum heat engines which began with

the seminal work of Scovil and Schulz-DuBois [1], with special emphasis on the thermody-

namic optimization and fluctuations for thermodynamic quantities (see, for example, refer-

ences [1–8] and reviews [9–12]). Because of (quantum) finite-size effects and nonequilibrium

nature, the miniaturized engines [2, 13–22] at microscale and nanoscale suggest novel per-

formance behaviors quite different from their classical counterparts in which the thermody-

namic limit holds. A typical example is that nanoscale (quantum) heat engines working with

nonthermal baths might be beyond the standard Carnot limit, unlike in the classical heat

engines where the maximum efficiency must be bounded by the Carnot value. This is be-

cause for these quantum heat engines the nonequilibrium nature of non-thermal baths might

lead to going beyond the original Carnot theorem. The non-thermal baths may be quan-

tum coherent [13], quantum correlated [15, 16], quantum-measurement-induced [17, 18], and

squeezed thermal baths [2, 19–24]. As expected, this result does obey the principles of ther-

modynamics due to the nonequilibrium nature of these baths. While the efficiency achieves

its maximum value, the engine cycle is infinitely slow and thus its power output is vanishing,

except in some special cases (when the system evolves dynamically infinitely fast [25] and

works at the critical region [5, 26]). Therefore, an investigation into the finite-time perfor-

mance of quantum heat engines working with small systems and exhibiting non-negligible

power fluctuations is of great theoretical and practical interest.

To analyze heat engines operating in finite time, the optimization within context of

trade-off between power output and efficiency was usually presented, focusing on the issue

of efficiency at maximum power. For standard heat engines energized by a hot and a cold

thermal bath at inverse temperatures βh and βc, the efficiency at maximum power [27–40] in

some certain conditions has the same universality as the Curzon and Ahlborn (CA) efficiency

[41]: ηCA = 1−
√

βh/βc. Similarly, for diverse cyclic engine models working with quantum

squeezed baths, the efficiency at maximum power in the high temperature limit reads [2, 20],

ηgenCA = 1−
√

βh/[βc cosh(2γ)], (1)

which is dependent on the squeezing parameter γ and we call the generalized CA effi-

ciency. The finite-power performance, however, was usually analyzed starting from the high-

temperature assumption, and Eq. (1) was obtained from phenomenological heat-transfer
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laws merely holding in classical thermodynamics. To our knowledge, a unified finite-time

thermodynamic description of these quantum engines in contact with squeezed thermal baths

is still unavailable.

The present paper employs a harmonic system as the working substance to set up a

quantum Otto engine energized by a squeezed thermal bath. We analyze the time evolution

of the squeezed quantum engine in a sing cycle, and give an analytical expression of the

efficiency at maximum power in the high-temperature limit, which agrees well with the

generalized CA formula (1). The physical implication of the expression for efficiency at

maximum power is also discussed by introducing the dynamical resistance and dissipative

resistance. We show that, compared to the standard heat engine, the efficiency of the

squeezed engine is significantly enhanced at the price of increasing power fluctuations.

II. MOTION EQUATION OF THE SYSTEM HAMILTONIAN

The Hamiltonian of a single harmonic oscillator with time-dependent frequency ω(t) can

be given by introducing particle number N̂(t) (~ ≡ 1),

Ĥ(t) = ω(t)N̂(t) = ω(t)â†(t)â(t), (2)

where â† and â are the bosonic creation and annihilation operators, respectively. Here and

hereafter we set the the ground state energy to be zero for simplicity. If such an oscillator at

time t = t0 is in thermal equilibrium with a heat bath at inverse temperature β, its density

operator id in the form of

ρ̂(t0) =
∑

n

pn(t0)|n(t0)〉〈n(t0)| = Z−1exp(−βĤ), (3)

where pn(t0) = Z−1 exp[−βεn(t0)] is the probability of finding the system in state
∣

∣n(t0)〉
and Z = Tr[exp(−βĤ)] =

∑

n exp[−βεn(t0)] is the partition function, with the energy

spectrum εn(t0) = 〈n(t0)|â†â|n(t0)〉ω(t0) = nω(t0) (n = 0, 1, 2, · · · ). The excitation number

reads 〈n(t0)〉 = Tr[ρ̂(t0)N̂(t0)] = [exp(βω(t0)) − 1]−1 and the Hamiltonian expectation is

〈Ĥ(t0)〉 = Tr[ρ̂(t0)Ĥ(t0)] = ω(t0)〈n(t0)〉. In what follows the parameter of time t will be

omitted for simplicity of notation if not necessary.

A system under consideration is weakly coupled to a squeezed boson bath of the Hamil-

tonian ĤB =
∑

k Ωk b̂
†
kbk and inverse temperature β by the interaction Ĥint =

∑

k igk(â
†b̂k −
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âb̂†k), where gk is the interaction strength at the mode k. The squeezed thermal state of the

system with the Hamiltonian Ĥ can be described by the generalized canonical form [42],

ρ̂sq = Ŝ(γ) exp(−βĤ)Ŝ†(γ)/Z, (4)

where Z = Tr[exp(−βĤ)] is the partition function of the system, and

Ŝ(γ) = exp[(γ∗â− γâ†)/2] (5)

as the squeezing operator on the system mode dependens on the squeezing parameter γ.

The excitation number for the squeezed thermal state is determined according to 〈n〉sq =

Tr(ρ̂sqN̂), where N̂ = â†â is the particle number operator, leading to [43]

〈n〉sq = 〈n〉+ (2〈n〉+ 1) sinh2(γ), (6)

where 〈n〉 = 1/(eβω−1) is the excitation number of the system at thermal state. Accordingly,

the expectation of system Hamiltonian at squeezed thermal state reads 〈Ĥ〉sq = ω〈n〉sq =

ωTr(ρ̂sqN̂). For the system weakly coupled to a thermal (non-thermal) bath, its any instant

state ρ̂(t) given in Eq. (3) [or ρ̂sq(t) in Eq. (4)] evolves via a Markovian master equation

[14, 35, 36, 44], ˙̂ρ = Lρ̂, where L is a Lindblad operator, such that the system can thermalize

to asymptotically achieve the thermal steady state, ˙̂ρss = Lρ̂ss = 0 (squeezed steady state

˙̂ρsqss = Lρ̂sqss = 0).

The quantum dynamics of an operator X̂ for a system coupled to a heat bath is deter-

mined by the quantum master equation [33, 35, 36]:

˙̂
X =

i

~
[Ĥ, X̂ ] +

∂X̂

∂t
+ LD(X̂), (7)

where LD(X̂) = ku

(

â†X̂â− 1
2

[

ââ†, X̂
]

+

)

+ kd

(

âX̂â† − 1
2

[

â†â, X̂
]

+

)

, with anticommu-

tator [Â, B̂]+ = ÂB̂ + B̂Â, and we have used the dot to denote the differentiation with

respect to time t. Here ku and kd are phenomenological positive coefficients and they sat-

isfy the detailed balance condition ku/kd = e−βω in order for the system to achieve the

equilibrium state in a specific way. Considering Eq. (2) and using E = 〈Ĥ〉, we have

Ė = Ẇ + Q̇ = ω〈ṅ〉+ 〈n〉ω̇, where the power and heat flux are identified as P = Ẇ = 〈n〉ω̇
and Q̇ = ω ˙〈n〉, respectively. Physically, while work is produced by the change in frequency

(which indicates the system volume)[38], heat occurs with a change in system state. In
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a quantum adiabatic process the system remains in the same state and work is produced

while isolated from a heat reservoir. Substituting X̂ = Ĥ = ωâ†â into Eq. (7) and con-

sidering its expectation 〈n〉 = 〈â†â〉, we find that the heat flow (power) is in the form of

Q̇ = 〈LD(Ĥ)〉 = ω ˙〈n〉 (P = ∂〈Ĥ〉/∂t = 〈n〉ω̇), and that for an isochoric process

˙〈n〉 = −Γ[〈n〉 − 〈n〉eq], (8)

where Γ ≡ kd − ku indicates the heat conductivity between the system and the heat bath.

The motion of isochoric thermalisation [Eq. (7)] for the system coupled to a squeezed

heat bath with inverse temperature β can be modified to [35, 45]

LD(X̂) = ku

(

â†sX̂âs −
1

2

[

âsâ
†
s, X̂

]

+

)

+ kd

(

âsX̂â†s −
1

2

[

â†sâs, X̂
]

+

)

. (9)

Here we use the Bogliubov transformation âs = â cosh(γ) + â† sinh(γ) = ŜâŜ†, where the

squeezing operator Ŝ was defined in Eq. (5). It follows, substituting Eq. (9) into Eq. (7) and

using 〈n〉sq = Tr(ρ̂sqN̂) = 〈â†sâs〉, that the motion of the isochoric process under squeezing

becomes [46]

˙〈n〉sq = −Γ[〈n〉sq − 〈n〉sq,eq], (10)

where Γ = kd − ku was defined in Eq. (8). The excitation of the harmonic system can be

parameterized by introducing an effective inverse temperature βeff which satisfies 〈n(βeff)〉 =
〈n(β)〉+ (2〈n(β)〉+ 1) sinh2(γ). Here βeff < β due to 〈n〉sq − 〈n〉 = (2〈n〉+ 1) sinh2(γ) > 0.

By simple manipulation the detailed balance [23]

βeff =
1

ω
ln

〈n〉sq,eq + 1

〈n〉sq,eq (11)

can be restored in the squeezed bath. The effective inverse temperature βeff is a fictitious,

unphysical parameter, since it may depend on the external control parameters (e.g. the

frequency ω and squeezing parameter γ). In the high-temperature or small-γ limit, the

effective temperature becomes system-independent “thermodynamic” temperature βeff =

βsech(2γ).
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FIG. 1: (Color online) Schematic diagram of a quantum Otto cycle working with a harmonic system

in the (ω, n) plane. While 〈nh〉sq,eq ≡ [exp(ωhβ
eff
h )−1]−1, where βeff

h is the effective temperature of

the hot squeezed bath, is the excitation number for the system after an infinite long time interaction

with the bath, 〈nh〉eq (〈nc〉eq) is excitation number of the system at thermal equilibrium with the

hot (cold) bath of inverse temperature βh(βc).

III. QUANTUM OTTO CYCLE

A. Work and power fluctuations

A model of quantum Otto engine 1 → 2 → 3 → 4 → 1 is sketched in Fig. 1. We assume

the time period required for completing the four steps to be τh, τhc, τc, τch, respectively, and

use τcyc ≡ τh + τhc + τc + τch to denote the total cycle time. The isochoric process 1 → 2

(3 → 4) is realized by coupling the working system with fixed frequency ωh (ωc) to a hot

non-thermal (cold thermal) reservoir at inverse temperature βh(βc), while the system is

decoupled from the heat bath along each one of adiabatic processes 2 → 3 and 4 → 1.

For each cycle, the work is produced only in the two adiabatic processes, without work

done by the system in the isochoric processes. Initially, the time at instant 1 is assumed to

be t1 = 0. The Hamiltonian changes from ω(τh)N̂(τh) to ω(τh + τhc)N̂(τh + τhc) along the

adiabatic expansion 2 → 3, and the Hamiltonian changes back to ω(0)N̂(0) from ω(τcyc −
τch)N̂(τcyc − τch) during the adiabatic compression 4 → 1. Then the stochastic work done

by the system in a single cycle, which is equivalent to the total work produced along the
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two (adiabatic) microscopic trajectories, can be given by

w[|n(τh)〉sq; |n(τcyc − τch)〉] = (ωh − ωc)[
sq〈n(τh)|N̂ |n(τh)〉sq − 〈n(τcyc − τch)|N̂ |n(τcyc − τch)〉].

(12)

In the adiabatic process the state of the system remains unchanged and thus the final

state is identical to the initial one, namely, ρ̂(τh + τhc) = ρ̂sq(τh) and ρ̂sq(0) = ρ̂(τcyc − τch),

where ρ̂(t) and ρ̂sq(t) were defined in Eqs. (3) and (4), respectively. The probability density

of the work w is given by the formula

p(w) =
∑

n

pn(τh)pn(τcyc − τch)δ{w − w[|n(τh)〉sq; |n(τcyc − τch)〉]}, (13)

where δ(•) is the Dirac’s δ function. Using ρsq(t) =
∑

n pn(t)S(γ)|n(t)〉〈n(t)|S†(γ) =
∑

n pn(t)|n(t)〉sq sq〈n(t)|, we obtain the average work output per cycle as

W ≡ 〈w〉 =
∫

wp(w)dw = (ωh − ωc)[〈n(τh)〉sq − 〈n(τcyc − τch)〉], (14)

where 〈n(τh)〉sq = Tr[ρ̂sq(τh)N̂ ] and 〈n(τcyc − τch)〉 = Tr[ρ̂sq(τcyc − τch)N̂ ] have been used,

with 〈n(τh)〉sq = 〈n(τh)〉+ [2〈n(τh)〉+ 1] sinh2(γ). For each cycle, heat is transferred only in

the isochore, while work is produced only along the adiabatic process. The heat absorbed

from the hot squeezed bath is

Qh = 〈Ĥ(τh)〉sq − 〈Ĥ(0)〉sq = ωh[〈n(τh)〉sq − 〈n(0)〉sq]. (15)

Then the efficiency reads

η =
W
Qh

= 1− ωc

ωh
. (16)

We now turn to discussion on the dynamical evolution of the system during the thermal-

ization processes 1 → 2 and 3 → 4, which allows for establishing the relation between the

excitation number 〈n(τh)〉sq (〈n(τcyc− τch)〉) and its asymptotic value 〈nh〉sq,eq (〈nc〉eq), with
〈nh〉sq,eq = 〈n(τh → ∞)〉sq and 〈nc〉eq = 〈n(τc → ∞)〉 = 1/(eβcωc − 1).

For the isochore 1 → 2, the energy transfer is realized merely via heat absorbed from the

squeezed bath during the period τh. Although practically the system evolves form instant

1 to 2, it would relax to a nondisplaced squeezed thermal state after infinite long time, and

its excitation number 〈nh(t → ∞)〉sq = 〈nh〉sq,eq. From Eq. (8), we find that the excitation

numbers of the initial and final states 〈n(0)〉sq and 〈n(τh)〉sq satisfy the relation:

〈n(τh)〉sq = 〈nh〉sq,eq + (〈n(0)〉sq − 〈nh〉sq,eq)e−Γhτh. (17)
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For the cold isochore 3 → 4, the system is in contact with the cold reservoir at inverse

temperature βc in time of τc. Based on an analogy with hot isochore 1 → 2, the excitation

number 〈n(τcyc − τch)〉 as a function 〈n(τh + τhc)〉 is obtained,

〈n(τcyc − τch)〉 = 〈nc〉eq + (〈n(τh + τhc)〉 − 〈nc〉eq)e−Γcτc . (18)

Here Γh (Γc ) represents the heat conductivity between the working substance and the hot

(cold) reservoir.

The adiabatic expansion 2 → 3 and compression 4 → 1 are realized by changing adiabat-

ically the frequency between ωc and ωh, during which

〈n(τh)〉sq = 〈n(τh + τch)〉, 〈n(0)〉sq = 〈n(τcyc − τhc)〉 (19)

due to constant Von Neumann entropy via unitary transformation. With consideration of

Eqs. (17), (18) and (19), the heat transporting into the system (15) and the work output

(14) turn out to be

Qh = (〈nh〉sq,eq − 〈nc〉eq)ωhg(τc, τh), (20)

W = (〈nh〉sq,eq − 〈nc〉eq)(ωh − ωc)g(τc, τh), (21)

where 〈nh〉sq,eq = 〈nh〉eq + (2〈nh〉eq + 1) sinh2(γ) and g(τh, τc) =
(eγhτh−1)(eγcτc−1)

eγcτc+γhτh−1
. From Eqs.

(14) and (21), one has

〈n(τh)〉sq − 〈n(τcyc − τch)〉 = (〈nh〉sq,eq − 〈nc〉eq)g(τh, τc). (22)

With consideration of Eqs. (17), (18) and (19), we have

〈n(τh)〉 = 〈nh〉eq +
A
2

eγcτc − 1

eγhτh+γcτc − 1
(23)

and

〈n(τcyc − τch)〉 = 〈nc〉eq +
B
2

eγhτh − 1

eγhτh+γcτc − 1
, (24)

where A ≡ (2〈nc〉eq +1)sech(2γ)− 2〈nh〉eq − 1 and B ≡ (2〈nh〉eq +1) cosh(2γ)− 2〈nc〉eq − 1.

Using 〈n2〉 = Tr(ρ̂N̂2) and 〈n2〉sq = Tr(ρ̂sqN̂2), we find that the second element of the work,

〈w2〉 =
∫

w2p(w)dw, can be given by 〈w2〉 = (ωh−ωc)
2{〈n2(τh)〉sq − [〈n(τh)〉sq]2+ 〈n2(τcyc−

τch)〉 − 〈n(τcyc − τch)〉2}. As a result, the work fluctuations, δw2 = 〈w2〉 − 〈w〉2, become

δw2 = (ωh − ωc)
2[〈n(τh)〉2 cosh(4γ) + 〈n(τh)〉 cosh(4γ) +

1

2
sinh(2γ)

+ 〈n(τcyc − τch)〉2 + 〈n(τcyc − τch)〉]. (25)
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Since the heat capacity at given time t = t0 reads C[β(t0)ω(t0)] = −β2(t0)∂〈Ĥ(t0)〉/∂β(t0),
the work fluctuations [Eq. (25)] can be rewritten as

δw2 = (ωh − ωc)
2

[

cosh(4γ)

β2
2ω

2
h

C(β2ωh) +
1

2
sinh(2γ) +

1

β2
4ω

2
c

C(β4ωc)

]

, (26)

where we have used β2 = β(τh) and β4 = β(τcyc−τch). From Eq. (26) it shows that the work

fluctuations δw2 are dominated by squeezing when the temperature is very low due to small

value of heat capacity. In contrast to the non-squeezing case, in the zero-temperature limit

when the heat capacity C(βω) → 0, the work fluctuations δw2 for the heat engine under

squeezing (γ 6= 0) are still positive as δw2 → sinh(γ) cosh(γ).

Substituting Eqs. (23) and (24) into Eq. (25), the analytical time-dependent expression

of the work fluctuations δw2 is obtained as,

δw2 = (ωh − ωc)
2
[

(〈nh〉eq)2 cosh(4γ) + 〈nh〉eq cosh(4γ) +
1

2
sinh(2γ) + (〈nc〉eq)2 + 〈nc〉eq

+ A(2〈nh〉eq + 1) cosh(4γ)
g(τh, τc)

(eγhτh − 1)
+A2 cosh(4γ)

g2(τh, τc)

(eγhτh − 1)2

+ B(2〈nc〉eq + 1)
g(τh, τc)

(eγcτc − 1)
+ B2 g(τh, τc)

(eγcτc − 1)

]

. (27)

In the quasi-static limit when τh and τc are very large, eγατα−1
eγhτh+γcτc−1

→ 0 with α = h, c, and

thus the work fluctuations turn out to be

δw2 = (ωh−ωc)
2[(〈nh〉eq)2 cosh(4γ)+ 〈nh〉eq cosh(4γ)+

1

2
sinh(2γ)+(〈nc〉eq)2+ 〈nc〉eq], (28)

which reduce to δw2 = (ωh − ωc)
2[(〈nh〉eq)2 + 〈nh〉eq + (〈nc〉eq)2 + 〈nc〉eq] under no squeezing

(γ = 0). Accordingly, the fluctuations for the work as a function of heat capacity [Eq.

(26)] become δw2 = (ωh−ωc)
2
[

(βhωh)
−2cosh(4γ)C(βhωh) + sinh(2γ)/2 + (βcωc)

−2C(βcωc)
]

,

which can reproduce the work fluctuations for the heat engine cycle without squeezing [26]:

δw2 = (ωh − ωc)
2
[

(βhωh)
−2C(βhωh) + (βcωc)

−2C(βcωc)
]

.

Since the stochastic power output reads ẇ[|n(τh)〉sq; |n(τcyc−τch)〉] = w[|n(τh)〉sq; |n(τcyc−
τch)〉]/τcyc, where w[|n(τh)〉sq; |n(τcyc − τch)〉] is given by Eq. (12), the rela-

tive fluctuations of the power output are equivalent to those of work. From

formulae (14) and (27), we obtain the relative power fluctuations as, fẇ =

fw = 1
[〈nh〉eq cosh(2γ)+sinh2(γ)−〈nc〉eq ]2g2(τc,τh)

[

(〈nh〉eq)2 cosh(4γ) + 〈nh〉eq cosh(4γ) + 1
2
sinh(2γ) +

(〈nc〉eq)2 + 〈nc〉eq + A(2〈nh〉eq + 1) cosh(4γ) g(τh,τc)
(eγhτh−1)

+ A2 cosh(4γ) g2(τh,τc)
(eγhτh−1)2

+ B(2〈nc〉eq +
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1) g(τh,τc)
(eγcτc−1)

+ B2 g2(τh,τc)
(eγcτc−1)2

]

. Consequently, the relative power fluctuations fẇ decrease as the

time allocations of τh and τc increase and they achieve their lower bound

f−
ẇ =

1

[〈nh〉eq cosh(2γ) + sinh2(γ)− 〈nc〉eq]2

×
[

(〈nh〉eq)2 cosh(4γ) + 〈nh〉eq cosh(4γ) +
1

2
sinh(2γ) + (〈nc〉eq)2 + 〈nc〉eq

]

(29)

in the quasi-static limit. Under no squeezing (γ = 0), Eq. (29) shows that the relative root-

mean-square power fluctuations can be obtained,
√

f−
ẇ = [〈nh〉eq − 〈nc〉eq]−1

[

(〈nh〉eq)2 +

〈nh〉eq + (〈nc〉eq)2 + 〈nc〉eq
]1/2

, or

√

f−
ẇ =

(ωh − ωc)

[〈nh〉eq − 〈nc〉eq](ωh − ωc)

[

(〈nh〉eq)2 + 〈nh〉eq + (〈nc〉eq)2 + 〈nc〉eq
]1/2

. (30)

For the denominator, one can readily prove [37] that, in the quasi-static limit where the cycle

duration is very long, (ωh − ωc)(n
eq
h − neq

c ) ≃ (1/βh − 1/βc)∆S, with ∆S being the entropy

change in the hot or cold isochoric thermalization process. In the classical limit where

the temperature is high enough (βhωh ≪ 1 and βcωc ≪ 1), we have the approximation via

making Taylor series expansion: (〈nh〉eq)2+〈nh〉eq+(〈nc〉eq)2+〈nc〉eq ≃ 4/(βhωh)
2+4/(βcωc)

2.

For the engine efficiency (16), approaching the Carnot value ηC means the limit βhωh → βcωc.

The formula (30) for the quantum harmonic engine gives rise to

√

f−
ẇ =

2

∆S
, (31)

for the classical cyclic engine operating at the Carnot efficiency. It indicates from Eq. (31)

that, unlike in the steady state heat engines [47, 48] in which trade-off between power

and efficiency are overcome with the price of lager power fluctuations, the Otto engine can

operate with efficiency η asymptotically close to ηC at positive power with finite and even

vanishing fluctuations. Therefore, we recover the result obtained from the classical cyclic

heat engines [7] in which a simplified system Hamiltonian as an illustrative example was

adopted.

B. Efficiency at maximum power in the context of finite-time thermodynamics

Having obtained the time-dependent expressions of average heat and work, we can analyze

the efficiency at maximum power to reveal the finite-time performance of our engine model.

10



Introducing G(τc, τh, τadi) = g(τh, τc)/(τh + τc+ τadi), where τadi ≡ τhc + τch denotes the total

time taken for the two adiabatic processes, we obtain the power output P = W/τcyc as

P = (ωh − ωc)(〈nh〉sq,eq − 〈nc〉eq)G(τc, τh, τadi). (32)

It is written as a product of two functions: a function F (βc, ωc, βh, ωh) ≡ (〈nh〉sq,eq −
〈nc〉eq)(ωh − ωc), which explicitly depends on the external parameters β, ω, and γ, and

the other one G determining the time allocations (τc, τh, τadi) on the isochores and adiabats.

When the external constraints are fixed, optimizing the power output P is realized via op-

timizing the time-dependent function G(τc, τh, τadi). In such a case, we set ∂G/∂τc = 0 and

∂G/∂τh = 0 to determine the optimal time allocations on the cold and hot isochores, leading

to

Γc[cosh(Γhτh)− 1] = Γh[cosh(Γcτc)− 1], (33)

which gives the optimal protocols for the engine cycle, and shows τc and τh depending on

each other. Under maximum power Γc = Γh leads to τc = τh. Either in the sudden adiabatic

limit, where τadi can be negligible compared to τh and τc, or under the assumption when

the time allocation on the adiabatic process τadi is proportional to that on the isochore,

i.e., τadi ∝ τh,c, the maximum power output Pmax increases with decreasing “effective time”

γhτh(=γcτc).

Now we consider the optimization on the external constrains of heat engine to get max-

imum power, assuming the time allocated on the adiabats τadi to be constant. From Eq.

(32), optimizing the power output is equivalent to optimizing the frequencies ωh and ωc. By

performing ∂P/∂ωc = 0 and ∂P/∂ωh = 0, we have

〈nh〉sq,eq − 〈nc〉eq =
1

4
(ωh − ωc) βccsch

2

(

ωcβc

2

)

, (34)

and

〈nh〉sq,eq − 〈nc〉eq =
1

4
(ωh − ωc) β

eff
h csch2

(

ωhβ
eff
h

2

)

, (35)

where 〈nh〉sq,eq = 1/(eβ
eff
h

ωh − 1) and 〈nc〉eq = 1/(eβcωc − 1). For given bath temperatures

(βh and βc) and the squeezing parameter (γ), this set of two nonlinear equations can be

calculated for yielding the optimal values of ωc and ωh at maximum power. Combining Eqs.

(34) and (35), and introducing xc = e−βcωc , xh = e−βeff
h

ωh, and βc = r2sβ
eff
h , we arrive at

βcxc

βeff
h xh

=
(xc − 1)2

(xh − 1)2
, (36)

11



which leads to xc = (2xh)
−1{2xh + rs(xh − 1)[rs(xh − 1) +

√

r2s(xh − 1)2 + 4xh]}, where
rs > 0. For given xh, xc decreases very quickly and becomes much smaller than 1 (The

numerical calculation for xc as a function of rs for given xh with 0 < xh < 1 is not plotted

here). By using Eq. (36), we can expand xh (as a function xc) up to the third term of

xc, xh = r2sxc + 2(1 − r2s)x
2
c + [3r2s(1 − r2s) − 5r4s(1 − r2s)]x

3
c + O(x4

c). Substituting it into

nsq,eq
h − neq

c = (xh − 1)−1 − (xc − 1)−1, yields the good approximation:

〈nh〉sq,eq − 〈nc〉eq ≃ (xh − xc) = (r2s − 1)xc +O(x2
c). (37)

In deriving Eq. (37), we have considered the two limits of xc ≪ 1 for rs ≫ 1, and xc → 1

with rs → 0. With consideration of these two limits, xh can thus be approximated by

xh = r2sxc. (38)

Combination of Eqs. (34) and (35) yields
(

lnxc

βc
− 2 ln rs+lnxc

βeff
h

)

= xh−xc√
xhxcβcβeff

h

, which, to-

gether with Eq. (38), gives rise to

ln xc =
(r2s − 1)

√

βcβeff
h + 2rsβc ln(rs)

2rs(βeff
h − βc)

. (39)

Substituting rs = 1/
√

1− ηgenC with ηgenC = 1−βeff
h /βc into the expression: ηmp = 1−ωc/ωh =

1− βeff
h

lnxc

βc lnxh
, we derive the expression of efficiency at maximum power as

ηmp =
(ηgenC )2

ηgenC − (1− ηgenC ) ln(1− ηgenC )
, (40)

which reduces to that obtained from microscopic and mesoscopic heat engines [30, 32, 33]

with vanishing squeezing γ = 0. We emphasize that the efficiency at maximum power

obtained here holds well in the region of any finite temperatures. In the special case when

the temperature is high enough, we find that βeff
h = βh/ cosh(2γ) is frequency-independent,

and Eq. (40) becomes an analytical function of ηC ,

η∗mp =
[ηC + cosh(2γ)− 1]2sech(2γ)

cosh(2γ)− (1− ηC){1 + ln[(1− ηC)sech(2γ)]}
. (41)

In the high-temperature limit when βω ≪ 1 and thus 〈n(βω)〉 ≃ 1/(βω) as well as

〈n(βω)〉sq ≃ 1/(βeffω), the heat absorbed by the system during the hot (cold) isochore

becomes the phenomenological heat-transfer law: Qh = γc(1/β
eff
h − 1/β(t)]g(τc, τh) or

Qc = γh[(1/βc − 1/β(t)]g(τc, τh). We then find the efficiency at maximum power to be

12
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FIG. 2: (Color online) The efficiency at maximum power ηmp as a function of the Carnot efficiency

for fixed squeezing parameter γ = 0.2. The analytical expression η∗mp given by Eq. (41) and the

generalized CA efficiency ηgenCA are denoted by a red solid line and a blue dashed one, respectively.
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FIG. 3: (Color online) The efficiency η as a function of the squeezing parameter γ for given Carnot

value (dotted black line). The solid red line and dashed blue one show η∗mp and ηgenCA, both of

which can surpasses the standard Carnot efficiency for finite squeezing parameters, but obey the

generalized Carnot value (green dot-dashed line).

the generalized CA efficiency: ηmp = ηgenCA = 1−
√

sech(2γ)βh/βc, which, however, indicates

less validity compared to Eq. (41), since Eq. (41) is obtained from quantum master equation

in stochastic thermodynamics. The efficiency at maximum power (η∗mp) as a function of the

standard Carnot value for given squeezing parameter agrees well with the generalized CA

efficiency, as demonstrated in Fig. 2.

The analytic expression for the efficiency at maximum power (η∗mp) and the generalized

CA efficiency (ηgenCA) for varying squeezing are plotted in Fig. 3, comparing the standard

13



Carnot efficiency (ηC) and generalized Carnot one (ηgenC ). Figure 3 shows that squeezing

as a form of energy yields an increase in the work output [22] and thus results into the

efficiency beyond the standard Carnot limit. As expected, the engine operation is limited

by the generalized Carnot efficiency and it does obey the second law of thermodynamics.

C. Irreversible thermodynamic analysis on efficiency at maximum power

The expression of efficiency at maximum power (40) for the quantum Otto engine can be

understood in terms of dissipations along the (isochoric) thermalization processes, within

framework of irreversible thermodynamics. The time durations τh, τc, and τadi can be set

to be constants, respectively, when they satisfy the optimal relation (33). Considering Eqs.

(20) and (21) and using the relation W = Qh − Qc, the average input heat current and

output heat current can be expressed as

Q̇h ≡ Qhτ
−1
cyc = τ−1

cycωh(〈nh〉sq,eq − 〈nc〉eq)g, (42)

Q̇c ≡ Qcτ
−1
cyc = τ−1

cycωc(〈nh〉sq,eq − 〈nc〉eq)g, (43)

respectively. Since the change in system entropy is vanishing after a single cycle, the entropy

production per cycle is merely coming from the two heat reservoirs. The average entropy

production rate, σ̇ = −βeff
h Q̇+ βcQ̇c, can be expressed in terms of inverse temperature β,

σ̇ = −∆ωβeff
h I + βc∆(β−1)ωcβ

eff
h I, (44)

where ∆(β−1) = 1/βeff
h −1/βc is the temperature difference and ∆ω ≡ ωh−ωc is the difference

between the maximum and minimum energy gaps (ωh and ωc), and

I = 〈ṅ〉 = gτ−1
cyc[〈nh〉sq,eq − 〈nc)〉eq] (45)

denotes the effective (average) particle current. With consideration of Eq. (44), we use X =

∆ω and X0 = ωcβc∆(β−1) to denote the thermodynamic forces, respectively. Introducing

S ≡ βcωc to denote the (average) entropy change due to a single particle transition in the

cold quasistatic isochoric process, the average heat fluxes (42) and (43) can be rewritten as,

Q̇h = (βeff
h )−1SI − (X0 −X)I, (46)

Q̇c = β−1
c SI. (47)
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These expressions satisfy the generalized forms derived in classical steady heat engines [39,

40]: Q̇h = β−1
h SI − αRdisI2 and Q̇c = β−1

c SI + (1 − α)RdisI2, where α is the coefficient

of partition of the dissipated heat between the two thermal baths and its values must be

situated between 0 ≤ α ≤ 1. With consideration of Eqs. (46) and (47), the efficiency (16)

can be rewritten as a function of thermodynamic forces X and X0,

η =
ηgenC X

X0 − ηgenC (X0 −X)
. (48)

Maximizing power P with respect to X andX0 is equivalent to maximizing power through

tuning of ωc and ωh, which thus allows one to obtain

X(m) =
ηgenC

(1− ηgenC )βc
, X

(m)
0 =

ηgenC − ln(1− ηgenC )

(1− ηgenC )βc
. (49)

As expected, the analytical expression for the efficiency at maximum power given by Eq.

(40) is re-obtained by inserting Eq. (49) into Eq. (48). From Eq. (37), the particle current

under maximal power can be approximated by

I = gτ−1
cyce

−βeff
h

(ωc+X)
[

1− e−βh(X0−X)
]

, (50)

which has an exponential dependence on the thermodynamic force X . In order to consider

the nonlinear case, we distinguish between the dynamical response of the system and the

ability to dissipate energy [39, 40]. Let Rdyn be the dynamic resistance (also called differ-

ential resistance) and Rdis the dissipative resistance. While the dynamic resistance Rdyn

is associated with small changes of X and I near a specific working point, the dissipative

resistance Rdis refers to the dissipations that hinder the particle flow and thus result into

dissipated power. In analogy with steady state heat engines [39, 40], we keep the follow-

ing general definitions of these two resistances: Rdyn = d(X0 −X)/dI = −dX/dI and

Rdis = (X0 −X)/I, which, together with Eq. (50), gives rise to

Rdyn =
τcyc
gβeff

h

eβ
eff
h

(ωc+X), Rdis =
βeff
h (X0 −X)Rdyn

1− e−βeff
h

(X0−X)
. (51)

Substituting Eq. (49) into Eq. (51) , we find that Rdyn and Rdis as well as the ratio Rdis/Rdyn

Rdis

Rdyn
= − ln (1− ηgenC )

ηgenC

(52)

are increasing significantly due to squeezing. From Eq. (52), we recover the general expres-

sion of the efficiency at maximum power (α = 1)[39]:

ηmp =
ηgenC

1 + (1− αηgenC )Rdis/Rdyn
(53)
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by extending nonlinear steady heat engines to nonlinear cyclic ones. Physically, squeezing

yields an increase in the ratio Rdis/Rdyn but a decrease in (1−ηgenC )Rdis/Rdyn. Consequently,

the efficiency at maximum power (53) is significantly enhanced by squeezing. The expression

(53) is exactly the same as Eq. (40) and thus simplifies to Eq. (41) in the hight temperature

limit. It is therefore demonstrated that efficiency at maximum power (53) can be used to

describe the cyclic quantum heat engines beyond linear response regime.

IV. CONCLUSIONS

In summary, we have analyzed the finite-time performance of a quantum Otto engine

driven by a squeezed thermal bath. Starting with quantum master equation, we have derived

analytical expressions for efficiency, power, and power fluctuations, all of which are explicitly

dependent on the time allocation on each step of the thermalization processes. The efficiency

at maximum power was derived analytically by optimizing power output with respect to

external control parameters. We find that at the high temperature limit the efficiency at

maximum power derived here closely follows the generalized CA efficiency. From irreversible

thermodynamics, this expression for the efficiency at maximum power was re-obtained by

introducing the dynamical resistance and dissipative resistance as in classical steady heat

engines. Our results show that the efficiency is significantly enhanced and can surpass the

standard Carnot value due to the squeezing as an energy resource increasing the work output,

but with larger power fluctuations compared to vanishing squeezing.
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