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Abstract.  

 Magnetic nanorods rotating in a viscous liquid are very sensitive to any ambient magnetic 

field. We theoretically predicted and experimentally validated the conditions for 2D synchronous 

and asynchronous rotation as well as 3D precession and tumbling of nanorods in an ambient field 

superimposed on a planar rotating magnetic field. We discovered that any ambient field stabilizes 

synchronous precession of the nanorod so that the nanorod precession can be completely 

controlled. This effect opens up new applications of magnetic nanorods as sensors of weak 

magnetic fields, for microrheology, and generally for magnetic levitation.  

 

When a ferromagnetic nanorod with magnetic moment m is suspended in a liquid of 

viscosity and a uniform rotating magnetic field B is applied, the nanorod experiences a magnetic 

torque that aligns the nanorod with the field and a viscous drag torque which is much stronger than 

the torque caused by the nanorod inertia. Planar rotation of applied field causes two distinct 

regimes of the in-plane nanorod motion. If the field rotation frequency ω is below a certain critical 

value, the nanorod moves synchronously with the field; due to viscous drag torque, its magnetic 

moment lags the field by a constant angle ψ (see Fig. 1). The greater the rotation frequency ω, the 

larger the angle ψ [1,2]. At critical frequency , where Г is the rotational drag 

coefficient (discussed later and in ESI, S4.2), the nanorod aligns perpendicularly to the field and 

reaches its terminal angular velocity of rotation. At ω > ωC, the field rotates faster than the nanorod, 

switching regime of rotation from the synchronous to an asynchronous one. Hence, magnetic 

torque cannot be kept constant and, as a consequence, the nanorod motion gains an oscillatory 

component [1,2]. The in-plane asynchronous rotation of a ferromagnetic nanorod in a planar 

rotating magnetic field was considered predictable and has been reliably used for many 

microrheological applications [3-12]. Magnetic Rotational Spectroscopy (MRS) [3-6], takes 

advantage of this characteristic oscillatory feature of rotation of inertialess rods to characterize 

rheological properties of fluids. It has been claimed that such a nanorod – with the fixed magnetic 

moment m collinear with its geometric long axis – should remain in the plane of rotating magnetic 

field and exhibit no out-of-plane rotation [13]. This statement seems to be prevailing in the 
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literature and this motion has been discussed thoroughly [3-11,14]. However, during experimental 

observation, even the nanorod beginning its rotation in-plane, after a long enough time, would 

always come out of plane and puzzle the experimentalist [15].  

The phenomenon of out-of-plane motion is extremely detrimental to an experimentalist 

attempting to use MRS for an accurate rheological measurement. Especially as the probe size 

decreases from millimeters to hundreds of nanometers and the probe magnetic moment drops down 

drastically [16] the effect of the ambient field, e.g. the Earth’s magnetic field, becomes significant. 

The component of this ambient field orthogonal to the plane of rotation could alter the magnetic 

torque to push the nanorod out of the original plane of rotation. This study aims at understanding 

the effects of constant out-of-plane micro-Tesla bias fields on these dynamics. Caroli and 

Pincus [17] were the first to predict a possibility of the out-of-plane dynamics of magnetic particles 

subjected to a weak rotating planar field biased by a strong field. The problem in question is 

significantly different: the Earth’s field may be comparable with the applied rotating field[18]. 

Recently, our group [15] reported that Ni  nanorods with magnetic moment parallel to the nanorod 

long axis[19] go out of plane during MRS experiments. The Cimurs-Cebers theory [20] of nanorod 

precession caused by the deviation of magnetic moment from the easy axis (geometric long axis) 

falls short to explain these observations [15]. We hypothesized that the ambient field caused this 

out-of-plane motion of the nanorods. We develop a theory to explain the out-of-plane motion and 

verify the theoretical predictions with experimental results by tracking three-dimensional (3D) 

rotation of the rods in a controlled 3D magnetic field. We first describe the experimental 

observations and then formulate the theoretical model. We then investigate the impact of the 

rotation frequency of the applied field and the magnitude of the out-of-plane bias field on the out-

of-plane dynamics of rotating nanorods and illustrate the applications of the obtained results to 

rheology. 

 Magnetic stage developed previously [15] was used to first cancel any ambient field and 

then generate the in-plane rotating magnetic field with a controlled out-of-plane bias magnetic 

field (Fig. 1). We report two intriguing results: continuous precession of a nanorod forced to move 

by a rotating field B a) in the absence of any bias field,  and b) with small bias fields .  
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FIG. 1: a) System of coordinates and angles used for description of nanorod dynamics. See explanation of 

symbols in the text. Time evolution of b) in-plane and c) out-of-plane angles for rotation of nanorods above 

critical frequency (ωC ~ 2.17 Hz) in the presence of no or small bias fields (μ = 0–0.06). Offsets were added 

to data for visibility. Rods were initially oriented in-plane at θ0=90o and several different out-of-plane angles 

(ϕ0). These rods were then subjected to rotating fields of different frequencies. (Information corresponding 

to each trajectory is in the table) The average slopes of the trajectories in the synchronous region are ~180/π 

as the time data is normalized by corresponding rotation frequencies.  

 

The experimental phenomena are quantified by tracking 3D rotation of ferromagnetic Ni 

nanorods (mass density ρ=8.9g/cc, magnetic moment m = 1.5x10-6 µAm2, length l= 5-10μm, and 

aspect ratio ~1/40) functionalized with polyvinylpyrolidone following the protocol of Ref [21] and 

suspended in the 60 wt. % glycerol solution in water ( =24mPa s). Experiments were performed 

on nanorods in bulk liquid; nanorods at or near an interface were not used, thus avoiding any 
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interfacial effects. The motion of the nanorod was filmed and its projection on the focal plane of 

the microscope was tracked. The xy-plane of Cartesian system of coordinates was associated with 

the focal plane; the rotating magnetic field B = B(cos ωt, sin ωt, 0) – the so-called in-plane 

component – was applied parallel to this plane, and the bias field – the so-called out-of-plane 

component – was pointing in the z-direction, h = (0, 0, h), Fig. 1. The magnitude of in-plane field 

was fixed at B = 400μT for all experiments. The in-plane component was rotating at a constant 

angular frequency ω making an angle ωt with the x-axis. The nanorod center was chosen to sit in 

the xy-plane.  

Simultaneously, spherical system of coordinates was introduced to describe the current 

spatial orientation of the nanorod with respect to laboratory system of xyz coordinates. The angle 

θ of this spherical system of coordinates is taken between the x-axis and the projection of the 

nanorod long axis onto the xy-plane; the angle ϕ is taken between the z-axis and the nanorod long 

axis which is coincident with the magnetic moment m, Fig. 1. Table S2 in ESI shows a relation 

between our notations and the commonly used Euler angles. A full description of rotation of an 

arbitrary solid body requires the analysis of equations of motion for all three Euler angles, 

however, as demonstrated in the ESI (S4.1, S4.5), in our case the third angle is not needed: there 

is no magnetic torque forcing the nanorod to spin around its long axis. An auxiliary angle, 

ψ = ωt – θ, is introduced to describe the relative direction of xy projection of magnetic moment m 

with respect to the rotating field B. The protocol for measurements of the two determinants of the 

nanorod spatial orientation, the in-plane angle θ, and the projection length L, is detailed in ESI.  

 To demonstrate robustness of our experimental setup and theoretical predictions, at the 

beginning of experiment, we oriented the nanorod at specific angles ϕ0 = [90o, 80o, 61o, 55o, 36o] 

by adjusting the in-plane and out-of-plane components of a constant aligning field. The initial in-

plane angle θ0 = 90o and the total magnitude of the aligning field Balign=150μT were kept constant. 

Once the nanorod aligned with this field, we removed the aligning field and instantaneously 

superimposed rotating field. Figure 1 b) shows the in-plane and Fig. 1 c) shows the out-of-plane 

components of the out-of-plane rotation of these nanorods. We also performed reference 

experiments were the nanorod was initially set parallel to the initial orientation of the magnetic 

field. The details of these experiments are outlined in the ESI 

 The initial oscillatory part of the trajectories are reminiscent to the no-bias-field 

asynchronous rotation (Fig. 1b, oscillations with a slowly increasing average) but, surprisingly, 



the nanorod gets synchronized later with the rotating field (Fig. 1b, decaying oscillations with an 

average slope of 180/π). Oscillations of both the in-plane (Fig. 1b) and out-of-plane angles (Fig. 

1c) decay and reach a final synchronized state (see for details  Section S2 in ESI). The out-of-plane 

angle reaches an equilibrium value depending on the frequency of the applied field (see below). It 

never reaches 900, and the rod performs stable precessional motion in sync with rotating field. 

Thus, the out-of-plane dynamics with the out-of-plane bias field demonstrate a surprising 

synchronizing effect of the bias field. This effect has never been reported in the literature and 

hence deserves a detailed theoretical analysis. 

Setting up the model, a unit vector r along the nanorod long axis parallel to magnetization 

and the angular velocity ω of the nanorod are defined as , 

. In the effective field , the 3D rotation of a nanorod is described by balancing 

the magnetic torque  and viscous torque,  [22,23]. The rotational drag 

coefficient, , is a function of the rod length L0, diameter D0 and 

fluid viscosity η. This vector torque balance, , gives a system of two ordinary 

differential equations. Introducing dimensionless time as t* = ωt, the vector torque balance is 

written in dimensionless form as (for the details, see S4.1 of ESI): 

 ,  (1a) 

 . (1b) 

The two dimensionless parameters, Ω and μ, of the autonomous system of equations (1a) and (1b) 

describe the oscillation frequency of magnetic field and the relative magnitude of the out-of-plane 

field respectively. In the absence of the bias field (µ = 0) and in the limit when only the in-plane 

motion is considered (ϕ = 90°), these equations are reduced to the equations derived in Ref. [24]. 

Introduction of angle ψ in Eqs. (1) and Fig. 1a conveniently eliminates the explicit dependence of 

these solutions on time. 

The full analysis of the nonlinear system (1) can be done using the phase portrait method 

of the theory of dynamic systems [25]. The nanorod dynamics is described as a 2D flow of 

fictitious particles representing one of the end-points of the nanorod on the surface of a unit sphere; 

the flow is defined in the (ψ, ϕ) - plane with velocities  

(sin sicos , sinn ),cosf q f q f=r

= ´ω r r! = +effB B h

´=M effτ m B G= -Vτ ω

( )( )3
0 0 0/ 3ln / 2.4L L DphG = -

=´ Geffm B ω

sin ( ),
* si

1 ,
n

1
C

d f
dt
y y wy f

f w
= W =

W
= -

[ ]1 cocos s sin ( ),,
*

d h
d

g
t B
f f y µ f y f µ= - =

W
=



 .  (2) 

There are special, stationary points in the space, where the flow velocity of the particles 

goes to zero, i.e. the right-hand side of Eqs. (1) turns to zero:  

 .  (3) 

Eqs. (3) have the following explicit solution: 

 ,  (4a) 

 . (4b) 

These stationary points describe the steady rotational motion of the nanorod and specify 

the constant angles (ψS, ϕS) that the nanorod makes with the in-plane component B of the magnetic 

field and with the h-component (z-axis), respectively. This synchronous solution (ψS, ϕS) exists for 

any frequency of the applied in-plane rotating field and for any non-zero bias field, μ = h / B ≠ 0. 

Two regimes of steady rotation are distinguishable by the magnitude of the bias field and the 

rotation frequency: synchronous planar rotation, ϕS = 90°, μ = 0, and synchronous 3D precession, 

ϕS ≠ 90°, μ ≠ 0. Synchronous in-plane rotation of nanorods has been studied in detail in the 

literature [3,4,16] and hence we focus only on 3D steady precession. 

We classify the flow pattern into three parametric regions. Two of these are discussed next 

and the third is discussed in ESI, section S3.1. For the ease of perception the (ψ, ϕ)-space is mapped 

hereinafter onto the Cartesian plane. More rigorous spherical representation is discussed in ESI 

(S4.6). 

In the first parametric region (Ω > 1, μ = 0), two distinct flow patterns are observed: cyclic 

flow about the stationary points and continuous flow as demonstrated in Fig. 2 for Ω = 2, μ = 0. 

The flow trajectories show different dynamics depending on the initial orientation of the nanorod. 

Some (red trajectory) follow the continuous flow path while others perform cyclic motion about 

the stationary points. These two kinds of flows are separated by the separatrix. 
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FIG. 2: a) Phase space for the cyclic flow at Ω = 2, μ = 0. b) Time dependence of ϕ (solid lines) 

and ψ (dashed lines) corresponding to the phase portrait at ω = 1.6 Hz. Color (red, green, and 

orange) corresponds to certain initial conditions for φ (see legend). Initial condition for ψ is always 

zero.  

 

Nanorod trajectories are classified according to the initial orientation of the nanorod. A 

nanorod starting in the B-plane (ϕ = 90°, the red trajectory in Fig. 2) would stay in the same plane 

and perform asynchronous motion. The red trajectory thus corresponds to the planar asynchronous 

motion [1,2]. For other initial orientations of the nanorods, different out-of-plane dynamics are 

observed (see Figs. 2a, and b). Fig. 2a offers a possible explanation for  spontaneous out-of-plane 

motion reported in our earlier work [15]. If the nanorod experiences an isolated out-of-plane 

perturbation (say at some time instant, the red trajectory in Fig. 2 gets perturbed to green or 



orange), the nanorod would not asymptotically come back to the plane but continue asynchronous 

out-of-plane motion.  

We experimentally verified the out-of-plane motion described above. The nanorod was 

initially tilted out of the focal plane of observation, at ϕ = 36°, and then the bias field was removed, 

and the in-plane rotating field was applied parallel to the focal plane of observation. These 

trajectories are marked by orange diamonds in Fig. 1. The rotation frequency of the applied field 

was set above the critical rotation frequency suggesting that asymptotically the nanorod should 

engage in in-plane asynchronous rotation. Surprisingly, despite intuitive expectation  that the 

magnetic torque τM = m  B should pull the nanorod towards the focal plane, the nanorod 

performed oscillatory out-of-plane motion and never settled to the plane (trajectories marked 

orange diamonds in Fig. 1). In each cycle, when the nanorod was about to approach the focal plane, 

it was kicked off the plane as soon as it approached some ϕC (ϕS <ϕC<90o). Then, on its way in the 

vertical direction, the nanorod was again pulled back towards the rotation plane. In this manner, 

the nanorod never reaches an equilibrium orientation nor synchronization with the magnetic field 

and the out-of-plane angle ϕ oscillates about a mean position never crossing the ϕ = 90° plane. This 

experiment demonstrates the presence of out-of-plane asynchronous dynamics without any out-of-

plane field. Thus, the out-of-plane dynamics are an inherent characteristic of the planar rotating 

field. In light of this, one might wonder what role is played by the out-of-plane component of the 

field. We now analyze this by showing theoretically that switching on even a small out-of-plane 

field causes synchronization of the out-of-plane rotation of nanorods. 

Switching on the bias field (second parametric region Ω > 1, μ > 0), the cyclic flow pattern 

observed in the previous regime transforms into spiraling flow demonstrated in Fig. 3a for Ω = 2, 

μ = 0.5. The two stationary points in this case become attractive and repulsive spirals. Fictitious 

particles, i.e., the nanorod end-points, spiral away from the repulsive spiral and move toward the 

attractive spiral where they ultimately become stationary. Though, a number of 360o-cycles of ψ 

might be necessary. 
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FIG. 3 a) Phase space for the spiral flow at Ω = 2, μ = 0.5 b) The time dependence of the angles 

corresponding to the phase portrait at ω = 1.6 Hz. The dashed lines are ψ-trajectory and the solid lines are 

ϕ trajectory. Color (red, green, and orange) corresponds to certain initial conditions for φ (see legend). 

Initial condition for ψ is always zero. 

 

Thus, the nanorods starting from any initial condition ultimately oscillate about the 

synchronous angle. These oscillations decay with time asymptotically reaching the synchronous 

state, (φS; ψS), that is a function of (Ω; μ) in Eq. 4. Figure 3b displays these oscillatory dynamics 

in terms of time-dependent trajectories where decaying oscillations followed by synchronization 

are clearly visible. The above analysis confirms that the out-of-plane precession does exist at Ω > 

1 without any out-of-plane fields. Small out-of-plane fields, however impart stability to 

precessional dynamics. Next, we demonstrate the impact of the out-of-plane field and rotation 

frequency on the stable precession dynamics that are experimentally verified. 



Theoretically, for Ω < 1, the nanorod indefinitely rotates synchronously with the magnetic 

field and the effect of a small ambient field, μ < 0.05, is not noticeable. Fig. 4 shows that the 

stationary angle ϕS is bound between 87° and 90° indicating that the nanorod rotates in plane. The 

situation changes dramatically at Ω > 1. For negligibly small μ << 1 bias field, one expects that 

once placed in the plane of rotation, the nanorod would keep rotating in-plane. However, the 

expectation is not fulfilled when a small μ = 0.05 bias field is applied in our experiments. As shown 

by the red curve and the data points crowded at 30° < ϕS < 50° and 1.25 < Ω < 2.3 in Fig. 4b in the 

presence of even a small bias field, one observes a drastic transition to the 3D steady precession. 

The steady precession angle ϕS (Eq. 4) is observed to significantly depend on the frequency of 

applied in-plane component of the field, dropping from ~ 90° to 0 as the frequency increases. 

   
FIG. 4: a) Contours of the steady precession angle ϕS and b) Experimental (circles with error bars) and 

theoretical (lines) angles ϕS at different rotation frequencies.  

 

It is thus seen that in the applied 2D rotating magnetic field, ferromagnetic nanorods 

demonstrate rich dynamic behavior. Magnetic Rotational Spectroscopy of fluids takes advantage 

of only one possible scenario when the nanorods undergo a transition from synchronous to 

asynchronous 2D motion. However, 3D motion brings more surprises. We discovered that when 

the nanorod is aligned out-of-plane, and no bias field is present, the nanorod is first pulled towards 

the plane of the field rotation but then keeps tumbling never settling to the plane of applied rotating 

field. This 3D effect is purely dynamic; there is no static equivalent of this behavior: a static field 

will always force the nanorod to co-align with the field [16]. 

We also discovered that introduction of an orthogonal bias field changes the 2D rotation 

scenario dramatically: the 3D nanorod motion can be synchronized with the applied rotating field 



of any frequency. Our work suggests that stronger the bias field the shorter the time required for a 

nanorod to find its steady state precession angle (ESI Section S5). These experimental observations 

have been supported by the non-linear phase portrait theory and theoretical analysis of stability of 

nanorod rotation near the steady state precession angles. The developed theory and corresponding 

experiments demonstrate that the out-of-plane bias field causes synchronization of precessional 

dynamics. The final synchronous angle is a strong function of the field rotation frequency and 

therefore can be controlled precisely. We demonstrated that the obtained results can be utilized for 

experimental analyses of viscosity (ESI Section S5) in the microrheological application. Utilizing 

the fast precessional stabilization with a bias field, one will be able to analyze viscosity of the 

liquid samples much easier compared to the existing methods. When the liquid in question is given 

only in a minute amount and solvent evaporates fast or some chemical reactions change the drop 

viscosity, the proposed procedure may help significantly. The discovered effects can be used in 

many other applications involving nanorheology, magnetic sensing, magnetic levitation of 

particles [26].  
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