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Abstract
It is known that the probability of decoding error has a phase transition at information rate equal

to the channel capacity. The corresponding thermodynamic limit requires infinite coding dimension,

hence making the actual decoding practically impossible. In this letter we analyze finite-size

effects that occur in limited neural populations. We report that the achievable rate approaches the

asymptote in a remarkably non-linear manner with the population size. Qualitatively, our findings

do not seem to depend on the details of the model.
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The ultimate rate of information (i.e., the channel capacity) that can be communicated

through a noisy channel is an asymptotic quantity, assuming arbitrarily reliable communica-

tion, infinite decoder complexity and delays [1]. Stepping back from the asymptotic limit

thus brings new parameters into play. In fact, in all practical applications of coding theory,

the actual value of mutual information is of lesser interest than the probability that the input

is incorrectly estimated at the destination. Although information transfer in unlimited neural

populations may approach capacity [2], realistic neuronal populations are limited, in both

their size and signal-to-noise ratio. Hence, the ‘intermediate’ regime of optimal decoding

performance is of actual interest [3].

In this letter we investigate the information-optimality conditions for a size-restricted

neuronal population [4, 5]. We examine the approach of the achievable rate to the asymptotic

limit in dependence on the number of active neurons. Both classic [1] and recently improved

bounds [6, 7] on the information rates with finitely-dimensional codes are employed. We find

that there exists a critical (or threshold) population size, above which the information transfer

scales almost asymptotically, while below the transmission deteriorates rapidly (Fig. 1A).

Qualitatively similar phenomenon is known in the parameter estimation theory, where the

estimator mean-squared error sometimes deviates from the Cramer-Rao bound abruptly as

the sample size or signal-to-noise ratio decreases below the critical region [8].

Information capacity of a single neuron. Following the standard approach [5, 9–11], let

x be a scalar input parameter (e.g., stimulus intensity, or feature), taking value in a possibly

continuous set. Stimulation is formally described by the random variable X, with probability

distribution or density function p(x), which accounts for different frequencies of individual

inputs in the stimulus ensemble. Denote y as the output value (neuronal response), e.g.,

the firing frequency, spike timing precision or some other characteristics [9]. For each input

x the response is typically described stochastically. Although neuronal systems operate in

continuous time, we implicitly assume that all input-output signals can be sufficiently well

represented in ‘discrete time’ with step ∆, also due to the finite speed of the biological

processes and the consequent bandwidth limitations.

Assuming that neuron acts as a memoryless information channel without feedback, the

stimulus-response relationship is completely described by the conditional distribution function

f(y|X = x) of the response random variable Y . The unconditional output probability

distribution function is then p(y) = 〈f(y|x)〉x. The mutual information, I(X;Y ), in nats per
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time unit, is

I(X;Y ) = 1
∆

〈
log f(y|x)

p(y)

〉
x,y

, (1)

where ∆ is the duration of each input and the expectation is over the joint probability

distribution of X and Y . The value of I(X;Y ) has become indispensable in the analysis of

information flow in various stochastic physical [5, 12–16] or biological systems [9, 17–20].

The channel capacity, C, characterizes the ultimate information transmission reliability

of any given neuronal model by optimizing I(X;Y ) over the set of all input distributions,

C = max
p(x)

I(X;Y ). (2)

More precisely, in order to facilitate the transmission reliability, information theory enforces

processing of input sequences, {x1, x2, . . . , xn}, instead of per-symbol decoding (Fig. 1B).

Assuming that there are m distinct input n-sequences, the information rate, R, is defined as

[1]

R = logm
n∆ . (3)

Shannon’s channel coding theorem [1, Thm. 5.6.4] states that for all rates below channel

capacity, R < C, the probability of decoding error, Pe, i.e., the probability that the decoder

fails to identify the correct input sequence, can be made arbitrarily small with increasing

n. In other words, up to m ≈ e∆nC patterns can be decoded reliably for n sufficiently large.

The probability of decoding error in fact undergoes a phase transition at R = C in the

‘thermodynamic’ limit n→∞. Shannon’s theorem guarantees that Pe = 0 for R < C while

Wolfowitz’s converse theorem [1, Thm. 5.8.5] implies Pe = 1 for R > C. The key question

therefore is what is the relationship between achievable R and Pe for restricted n.

Population model. We consider standard single-compartment neurons whose ionic currents

are described by Hodgkin-Huxley type kinetics [4] (see Supplementary Material (SM, p. 10)

for details and an additional neuronal model [21]). The synaptic input Isyn is given by the

point-conductance model [22], where the excitatory (inhibitory) synaptic conductances follow

the Ornstein-Uhlenbeck process.

The stimulus, x, is given by the mean excitatory synaptic conductance 〈ge〉 during the

time window of length ∆, which determines the time scale [23]. The inhibitory component is

proportional to the excitatory one [24, 25], (SM, p. 12). For the purpose of this letter we

confine x to the interval [0, 0.4]mS/cm2 and set ∆ = 50ms (SM, p. 13) so that the effect
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FIG. 1. Framework and neural population set-up. (A) Typical results of information theory are

asymptotic in the coding dimension n. As n→∞ it is possible to transmit information reliably

up to rates equal to channel capacity per dimension (dashed line). However, the asymptotic limit

is unlikely to be achieved with restricted n (schematic illustration). We report that there exists

a critical n below which the performance deviates rapidly from the bound (circle). (B) Neuronal

population model employed in this letter. The input (xi) and output (yi) are discretized with

time-step ∆. For single neurons, Shannon’s coding theorem assumes processing sequences of length

n (coding dimension), resulting in delays (n∆) during the sequence formation and read-out. Instead

we equivalently employ n identical neurons in parallel, using the Hodgkin-Huxley type model with

point conductance input. Stimulus is the n-vector of average excitatory conductance components,

response is the vector of individual firing frequencies.

of past stimulation can be approximately neglected. The response of the neuron, y, is the

number of spikes observed in ∆ (Fig. 1B). The conditional probability distribution f(y|x)

cannot be obtained in a closed form, however, we utilized intensive simulations to obtain a

reliable approximation.
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In order to avoid the delay n∆ implied by the channel coding theorem for the single-neuron

case (Fig. 1B) we instead consider the population of n independent neurons. The probability

distribution of a population response y = {y1, . . . , yn} to the input vector x = {x1, . . . , xn}

is

f(y|x) =
n∏
i=1

f(yi|xi). (4)

Due to the convenience of Eq. (4), populations of uncoupled neurons are used frequently,

e.g., in [3, 26–29], see also [30] and references therein.

Since in each ∆ we use n neurons in parallel, rather than a single neuron n-times, the

information capacity Cn of the population grows as (Fig. 2A, dash-dotted line)

Cn = nC, (5)

where C .= 17.3 bit/s is the single-neuron capacity from Eq. (2). (For convenience, results in

Fig. 2A are expressed in bits rather than nats, i.e., 1 nat equals 1/ log(2) bit.) The capacity-

achieving input distribution, p(x), obtained by maximizing Eq. (2), is shown in Fig. 2B. The

corresponding n-dimensional population input is then described by the ensemble Eq. (8).

The linear scaling in Eq. (5) does not equally hold for the population rate, Rn = nR =

(logm)/∆, as m is only asymptotically exponential in n, while the operational interpretation

of C implies n→∞ (Fig. 1A, SM, p. 4). Unfortunately, no accurate expression for the best

achievable rate, not exceeding the given decoding error tolerance, for arbitrary n is known in

general [6]. We employ the recently improved upper bound [7] together with the optimized

Gallager’s achievability bound [1] under the maximum likelihood decoding rule to obtain an

approximate description of the optimal rate Rn as a function of n.

Lower achievable bound. Given the set of available input vectors x(k), k = 1, . . . ,m, the

current input x(i) and the observed response vector y′, the maximum-likelihood decoder

chooses

x(D) : D = arg max
k

f(y′|x(k)), (6)

where f(y|x) follows Eq. (4). Decoding error occurs if x(D) 6= x(i). Denote the probability of

the k-th input vector as Px(k). The average probability of decoding error, Pe, is then

Pe =
m∑
k=1

Px(k)
∫
E(k)

f(y|x(k)) dy, (7)

where E(k) is the set of all response vectors y such that if x(k) is on the input the decoder

in Eq. (6) fails. Without loss of generality we may assume a uniform distribution of input
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FIG. 2. Optimal information transmission through a homogeneous neural population. (A) For

finite-sized populations (following the scheme in Fig. 1B) the achievable information rate differs from

the asymptotic capacity limit (divided per neuron, dashed). The area between the lower achievable

bound and the upper bound (solid) indicates the performance of optimal decoders with probability

of decoding error not exceeding Pe = 10−10. There is a notable decrease in the information rate

with respect to the asymptote (cf. Fig. 1A) below the critical population size (nc = 236). The

closed-form Gaussian approximation (dash-dotted) describes the upper/lower bounds (SM, p. 9)

and the critical parameters well. (B) Asymptotically optimal (capacity-achieving) probability

distribution over the input intensities maximizing Eq. (2). The distribution is discrete with five

points of support. (C) Input probability distribution for the critical rate (Eq. 14). Note the simpler

structure with respect to the capacity-achieving distribution (B).

patterns, Px(k) = 1/m, since the bounds employed below are valid for maximal error also

[1, 7], and the maximum-likelihood decoder becomes the minimum-error decoder in this case.

Gallager’s random coding bound on the achievable information rate relies on the average

properties of the statistical ensemble of all possible m-sets of input n-vectors generated by
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the input probability distribution p(x). The probability of a particular set of m inputs is
m∏
k=1

p(x(k)) =
m∏
k=1

p(x(k)
1 ) · · · p(x(k)

n ), (8)

due to the channel being memoryless [1]. For rates R < C the optimal input distribution p(x)

generally differs from the maximizer in Eq. (2) and has to be be optimized in a different way.

For the purposes of the population analysis in this letter, Gallager’s random coding bound

can be manipulated into the following form [1, Ch. 5.6]: for a given value of average decoding

error Pe, maximum-likelihood decoding in Eq. (6) and population size n, it is guaranteed

that the achievable population information rate Rn satisfies

Rn ≥
n

∆E−1
r

(
− logPe

n

)
. (9)

That is, there exists a set of m ≈ e∆Rn input patterns such that the actual average probability

of decoding error does not exceed Pe in Eq. (7). The function E−1
r (·) is the inverse to the

random coding error exponent,

Er(∆R) = max
0≤ρ≤1

[
max
p(x)

E0
(
ρ, p(x)

)
− ρ∆R

]
, (10)

E0
(
ρ, p(x)

)
= − log

∫ ( ∫
f(y|x)1/(1+ρ)p(x) dx

)1+ρ

dy. (11)

The optimization problems in Eqs. (2) and (10) are convex in p(x). We adopt the support-line

method proposed by Gallager [1, Ch. 5.6] for the solution of Eq. (10) together with the

cutting-plane algorithm [31, 32] that converts the originally nonlinear convex problem into a

sequence of linear programs (SM, p. 7). Achievable rates from Eq. (9) are shown in Fig. 2A

for Pe = 10−10.

Upper bound. The converse theorems to Shannon’s channel coding theorem state that

reliable information transmission above certain rate is impossible since the prescribed error

tolerance would have to be exceeded [1]. The upper bound on the information rate, as given

by the converse, is not necessarily achievable.

We use the recently improved bound based on Strassen’s normal approximation [7, 33],

Rn ≤ nC − 1
∆

[√
nV (Pe)Q−1(Pe) + log n

2

]
+O(1). (12)

Here Q−1(·) is the inverse to the Q-function, Q(z) =
∫∞
z

1√
2πe
−t2/2 dt, and V (Pe) is the

channel dispersion, defined for Pe ≤ 1/2 as

V (Pe) = min
p(x)∈C

[〈
log2 f(y|x)

p(y)

〉
x,y

−∆2C2
]
, (13)
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where C is the set of all input capacity-achieving distributions on the given channel. In other

words, given the population size n and the prescribed probability of decoding error Pe, the

right-hand side of Eq. (12) gives the information rate above which the probability of decoding

error of any code exceeds Pe.

The rates upper-bounded by Eq. (12) are shown in Fig. 2A (gray region below the solid

line) for Pe = 10−10. The remaining terms in the bound that do not grow with n must be

ignored for the numerical evaluation (they do not affect the asymptotic tightness), hence for

very small n the upper bound is approximate [6].

Critical population size. Both the lower achievability bound in Eq. (9) and the upper

bound in Eq. (12) approach the asymptote in a non-linear way with increasing n (Fig. 2A).

Heuristically, it is possible to distinguish three performance regions, or regimes, in the

diagram. To some extent, the described situation is analogous to the ‘threshold effect’ known

from the parameter estimation theory [8, 34].

First, the initial ‘no information’ regime for very small n, where it is impossible to transmit

any information while meeting the required error tolerance. The existence of this regime

depends on the structure of the channel and on the value of Pe.

Second, the ‘threshold’ regime characterized by supra-linear growth of information rate

with n, i.e., by a relatively rapid approach towards the capacity bound.

Third, for sufficiently high n, the ‘asymptotic’ regime where the amount of transmitted

information grows almost linearly with the population size. The constant of proportionality

is close to the capacity, the theoretical optimum. The logarithmic scale of the diagram allows

its interpretation in terms of relative increments of the population size. If the number of

neurons is increased by, e.g., 10% while in the threshold regime, the benefit in terms of

the added information rate is disproportionally larger than what would be expected in the

asymptotic regime.

Next, we define the critical population size, nc, to mark the transition towards the

asymptotic regime more quantitatively. The critical rate Rc can be defined as the smallest

rate at which the lower achievable bound in Eq. (9) and the upper bound agree in their error

exponents [1, Ch. 5.8], and therefore indicates the presence of the ‘almost’-asymptotic regime

[35]. The value of Rc is best expressed as normalized per neuron [1],

Rc = 1
∆

d
dρ max

p(x)
E0
(
ρ, p(x)

)∣∣∣∣∣
ρ=1

. (14)
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The corresponding critical population size, nc, is then found from Eq. (9) as nc =

d−(logPe)/Er(∆Rc)e. The Eq. (14) gives consistent results across different neuronal

models (SM, p. 12–14), The upper-lower bound equality is a desirable property, in addition,

note that Rc does not depend on n for the population of independent and identical neurons.

The critical point (nc, ncRc) is marked in Fig. 2A. In this case Rc
.= 11.3bit/s, nc = 236

and ncRc
.= 2568 bit/s. The value of nc is not affected by omitting the O(1) term in Eq. (12),

which essentially affect only the ‘spread’ of the gray region below the critical rate in Fig. 2A.

The corresponding critical-rate input distribution, pc(x), is obtained by maximizing Eq. (10)

for R = Rc or using Eq. (14) (Fig. 2C). The distribution has a simpler structure (less

points of support) than the capacity-achieving input distribution (Fig. 2B). The operational

interpretation of the critical-rate input distribution follows from the concept of the input

ensembles. If the ensemble is generated in accord with Eq. (8) using pc(x) and n = nc then

at least one member of the ensemble (set of m = dexp(∆ncRc)e input vectors) can be used to

communicate information at the critical rate, using the decoder in Eq. (6), and not exceeding

the prescribed Pe.

The Eqs. (9) and (14) rarely lead to closed-form expressions. Nonetheless, for many

cases of interest where f(y|x) is well-behaved and varies continuously with x, the Gaussian

approximation is practical,

R̃c = 1
2∆ log

(
1
2 + S

4 + 1
2

√
1 + S2

4

)
(15)

and ñc = d−ξ−1 logPee, where ξ =
[
2 + S −

√
4 + S2 − 4 log 2 + 2 log

(
2− S +

√
4 + S2

)]
/4

and S = (e2∆C − 1) (SM, p. 9). For the model studied: R̃c
.= 8.9bit/s, ñc = 184 and

ñcR̃c
.= 1622bit/s (Fig. 2).

Discussion. The concept of random input ensembles is employed universally in the

information-theoretic literature, and apparently cannot be avoided [6]. One potential problem

with this approach is that the average properties of the ensemble tend to be dominated by

poorly performing m-sets for small n. We employ a relatively ‘noisy’ neuronal model and

require the probability of decoding error to be small, Pe ≤ 10−10, naturally increasing the

minimal value of n for which at least two input patterns can be formed and transmitted

reliably. Similarly we mitigate the potential impact of the neglected O(1) term in Eq. (12)

that affects the spread between the lower and upper bounds on Rn below the critical rate.

Independently, there is a supporting evidence that the performance of the actual state-of-art
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Turbo and LDPC codes over some classical information channel models (BSC, AWGN) falls

within the mentioned bounds [6, 36]. We therefore consider our estimates of the optimal

decoding performance in Fig. 2A to be adequate. Additional simulations also indicate that

a change in model parameters preserves the qualitative aspects of Fig. 2A, including the

critical behavior (SM, p. 12–14). In future research, we plan to determine the dependence of

nc, Rc on model parameters, number of patterns m required and to balance the unconstrained

optimality conditions with the energetic (metabolic) expenses.

The maximum-likelihood decoding rule in Eq. (6) is sometimes proposed as biologically

plausible [37]. The expected candidate, however, for a hypothetical decoder inside a living

organism, is a neural network. Until comparatively recently, the available learning rules

deemed neural networks as unsuitable for channel decoding [38]. The contemporary progress

seems to have changed this, as it has been demonstrated that certain convolutional neural

networks have a memory capacity that is exponential in the size of the network, provided

that the input pattern components are correlated [39]. The network correctly retrieves a set

of previously memorized patterns from their noisy versions, and the exponential scaling is

theoretically (asymptotically) optimal. Although the input ensemble methods we employ

here cannot be used to identify the detailed structure of the optimal sets of input vectors in

the ensemble, it is known from coding theory that a statistical dependence between elements

of input vectors is generally necessary to achieve reliable transmission [1].

Finally, available information-theoretic methods do not allow to include many of the

detailed biological phenomena easily. In particular, different time scales of neural dynamics

and realistic connectivity patterns dictate that both dependence on the history and feedback

are frequently present in neural systems [40]. Only the model factorizing as Eq. (4) is

amenable to the treatment presented in this letter, though. The channel capacity in the

presence of memory can be only roughly estimated by its upper and lower bounds [41], and

similarly, sufficiently precise evaluation of bounds analogous to Eqs. (9) and (12) is possible

only in special cases [1, Ch. 5.9.], [42]. One possibility is to neglect the presumably optimal

decoding in Eq. (6) and employ a robust and sufficiently universal mismatched decoding.

Nonetheless, even simplified models may provide some insight and a useful description of

biological reality [9]. With that said, the main goal of this letter is to bring forward the

difference between the asymptotic and actually achievable decoding performance, which, as

we believe, universally constraints the optimal information processing in neural systems.
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